

Torque 3D

Welcome

Torque 3D is a large piece of software. Chances are that most of the applications you have worked on up to this point have only been a fraction of the size of this SDK. This reference manual exists for the sole purpose of giving you, the user, a strong foundation to rely on while learning the engine.

The documentation is divided into multiple sections, each of which contains information related to specific subject. This means of organization allows you to jump to different chapters containing information that is pertinent to what you wish to work on.

	introduction-index

	Setup

	World Editor

	Gui Editor

	Artist Guide

	Scripting

	Engine

Working with Torque3D

	What is Torque3D?

	Directory Tour - TODO

	Features

	Assets

Setup

	Overview - TODO

	Required Downloads - TODO

	Installing DirectX SDK - TODO

	Install Visual Studio 2015 - TODO

	Setup Visual Studio 2015 - TODO

	Your First Project - TODO

World Editor

	Basics

	Adding Objects

	Editors

	Tutorials

Gui Editor

	Overview of GUI Editor

	Tutorials

Artist Guide

	Primer

	Formats

	Exporters

	Tutorials

	Importing Assets

Scripting

	Overview

	Simple

	Advanced

Engine

	Audio

	Lighting

	Rendering

License

Copyright (c) 2012 GarageGames, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

What is Torque3D?

What is Torque 3D?

Torque 3D was created by GarageGames to make the development of games easier, faster, and more affordable. It is a professional Software Development Kit (“SDK”) that will save you the effort required to build a rendering system, high speed multiplayer networking, real time editors, a scripting system, and much more.

As part of Torque 3D, you receive full access to 100% of our engine source code. This means that you can add to, alter, or optimize any component of the engine down to the lowest level C++ rendering calls. That being said, you don’t need to be an experienced C++ programmer to use Torque 3D. In fact, you do not need to know C++ at all. Using TorqueScript and the collection of tools that are included with Torque 3D, you can build complete games (of many different genres) without ever touching a single line of C++ code.

To understand the basics of how the engine is setup and the tools available, a short reference is included below. Further sections in the documentation explain these tools in more depth.

System Requirements

	WindowsPC Windows 7/8.1/10

	MAC 2011+ models (not Intel HD 3000)

	Linux Tested on Ubuntu 16.04, 18.04

	Processor: 1.6 GHz Processor or better

	Memory: Win7+ 2GB RAM

	DirectX�: 11, Shader 3.0 supported

	OpenGL: 3.x + ARB Extensions/4.1 Core

	Min GPU: Nvidia 500 series or better, AMD Radeon 5000 series or better, Intel HD Graphics 4000 or better

The Engine

The engine handles all of the elements of a game that run in real time on your computer. The Torque 3D engine is written entirely in C++ and is fully accessible to you as a developer. This means you have access to the inner workings of the code to customize it for your needs. The end result is that Torque 3D allows developers to add functionality, increase optimization, and learn how everything works. Alternatively, you can build a game from scratch to release without delving into the source code. The choice of how to develop your game is up to you.

For example, if you wish to add MYSQL database functionality or integrate the Havok SDK to enhance your game, those paths are open to you. Another benefit of source code access is the ability to read through the comments and data structures to gain a better understanding of how the entire system is set up.

Do not be intimidated. This documentation will show you how to create games without touching the source code at all. There is no need to start working with the engine’s C++ code until you feel comfortable. In the meantime, you can get going with Torque 3D right away!

TorqueScript

Much of your game play logic, camera controls, and user interface will be written in TorqueScript. It is a powerful and flexible scripting language with syntax similar to C++. The key benefit of TorqueScript is that you do not need to be a code guru or know the nitty-gritty specifics of a particular language like C++. If you are already familiar with basic programming concepts, you will have a head start on building your own game.

Another benefit of using TorqueScript, as opposed to editing the engine’s underlying C++ source code, is that you do not have to recompile your executable to see changes in your game. You simply create or modify a script, save, and then run the game from the Toolbox.

There are several TorqueScript articles for new developers that will help you learn the syntax, functionality, and how to use the language with the engine and editors.

Editors

Learning to work with Torque 3D editors is a large part of your initial experience. The key is to remember that the editors work in real-time and are WYSIWYG (What You See Is What You Get). When you use the editors to modify your level, you will see the changes immediately in the game.

World Editor - The World Editor is a tool that will help you assemble your game levels. With this tool, you will add and position terrain, game objects, models, environmental effects, lighting, and more.

GUI Editor - GUI stands for Graphical User Interface. Some examples of GUIs include: splash screens, your main menu, options dialogs and in game Heads Up Displays (“HUDs”). With the GUI Editor, you can design and create your menus, player inventory system, health bars, loading screens, and so on.

The Asset Pipeline

You would not have much of a game without models, textures, and other art assets. For Torque 3D, the preferred file format for 3D art assets is COLLADA.

From the COLLADA website: “COLLADA is a COLLAborative Design Activity for establishing an open standard digital asset schema for interactive 3D applications.” In-other-words, it is a 3D model file format supported by most major art applications used to make content for games. You can create a model in 3D Studio Max, Maya, Blender, or any other 3D editor that supports the COLLADA format.

For those of you familiar with previous Torque engines, you can still import DTS (static models) and DSQ (animation data) files for your 3D objects. This includes static shapes, players, buildings, and props. If you already have a library of DTS and DSQs, feel free to use them in Torque 3D. From this point on, we recommend you transition to the COLLADA open standard for new art assets.

Directory Tour - TODO

Introduction

After you have installed Torque 3D and experimented with it, we recommend that you familiarize yourself with the directory structure of the Torque 3D SDK.

The stock Torque 3D installation includes dozens of folders and thousands of files. It is easy to be overwhelmed at first, but if you spend a little time to browse through the directory hierarchy while reading along with the Directory and Torque 3D Project Tours below, you’ll find that everything is organized in a straightforward and intuitive manner. Following the tours, we have also included a brief description of the file types you will encounter while using Torque 3D.

SDK Tour - TODO

TODO

Torque 3D Project Tour - TODO

Modules and projects created share a common directory structure. Folders are named and organized in such a way that it is easy to locate files based on their type and functionality. The following table describes the purpose of the main folders found in each Torque 3D project.

TODO

File Descriptions

	.bat - Windows batch files that contain OS commands which can be run to perform tasks. Mostly used in the Torque environment for deleting multiple files at once (.dso, prefs, .uft, etc).

	.c / .cpp - Source code files. These contain the C and C++ language programming instructions which are compiled by developer tools to create the game executable (.exe).

	.cs - TorqueScript files contain most of your programmed game logic and processing using the TorqueScript language.

	..command - The Mac equivalent of a .bat file.

	console.log - This file is generated by your game whenever you run it. A lot of information about the critical events that occur during your game are written and saved here.

	.dae - COLLADA files which store model information (geometry, textures, nodes) before Torque 3D converts them to its proprietary DTS format.

	.dml - (Deprecated) Configuration files used for combining environmental textures, mostly used by precipitation and clouds.

	.dso - TorqueScript (.cs) files that have been compiled into an encrypted format. DSO files are more secure than the original uncompiled .cs files that they are created from.

	.dsq - (still supported, replaced with .dae) Proprietary files which store animation information in the format expected by Torque. A .dsq is used in conjunction with .dts files.

	.dts - Proprietary file which stores model information (geometry, textures, nodes) in the format expected by Torque. A .dts is loaded directly into Torque to render 3D models, such as players, items, weapons, and vehicles.

	.dll - Dynamically Linked Library files (DLL) contain code that can be called at runtime by application binary files (.exe and .app) instead of being compiled directly into the binary file itself. This is useful for common libraries, such as OpenGL, OpenAL, Havok, etc.

	.exe / .app - Binary files created by developer tools during the compiling process. Most commonly used to launch your game, a Torque tool, or any other normal computer application.

	.glsl - Contains the configuration information that describes an OpenGL graphics shader.

	.gui - Contains the data used to create a Graphical User Interface (GUI). These files are created using TorqueScript but the special .gui extension allows the GUI Editor to open them for visual modification.

	.h - Header files contain declarations written in the C and C++ languages for classes, structs, variables, and other programming elements, which are compiled by the engine in conjunction with .c and .cpp files to create binary files.

	.hlsl - High Level Shader Language files. Holds the configuration information that describes an MS Windows specific graphics shader.

	.mis - Contains descriptions of the terrain, models, lighting, and environment, and other objects which make up the missions in your game in the format expected by Torque.

	.ogg - Contains audio data in the Ogg Vorbis format for playing sounds and music in your games.

	.png / .jpg / .gif / .dds - Raw image files.

	.ter - Contains terrain data in a format which is understood by, and can be loaded directly into, Torque 3D.

	.torsion - Contains project configuration information which is understood by, and can be loaded into, Torsion which can be used to edit Torque .cs and .gui files. These are Windows only files.

	.uft - These files contain pre-cached font information.

	.wav - Contains audio data in the Waveform format for playing sounds and music in your games.

Conclusion

Understanding the Torque 3D folder and file structure will allow you to easily locate the files you need to work on during the development of your games.

Features

Below is a summary of new features we have added to Torque 3D with the 1.2 release. Each summary includes further details on each new feature.

Teleporters

Teleporters are Trigger objects that have a specific behaviour. You define a teleporter with a TriggerData datablock with some special fields defined:

datablock TriggerData(TeleporterTrigger : DefaultTrigger)
{
 // Amount of time, in milliseconds, to wait before allowing another
 // object to use this teleportat.
 teleporterCooldown = 0;

 // Amount to scale the object's exit velocity. Larger values will
 // propel the object with greater force.
 exitVelocityScale = 0;

 // If true, the object will be oriented to the front
 // of the exit teleporter. Otherwise the player will retain their original
 // orientation.
 reorientPlayer = true;

 // If true, the teleporter will only trigger if the object
 // enters the front of the teleporter.
 oneSided = false;

 // Effects to play at the entrance of the teleporter.
 entranceEffect = EntranceEffect;
 exiteffect = EntranceEffect;

 // 2D Sound to play for the client being teleported.
 teleportSound = TeleportSound;

};

When you define a teleporter you also need to have an exit as defined by the instance’s “exit” field, which is another object in the level – usually another teleporter trigger. Also note that this just defines the trigger itself. If you want your teleporter to have a shape you’ll need to add a shape object to the level, such as a TSStatic.

Weapon Clip System

Weapons may now use the optional ammunition clip system.

To make use of the clip system each weapon needs to define two ItemData datablocks. The first is the clip itself, which needs to be part of the AmmoClip class. Here is an example:

datablock ItemData(LurkerClip)
{
 // Mission editor category
 category = "AmmoClip";

 className = "AmmoClip";

 // Basic Item properties
 shapeFile = "art/shapes/weapons/Lurker/TP_Lurker.DAE";
 mass = 1;
 elasticity = 0.2;
 friction = 0.6;

 // Dynamic properties defined by the scripts
 pickUpName = "Lurker clip";
 count = 1;
 maxInventory = 10;
};

The “maxInventory” field indicates the maximum number of clips a player may carry of this type.

Then the ammunition itself needs to be defined as part of the Ammo class:

datablock ItemData(LurkerAmmo)
{
 // Mission editor category
 category = "Ammo";

 // Add the Ammo namespace as a parent. The ammo namespace provides
 // common ammo related functions and hooks into the inventory system.
 className = "Ammo";

 // Basic Item properties
 shapeFile = "art/shapes/weapons/Lurker/TP_Lurker.DAE";
 mass = 1;
 elasticity = 0.2;
 friction = 0.6;

 // Dynamic properties defined by the scripts
 pickUpName = "Lurker ammo";
 maxInventory = 30;
 clip = LurkerClip;
};

The “maxInventory” field indicates the maximum number of bullets a clip may hold. The “clip” field points back to the clip that holds this ammo.

Finally, you add both the clip and the ammo to the weapon’s datablock:

datablock ShapeBaseImageData(LurkerWeaponImage)
{
 ...

 // Projectiles and Ammo.
 item = Lurker;
 ammo = LurkerAmmo;
 clip = LurkerClip;

 ...
};

When you build out the player’s datablock you have to add both the weapon and the clip as items the player may carry. You don’t need to add the ammo:

datablock PlayerData(DefaultPlayerData)
{
 ...

 maxInv[Lurker] = 1;
 maxInv[LurkerClip] = 20;

 ...
};

However, when you actually add the weapon and clip to the player during GameCore::loadOut() you’ll want to also add the ammunition. This will start the weapon as loaded:

function GameCore::loadOut(%game, %player)
{
 ...

 // Set up inventory and weapon cycles
 %player.clearWeaponCycle();

 %player.setInventory(Lurker, 1);
 %player.setInventory(LurkerClip, %player.maxInventory(LurkerClip));
 %player.setInventory(LurkerAmmo, %player.maxInventory(LurkerAmmo));
 %player.addToWeaponCycle(Lurker);

 ...
}

By default the weapon system will recover any ammunition that is left in a clip when the player manually reloads. Many games operate in this way. If you wish to have any ammunition that is in a clip when the clip is removed to be discarded see the WeaponImage::clearAmmoClip() method and comment out the line indicated.

Per-Player Weapon Cycling

Weapon cycling is no longer set up globally – it is set up for each player instance. This allows for different players to have different weapon load outs, such as a Soldier with his set of guns and an Alien with its own set of guns.

Often you set up a player’s weapon cycling in GameCore::loadOut() but it can occur at any time on the server. The weapon cycling methods themselves are defined in script/server/weapon.cs against the ShapeBase class (which Player inherits from).

When starting to build the weapon cycling list you call clearWeaponCycle() on the player, which clears out any existing list. You then call addToWeaponCycle() on the player for each weapon Item class that you wich the player to cycle through. The order in which the weapons are added to the list is the same order that the player will cycle through them.

Behind the scenes ShapeBase::cycleWeapon() is called on the player whenever the weapons should be cycled. The direction to cycle is passed into this method to move up or down the list.

Multiple Projectiles Per Shot

Weapons may fire multiple projectiles per shot. A shot gun is a good example.

To have multiple projectiles a weapon defines the “projectileNum” field and sets it to a value greater than 1. And if a weapon has a projectile spread defined (with the “projectileSpread” field) then each projectile has its own calculated spread trajectory.

New Damage Reporting

Starting with 1.2 T3D supports custom death messages based on the type of damage that killed the player. To set this up you need to define a sendMsgClientKilled_XXX function that provides the death message, where XXX is the damage type. For example, the proximity mine has the following defined for the MineDamage damage type as defined in the mine’s datablock:

// Customized kill message for deaths caused by proximity mines
function sendMsgClientKilled_MineDamage(%msgType, %client, %sourceClient, %damLoc)
{
 if (%sourceClient $= "") // editor placed mine
 messageAll(%msgType, '%1 was blown up!', %client.playerName);
 else if (%sourceClient == %client) // own mine
 messageAll(%msgType, '%1 stepped on his own mine!', %client.playerName);
 else // enemy placed mine
 messageAll(%msgType, '%1 was blown up by %2!', %client.playerName,
 %sourceClient.playerName);
}

This system allows for very specific messages to be sent to all clients. The system has custom death messages set up for Impact, Suicide and a Default (a catch all) damage type.

The Asset Pipeline

Characters in T3D can be setup to use different weapon animations and share those animations between different skinned meshes with the same skeleton hierarchy. So a standard T3D character would have COLLADA files for the character’s skinned mesh and skinned skeleton as well as for the character’s animations with just the skeleton for each weapon pose. The animations can be exported individually or combined in one .dae file that is split up through the shape editor.

For more information, see the Torque 3D Character Primer from the Artist Guide.

Assets

With Torque3D 4.0, the engine now utilizes an assets-based system to manage content for your game.
Below goes into the high-level breakdown of the elements of it and how they work.

Modules

Modules are the main organizational structure for assets. They act as containers for assets so you
can quickly parse them by group. Modules are defined via a module definition file ending with the ‘module’ extension and companion script file.

For example, we have here TestModule.module:

<ModuleDefinition
 ModuleId="TestModule"
 VersionId="1"
 Description="A test module"
 ScriptFile="TestModule.cs"
 CreateFunction="create"
 DestroyFunction="destroy"
 Group="Game">
 <DeclaredAssets
 canSave="true"
 canSaveDynamicFields="true"
 Extension="asset.taml"
 Recurse="true" />
</ModuleDefinition>

The primary parameters to focus on would be:

	ModuleId: The name of the module when searching and utilizing assets

	ScriptFile: Companion script file that can be utilized for extra loading/unloading management behavior

	CreateFunction: Function called in companion script file upon module being created

	DestroyFunction: Function called in companion script file upon module being destroyed

	Group: What group this module is part of. Largely utilized for selectively loading sets of modules like ‘Core’, ‘Game’ or ‘Tools’

	DeclaredAssets: Subelement that defines the file extension to automatically parse upon load to register assets to this module

Assets

An ‘Asset’ is any specific chunk of content. This can be a singular file, such as an image, or multiple related files together,
like a GUI having a gui file and script file, or a level having the level script file, decal cache, postFX settings, forest object cache, etc.

The Assets system is a system by which said content can be registered into a database for easy loading, utilization, and referencing.
This is done via the use of Asset Definitions, which is a type of metadata. When modules are loaded, they scan
their respective directory and find any asset metadata files within and register them with the Asset Database. This enables them
to be easily referenced via the paradigm of <ModuleName>:<AssetName>. If referenced in this way, the engine will automatically find, reference
and load the asset, handling the file paths and resource management automatically. Different asset types have different Asset Definitions,
but they largely follow a similar structure:

	<LevelAsset

	canSave=”true”
canSaveDynamicFields=”true”
AssetName=”TestLevel”
LevelFile=”TestLevel.mis”
LevelName=”Test Level”
LevelDescription=”A simple test level.”
VersionId=”1” />

The most important parameter is the AssetName, which is used in combination with it’s owner module to formulate an
AssetID. This, referened above as <ModuleName>:<AssetName> when referencing assets and it will handle the referencing
and loading behavior automatically

Overview - TODO

This article will take you through installing the necessary tools to develop games using Torque 3D. We have separated this article into two sections depending on the focus of your team. The first section is oriented towards level designers, artists, and people who are new to Torque 3D and do not need to dive into the source code. The second section is oriented towards programmers who will be working with the source code of the engine.

New Users, Scripters, and Artists

Now that you have decided to work with Torque 3D, this section will take you through setting up your environment.

The setup of Torque 3D is simple.

TBD

Also, make sure that your video and sound drivers are up-to-date with the latest versions. Doing an Internet search on the video or graphics card or visiting the manufacturer web site will usually lead to downloads of the latest drivers. Once these have been installed, you are ready to hit the ground running. Below are some of the common hardware vendor site. Check your system requirements to find your vendor and hardware model.

Common Graphic Drivers

	NVIDIA Drivers

	AMD/ATI Drivers

	Intel Drivers

Common Sound Drivers

	Logitech

	HTIOmega

	ASUS

	RealTek

Programmers

When you download T3D, you receive access to the complete engine source code. This allows you to customize the engine to meet your project needs.

This tutorial will guide you step-by-step through the process of setting up your development environment. Once set up correctly, you will be able to edit and recompile your T3D engine source code.

For this tutorial, we will be using the free Microsoft Visual Studio C++ (“VC++”) Express Edition as our development environment.

This tutorial explains how to:

	Install VC++ Express.

	Download the required files for a successful engine build.

	Set up the environment dependent files correctly.

	Make your first successful engine build.

TDB

Required Downloads - TODO

Download Torque 3D

Download The Required SDK files

Installing DirectX SDK - TODO

Download and Install DirectX SDK

Install Visual Studio 2015 - TODO

TBD

Setup Visual Studio 2015 - TODO

TBD

Your First Project - TODO

Working with a T3D Project

Create a new project

Your new Project

The Source code

The Project

Your First Compile

The Project Build

Run your project

Summary

Basics

	Overview
	Purpose

	Using the World Editor Documentation

	How to Launch the World Editor

	Launching from Within a Running Game

	Looking and Moving Around

	Tips

	Conclusion

	Interface
	File Menu

	Tools Bar

	Tool Selector and Palette

	Scene Tree

	Library Tab
	Scripted Tab

	Meshes Tab

	Level Tab

	Prefabs Tab

	Inspector

	Options

	World Editor Settings

	PostFX Manager
	SSAO

	HDR

	Light Rays

	DOF

	Vignette

	Sharpness

	Nightvision

	Manipulators
	Move Tool Gizmo

	Scaling Tool Gizmo

	Rotation Tool Gizmo

Overview

Purpose

The World Editor is used to build and edit game levels. This includes adding and modifying terrains, buildings, foliage, cloud layers, vehicles, environmental effects, lighting effects, and much more. The World Editor is the first (and most important) tool a new user should learn.

A sample game level as seen inside the World Editor:

[image: ../../_images/WorldEditorIntroImage.jpg]
The World Editor is not a tool for creating game objects. Objects must be created using applications appropriate for the object type (i.e., 3DS Max or Blender3D to create a 3D model). However, once an object is loaded it can be modified by the World Editor in a variety of ways. The simplest modification would be a change in scale (size), but more complex modifications are also possible. For example, the Torque Material Editor can be used to alter (or completely replace) textures on a 3D object or add shader effects.

A typical World Editor workflow might go as follows (in very simplified terms):

	Create a 3D model in an application like 3DS Max, Maya, or Blender.

	Save that model to a sub folder inside your game/art directory.

	Launch World Editor (which will automatically find that model if step 2 was done correctly).

	Add the model to your level; position, scale, rotate, and adjust its materials as desired.

	Test your changes in-game with the push of a single button.

	Return to the World Editor and continue to tweak your level.

Of course, there is a lot more to the World Editor than positioning 3D models. You will also be working with 2D assets like grey scale height-maps to create terrains, as well as specialized tools for creating rivers, forests, and roads.

Finally, it is worth noting that Torque 3D includes numerous art assets for you to play with… so you can skip steps 1 and 2 above and start building game levels right away!

Using the World Editor Documentation

The World Editor documentation follows a logical progression. Those who wish may work through it in a methodical way. Others may choose to skip difficult sections and jump directly to the tutorials at the end or to focus on only the features of interest.

Everyone learns differently, but we’ve found that a good way for new users to get started quickly is to follow these three steps:

	Continue reading this document (“Overview”) in its entirety. It covers: how to launch the World Editor, how to look and move around in a game level, and it offers a few important tips for new (and experienced) users.

	With the World Editor open, quickly skim the next document, “Interface”. You should only spend five-to-ten minutes getting an initial feel for the basic layout of the interface. Do not try to learn any features in detail.

	Try to add moving clouds to your level by following the Basic Cloud Layer instructions. Whether you are successful or not, spend no more than five minutes on this task.

Do not be concerned if you have trouble completing Step 3. Its purpose is to give you a specific task that requires direct interaction with the interface. That small exposure to the interface will go a long way towards making the remainder of the documentation more meaningful and easy to follow.

Once you’ve completed the three steps above, how you proceed is up to you. For those who prefer to jump around, we recommend you start by carefully reviewing the Interface document.

How to Launch the World Editor

There are two ways to open the World Editor: from main menu clicking the World Editor button or by using hot keys from within a running Torque game. You will likely use both methods during development.

Launching from Within a Running Game

While your game is running, you can open or close the World Editor at any time using hot key combinations:

	On Windows and Linux, to open or close the World Editor, press the F11 key.

	On Mac OS X, to open or close the World Editor, press CMD+FN+F11.

Note

When you first launch the World Editor, it is likely you will do so from the Main Menu. However, after you have modified your level, if you decide to test it out by clicking the Play Game button (as described in the “Interface” document), you will need to use the F11 hotkey to get back to the World Editor. Otherwise, you would be forced to quit your game and relaunch the World Editor.

Looking and Moving Around

While working in the World Editor, you will need to move and look around to inspect your level.

	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD keys can also be used). If you have a mouse-wheel, it can be used to move forward or backward.

	Look Left/Right/Up/Down by holding the right mouse button down while moving the mouse.

	Pan Left/Right/Up/Down by holding down the middle mouse button (Mouse 3) while moving the mouse. On most mice with a scroll wheel, this is achieved by depressing (not scrolling) the mouse wheel.

Note

There are a number of Camera options, discussed further in the Interface document, which in some cases may alter the behavior of these controls in minor ways.

When play testing your game outside of the World Editor, default control is typical of most First Person Shooters and can be remapped by pressing Ctrl-O (Windows) to bring up an options dialog. A few important controls are listed below:

	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD key can also be used).

	Look around by moving the mouse.

	Fire/Alt Fire are triggered by the left and right mouse buttons.

	Jump is activated by the Space Bar.

	First/Third person view is toggled by pressing TAB.

	C**hange weapons** by scrolling the mouse wheel (or press Q key).

	Exit vehicles by pressing Control-F.

	Return to World Editor by using the F11 hotkey (as discussed above).

Tips

The following is a general list of knowledge you should keep in mind while editing a level in your game:

	Try to design your levels outside of the editor first. Sometimes it is helpful to have a simple verbal or visual design ready before you actually start editing. Even if it is a simple blueprint on a napkin, a level editor/artist with a reference to work from will cover ground much more quickly.

	Prioritize your object placement. It makes sense to polish certain aspects of a level before others. For example, try to finish your Sky, Sun, and Terrain before you move on to adding rivers, foliage, and other objects. Performing major adjustments to a terrain with hundreds of objects already placed could be tedious and counterproductive.

	Play your level regularly. After you reach a major milestone, try actually doing the things in your level as a player would. There is a big difference between the experience of a player in a game and that of a designer with a free-floating camera in the World Editor.

	Do not forget to optimize. Some specific World Editor objects are more appropriate than others. Use Ground Cover instead of a 3D model with lots of grass or trees attached. As much as possible, use the Sun rather than numerous point lights to handle ambient lighting. There are other such optimizations which will become apparent towards the end of development.

	SAVE AND SAVE OFTEN. This cannot be stressed enough. Computers crash, power goes out, cats jump on keyboards, and in rare circumstances you may encounter a yet undiscovered issue which causes data corruption. Any number of accidents can result in hours of work being lost. We recommend you save as often as you can.

Conclusion

Now that you know the purpose of the World Editor, and how to access it, we can move on to learning how to use it. Before you start placing objects or creating levels, you should learn the interface. Continue on to the World Editor Interface.

Interface

The default World Editor view consists of five main sections:

	File Menu (Yellow)

	Found at the very top of the World Editor window, you will find menus that controls the global functionality of the editor, such as opening/saving levels, toggling camera modes, opening settings dialogs, and so on.

	Tools Bar (Blue)

	Located just below the File Menu, this bar contains shortcuts to all of the tools, their settings, and some options found in the File Menu.

	Tool Palette (Dark Blue)

	The Tool Palette changes based on what Tool you are currently using. For example, when using the Object Editor you will have icons for moving and rotating an object, wheras the Terrain will have icons for moving and rotating an object, whereas the Terrain Editor display icons for elevation tools.

	Scene View (Red)

	Main scene view of your level and its objects. In the upper left you can see the Tool Palette.

	Scene Tree Panel (Gold)

	While using the Object Editor, one of the floating panels available to you is the Scene Tree. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. The Library tab is what you will use to add new objects to your level after which they will appear in the Scene tab.

	Inspector Panel (Brown)

	While using the Object Editor, a selected object’s properties will be shown in this panel. Most of your object editing will be performed here.

[image: ../../_images/WEInterface.png]

File Menu

File Menu allows you to: Create, save, open, and close levels; Open, import, and export level data to/from other tools; Run your level to test it and exit the World Editor.

[image: ../../_images/WEFileMenu.png]
The Edit Menu allows you to: Control editor actions such as undo and redo; Cut, copy, paste, and delete objects you have selected; Select objects using a name pattern or by type filtering; Access dialogs to control various World Editor settings.

[image: ../../_images/WEEditMenu.jpg]
The View Menu: Opens the Visibility Layers dialog which toggles debug rendering modes; Toggle the visibility of other aspects of the editor.

[image: ../../_images/WEViewMenu.jpg]
The Object Menu allows you to: Manipulate a selected object’s settings by locking/unlocking it, hiding/showing the object, resetting its transforms, and so on.

[image: ../../_images/WEObjectMenu.jpg]
The Drop Location sub-menu selection informs the World Editor where it should place newly created objects.

[image: ../../_images/WEDropLocationMenu.jpg]
The Physics Menu allows you to Start and Stop PhysX simulation in the Editor, set the simulation speed and reload all PhysX objects and actors. (this menu is enabled if T3D game engine have enabled Nvidia PhysX.)

[image: ../../_images/WEPhysicsMenu.jpg]
The Camera Menu allows you to choose your camera type, adjust its speed and motion, and drop it at certain locations.

[image: ../../_images/WECameraMenu.jpg]
The World Camera sub-menu allows you to change the way the camera moves.

[image: ../../_images/WEWorldCameraMenu.jpg]
The Player Camera sub-menu allows you to switch between perspectives while moving around as a player.

[image: ../../_images/WEPlayerCamera.jpg]
The Camera Speed sub-menu allows you to adjust how fast the camera moves.

[image: ../../_images/WECameraSpeedMenu.jpg]
The Editors Menu allows you to select which set of editing tools is currently active in the World Editor.

[image: ../../_images/WEEditorsMenu.jpg]
The Lighting Menu allows you to switch between Advanced and Basic lighting modes, as well as perform level relights.

[image: ../../_images/WELightingMenu.jpg]
Contains shortcuts to documentation and forums for Torque 3D.
TODO - update image

[image: ../../_images/WEHelpMenu.jpg]

Tools Bar

The Tools Bar is the best way to switch between tools. It is made of two components: Tool Settings (top bar) and Tools Selector (bottom bar).

[image: ../../_images/ShortToolbar.png]
Tool Settings is made of up three sub-sections: the editor selector, camera settings, and Object Editor. The editor selector and camera setting will always be displayed. The Object Editor will display available settings for the currently selected tool. The Tools Selector will always display the same shortcuts for selecting tools.

This section focuses on the elements of Tool Settings.

The first three icons switch between the editor’s operating modes. Each icon represents a different editing mode and only one mode can be active at any time. There are three modes: World Editor, GUI Editor, and Game Mode. The World Editor is represented by the mountain icon. The GUI Editor is represented by the boxes icon. The Game Mode is represented by the arrow icon.

[image: ../../_images/EditorIcons.jpg]
World Editor mode provides tools for manipulating the “world” of your game including terrain, creatures, and so on.

GUI Editor mode provides tools for manipulating the Graphical User Interface (GUI) of your game such as health meters, cursors, and so on.

Play Game Mode runs your game and lets you play through it.

Note

When you use this icon to play your game the World Editor actually closes completely. To return to the World Editor you must press F11 or exit the game and relaunch the World Editor from the Main Menu.

Next to the editor selector, you will find the camera and visibility settings.

[image: ../../_images/CameraIcons.jpg]
The camera icon will let you choose your camera type. The drop-down menu next to it will let you switch between camera speeds. The eye icon is the visualization settings which toggle debug rendering modes for various graphical modules, such as normal mapping, wireframe, specular shading, etc. The icon that looks like a camera in a box will move your camera to whatever object you have selected, filling up your view with its boundaries.

[image: ../../_images/WorldSettingsIcons.jpg]
The World Settings make up the rest of this bar when using the tools. The first icon lets you determine your snapping options (snapping to terrain, a bounding box of an object, which axis, etc.). The next icon toggles snapping to a grid. The magnet icon determines soft snapping to other objects. The numeric indicator determines the distance of the snap option.

The box icon with an arrow is a selection tool that allows you to select an object according to its bounding box. This makes selecting small, detailed objects much easier. The next icon that looks like a bullseye will change the selection target from the object center to the bounding box center. The small icon with arrows and mountains will change the object transform and the world transform.

The next two icons show descriptors in your scene. The first icon that looks like a box in a square will display object icons for the various objects in your scene. The second icon will show text descriptors for the objects in your scene.

The last two icons in the bar are prefab icons. The first icon lets you group selected items into a “prefab” (or prefabricated collection) of objects. The second icon will ungroup your prefab items.

Tool Selector and Palette

[image: ../../_images/ObjectEditorTool.jpg]
Object Editor:
Used to place objects in the world, group them, and lay out your scenes.

[image: ../../_images/TerrainEditorTool.jpg]
Terrain Editor:
Used to edit, save and load terrain objects in your scenes.

[image: ../../_images/TerrainPainterTool.jpg]
Terrain Painter: To paint textures onto terrains in scenes.

[image: ../../_images/MaterialEditorTool.jpg]
Material Editor: Change texture and shader properties.

[image: ../../_images/SketchTool.jpg]
Sketch Tool: Create prototype geometry for quick level layout testing.

[image: ../../_images/DatablockEditor.jpg]
Datablock Editor: Edit properties of objects in the scene.

[image: ../../_images/DecalEditorTool.jpg]
Decal Editor: Edit decals and decal properties.

[image: ../../_images/ForestEditorTool.jpg]
Forest Editor: Edit forest areas in the scene.

[image: ../../_images/MeshRoadTool.jpg]
Mesh Road Tool: Create mesh roadways along the terrain.

[image: ../../_images/MissionEditorTool.jpg]
Mission Area Editor: Edit the Mission Area object.

[image: ../../_images/NavEditorTool.jpg]
Navigation Editor: Create and edit navigation mesh used in artificial intelligence (AI) for pathfinding.

[image: ../../_images/ParticleEditorTool.jpg]
Particle Editor: Create and edit particle properties for particle effects in the scene.

[image: ../../_images/RiverTool.jpg]
River Tool: Create rivers in the scene.

[image: ../../_images/DecalRoadTool.jpg]
Decal Road Tool: Create decal readways in the scene.

[image: ../../_images/ShapeEditorTool.jpg]
Shape Editor: Edit, change, and set properties on meshes.

Scene Tree

The Scene Tree panel is available while using the Object Editor tool. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. You can select specific objects to modify them.

[image: ../../_images/SceneTree_SceneTab.png]
Each object in the tree has an icon, unique ID, an object type, and a name. Whenever you click on an object in the tree, it is selected in the level and vice versa. Most of your objects can stand alone in the tree, but you can also use a SimGroup object to organize related entries.

At first glance, a SimGroup looks like a folder and acts much like one to help organize your tree. It does not physically exist in your level, but you can reference it by name or ID from script or the engine. This is handy for grouping several game objects you might need to iterate through and invoke an action on. Even if you do not use that feature, it is still a good idea to group similar objects under a SimGroup to help organize and better navigate your trees as some levels can grow to a large number of objects.

Library Tab

The Library tab is what you will use to add objects to your level. Once an object has been added to your level, it will appear in the Scene tab (described above). There are four sub-categories on the Library tab, which are separated as sub-tabs: Scripted, Meshes, Level, and Prefabs. Each category contains objects that serve very specific purposes.

[image: ../../_images/SceneTree_LibraryTab.jpg]

Scripted Tab

The first tab, Scripted, is automatically populated with game objects that have been created via script. For example, let’s say you have a ceiling fan object with an associated script which controls how and when the fan blades rotate. It would appear in the Scripted tab as follows:

[image: ../../_images/ScriptedObject.jpg]
A discussion of scripting and how to associate scripts with an object is beyond the scope of this document. See the TorqueScript Tutorial for more information.

Meshes Tab

When you simply wish to add a 3D art asset, you will use the Meshes Tab. You can browse the various folders containing assets in your project’s “art” directory. From here you can add DTS, COLLADA, and DIF files.

[image: ../../_images/MeshObject.jpg]

Level Tab

The Level Tab lists all the Torque 3D objects that can be used to populate your level. Objects are further divided into category folders. To view what is in a folder, double click it. To leave a folder and view the folder list, click the left pointing arrow icon. To move directly to another folder, select it from the drop down list.

[image: ../../_images/LevelTab.png]
Each sub-category contains objects with similar themes:

[image: ../../_images/LevelTab_Environment.png]

	The Environment sub-category contains most of the objects you will add to your level, such as Terrain, Sun, Clouds, Waterblocks, and similar objects.

	The ExampleObjects sub-category contains example rendering classes created in C++.

	The Level sub-category contains objects that manage Time of Day, level boundaries, and similar objects.

	The System sub-category contains engine-level objects such as SimGroups.

Prefabs Tab

The prefab system allows you to group multiple objects together and combine them into a single file. This new object can then be repeatedly placed into your level as a whole, making it easier for you to add complex groups of objects with only a few mouse clicks. When you create a prefab from multiple selections, you will save it to a *.prefab file using the group prefab icon. The World Editor will automatically load these files in the Prefabs tab.

[image: ../../_images/PrefabsTab.jpg]

Inspector

Whenever you add an object to a level, you will most likely start modifying them immediately. You can use the Inspector Panel to change the properties of an object
TODO - Update image

[image: ../../_images/WEInspectorPanel.jpg]
While there are a few shared property sections, most object types will have a unique set of properties. Editing is as simple as selecting an object in the level, locating a field that you want to change, such as “className” or “media”, then either editing the existing value or entering a value if no default value is given. There are different types of values such as strings, numbers, check boxes, vectors, and even values that require the use of a file browser or color picker.

Options

The Options dialog is used to change your current session’s audio and video properties as well as mouse and keyboard control bindings. The Options dialog is accessed from the main menu by selecting Edit > Game Options… in the Full Template

[image: ../../_images/OptionsDlg.png]
You will use the Graphics tab to adjust your game resolution, screen mode, detail levels, and so on. The Audio tab allows you to adjust your current game’s volume, both globally and channel specific.

World Editor Settings

The World Editor Setting dialog is important to editing.

[image: ../../_images/WorldEditorSettings.png]
Through this dialog, you can change various aspects of how your tools render and function. The Axis Gizmo section will control what is rendered on your object, such as the Axis gizmo while moving the object, increase/decrese the scalar. You can also adjust the rendering of the editing plane in relation to the object.

The Camera section here you can change the default values and adjust it to your needs, like invert the Y axis, camera speed, etc

The Object editor section will allows you to modify the render text of the object or icon and change some colors.

There are several options you can tweak the sensitivity, add defaults options, adjust colors, adjust visibility or have more precise or dramatic modifications.

PostFX Manager

The PostFX Manager GUI allows level editors to control various post-processing effects. Select the Enable PostFX checkbox to toggle PostFX on and off.

[image: ../../_images/postfx_toggle_off.png]
Use the effect tabs to access the effect settings; select one of the effect tabs to view details and an in-game example of the effect, and use the checkbox to toggle the current effect on and off.

[image: ../../_images/postfx_tabs_ssao.png]
PostFX settings can be saved to file and and loaded automatically with the level. To achieve this, simply save the settings with the same name as the level file. For example, for Burg.mis, save the PostFX settings in a file called Burg.postfxpreset.cs in the same folder as the level file.

[image: ../../_images/postfx_footer.png]

SSAO

Screen space ambient occlusion (SSAO) is an approximation of true Ambient Occlusion. Enabling the effect will darken creases and surfaces that are close together. Outdoor areas with brighter ambient light will show the effect better.

[image: ../../_images/postfx_ssao_general.png]

	Quality

	Controls the number of ambient occlusion samples taken; higher quality is more expensive to compute.

	Overall Strength

	Controls the overall intensity/darkness of the effect (applied on top of near/far strength).

	Blur (Softness)

	Blur depth tolerance.

	Blur (Normal Maps)

	Blur normal tolerance.

[image: ../../_images/postfx_ssao_near.png]
SSAO parameters for pixels near to the camera (small depth values).

	Radius

	Occlusion radius.

	Strength

	Occlusion intensity/darkness.

	Depth min

	Minimum screen depth at which to apply effect.

	Depth max

	Maximum screen depth at which to apply effect.

	Tolerance

	Unused

	Power

	Unused

[image: ../../_images/postfx_ssao_far.png]
SSAO parameters for pixels far away from the camera (large depth values).

	Radius

	Occlusion radius.

	Strength

	Occlusion intensity/darkness.

	Depth min

	Minimum screen depth at which to apply effect.

	Depth max

	Maximum screen depth at which to apply effect.

	Tolerance

	Unused

	Power

	Unused

HDR

Control several High Dynamic Range (HDR) effects including Bloom and Tone mapping.

[image: ../../_images/postfx_hdr_bright.png]

	Tone Mapping Contrast

	Amount of interpolation between the scene and the tone mapped scene.

	Key Value

	The tone mapping middle grey or exposure value used to adjust the overall “balance” of the image.

	Minimum Luminence

	The minimum luninace value to allow when tone mapping the scene. Is particularly useful if your scene very dark or has a black ambient color in places.

	White Cutoff

	The lowest luminance value which is mapped to white. This is usually set to the highest visible luminance in your scene. By setting this to smaller values you get a contrast enhancement.

	Brightness Adapt Rate

	The rate of adaptation from the previous and new average scene luminance.

[image: ../../_images/postfx_hdr_bloom.png]

	Bright Pass Threshold

	The threshold luminace value for pixels which are considered “bright” and need to be bloomed.

	Blur multiplier/mean/Std Dev

	These control the gaussian blur of the bright pass for the bloom effect.

[image: ../../_images/postfx_hdr_effects.png]

	Enable color shift

	Enables a scene tinting/blue shift based on the selected color, for a cinematic desaturated night effect.

Light Rays

This effect creates radial light scattering (also known as god rays). It works best when the scene contains a very bright light, in the example outpost level you should be able to see some scattering occuring around the trees.

[image: ../../_images/postfx_rays.png]

	Brightness

	Controls how bright the rays and the objcet casting them are in the scene.

	Samples

	The number of samples for the shader.

	Density

	Controls the destity of the rays.

	Weight

	Add or remove weight of the rays for a better effect.

	Decay

	Controls the decay of the rays.

DOF

Depth of Field (DOF) simulates a camera lens, and blurs pixels based on depth from the focal point. DOF is commonly used when zooming in with a weapon.

[image: ../../_images/postfx_dof_general.png]

	Enable Auto Focus

	Determines how the focal depth is calculated. When auto-focus is disabled, focal depth is set manually by calling DOFPostEffect::setFocalDist. When auto-focus is enabled, focal depth is calculated automatically by performing a raycast at the screen-center.

[image: ../../_images/postfx_dof_focus.png]

	Near/Far Blur Max

	Sets maximum blur for pixels closer/further than the focal distance.

	Focus Range (Min/Max)

	The min and max range parameters control how much area around the focal distance is completely in focus.

	Blur Curve Near/Far

	Controls the gradient of the near/far blurring curve. A small number causes bluriness to increase gradually at distances closer/further than the focal distance. A large number causes bluriness to increase quickly.

Vignette

This effect add a vignette around the vision of the player, like if your where using a helmet or goggles.

[image: ../../_images/postfx_tabs_vignette.png]

	Radius

	Adjust the maximum exposure of vignetting.

Sharpness

This effect is currently unavailable.

[image: ../../_images/postfx_sharpness.png]

Nightvision

This effect is currently unavailable.

[image: ../../_images/postfx_night_bright.png]
This effect is currently unavailable.

[image: ../../_images/postfx_night_distort.png]

Manipulators

The last World Editor visual we will describe is the gizmo. A gizmo is a three dimensional rendering of an object’s transforms. While using the Object Editor tool, you can use a gizmo to adjust an object’s location, rotation, and scale without having to manually input number values in the Inspector Panel.

Each gizmo has a unique appearance to notify you of what you are adjusting based upon the tool that you are using.

Move Tool Gizmo

When you wish to move an object from one place to another, you will use the Move Tool. This is represented by a gizmo with arrows pointing toward different axes.

You can grab an arrow to move the object along an axis, or grab a space between two arrows to move it in both directions.

[image: ../../_images/TranslateGizmo.jpg]
If you look carefully, you should see letters at the end of each arrow. These correspond to Torque 3D’s world coordinate system. The engine utilizes the right-handed (or positive) Cartesian coordinate system, where Z is up (top), X is side (right), and Y is front (forward). This applies to the rest of the gizmos.

Scaling Tool Gizmo

The Scaling Tool is represented by a gizmo that looks similar to the Translate gizmo. Instead of arrows, there are blocks at the end of the gizmo lines. Dragging one of the boxes in a direction will shrink or grow your object, depending on which direction you move.

[image: ../../_images/ScaleGizmo.jpg]

Rotation Tool Gizmo

While using the Rotation Tool, the orientation gizmo will be rendered. This gizmo looks and acts much differently than the previous two. Instead of straight lines, multiple circles will surround your object.

[image: ../../_images/RotateGizmo.jpg]
Dragging the red circle in a direction will rotate the object along the X-Axis. Green rotates around the Y-Axis. Blue rotates around the Z-axis. The off color circles allow you to rotate an object along multiple axes.

Adding Objects

	Overview
	Purpose

	Using the World Editor Documentation

	How to Launch the World Editor

	Launching from Within a Running Game

	Looking and Moving Around

	Tips

	Conclusion

	Interface
	File Menu

	Tools Bar

	Tool Selector and Palette

	Scene Tree

	Library Tab
	Scripted Tab

	Meshes Tab

	Level Tab

	Prefabs Tab

	Inspector

	Options

	World Editor Settings

	PostFX Manager
	SSAO

	HDR

	Light Rays

	DOF

	Vignette

	Sharpness

	Nightvision

	Manipulators
	Move Tool Gizmo

	Scaling Tool Gizmo

	Rotation Tool Gizmo

Overview

Purpose

The World Editor is used to build and edit game levels. This includes adding and modifying terrains, buildings, foliage, cloud layers, vehicles, environmental effects, lighting effects, and much more. The World Editor is the first (and most important) tool a new user should learn.

A sample game level as seen inside the World Editor:

[image: ../../_images/WorldEditorIntroImage.jpg]
The World Editor is not a tool for creating game objects. Objects must be created using applications appropriate for the object type (i.e., 3DS Max or Blender3D to create a 3D model). However, once an object is loaded it can be modified by the World Editor in a variety of ways. The simplest modification would be a change in scale (size), but more complex modifications are also possible. For example, the Torque Material Editor can be used to alter (or completely replace) textures on a 3D object or add shader effects.

A typical World Editor workflow might go as follows (in very simplified terms):

	Create a 3D model in an application like 3DS Max, Maya, or Blender.

	Save that model to a sub folder inside your game/art directory.

	Launch World Editor (which will automatically find that model if step 2 was done correctly).

	Add the model to your level; position, scale, rotate, and adjust its materials as desired.

	Test your changes in-game with the push of a single button.

	Return to the World Editor and continue to tweak your level.

Of course, there is a lot more to the World Editor than positioning 3D models. You will also be working with 2D assets like grey scale height-maps to create terrains, as well as specialized tools for creating rivers, forests, and roads.

Finally, it is worth noting that Torque 3D includes numerous art assets for you to play with… so you can skip steps 1 and 2 above and start building game levels right away!

Using the World Editor Documentation

The World Editor documentation follows a logical progression. Those who wish may work through it in a methodical way. Others may choose to skip difficult sections and jump directly to the tutorials at the end or to focus on only the features of interest.

Everyone learns differently, but we’ve found that a good way for new users to get started quickly is to follow these three steps:

	Continue reading this document (“Overview”) in its entirety. It covers: how to launch the World Editor, how to look and move around in a game level, and it offers a few important tips for new (and experienced) users.

	With the World Editor open, quickly skim the next document, “Interface”. You should only spend five-to-ten minutes getting an initial feel for the basic layout of the interface. Do not try to learn any features in detail.

	Try to add moving clouds to your level by following the Basic Cloud Layer instructions. Whether you are successful or not, spend no more than five minutes on this task.

Do not be concerned if you have trouble completing Step 3. Its purpose is to give you a specific task that requires direct interaction with the interface. That small exposure to the interface will go a long way towards making the remainder of the documentation more meaningful and easy to follow.

Once you’ve completed the three steps above, how you proceed is up to you. For those who prefer to jump around, we recommend you start by carefully reviewing the Interface document.

How to Launch the World Editor

There are two ways to open the World Editor: from main menu clicking the World Editor button or by using hot keys from within a running Torque game. You will likely use both methods during development.

Launching from Within a Running Game

While your game is running, you can open or close the World Editor at any time using hot key combinations:

	On Windows and Linux, to open or close the World Editor, press the F11 key.

	On Mac OS X, to open or close the World Editor, press CMD+FN+F11.

Note

When you first launch the World Editor, it is likely you will do so from the Main Menu. However, after you have modified your level, if you decide to test it out by clicking the Play Game button (as described in the “Interface” document), you will need to use the F11 hotkey to get back to the World Editor. Otherwise, you would be forced to quit your game and relaunch the World Editor.

Looking and Moving Around

While working in the World Editor, you will need to move and look around to inspect your level.

	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD keys can also be used). If you have a mouse-wheel, it can be used to move forward or backward.

	Look Left/Right/Up/Down by holding the right mouse button down while moving the mouse.

	Pan Left/Right/Up/Down by holding down the middle mouse button (Mouse 3) while moving the mouse. On most mice with a scroll wheel, this is achieved by depressing (not scrolling) the mouse wheel.

Note

There are a number of Camera options, discussed further in the Interface document, which in some cases may alter the behavior of these controls in minor ways.

When play testing your game outside of the World Editor, default control is typical of most First Person Shooters and can be remapped by pressing Ctrl-O (Windows) to bring up an options dialog. A few important controls are listed below:

	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD key can also be used).

	Look around by moving the mouse.

	Fire/Alt Fire are triggered by the left and right mouse buttons.

	Jump is activated by the Space Bar.

	First/Third person view is toggled by pressing TAB.

	C**hange weapons** by scrolling the mouse wheel (or press Q key).

	Exit vehicles by pressing Control-F.

	Return to World Editor by using the F11 hotkey (as discussed above).

Tips

The following is a general list of knowledge you should keep in mind while editing a level in your game:

	Try to design your levels outside of the editor first. Sometimes it is helpful to have a simple verbal or visual design ready before you actually start editing. Even if it is a simple blueprint on a napkin, a level editor/artist with a reference to work from will cover ground much more quickly.

	Prioritize your object placement. It makes sense to polish certain aspects of a level before others. For example, try to finish your Sky, Sun, and Terrain before you move on to adding rivers, foliage, and other objects. Performing major adjustments to a terrain with hundreds of objects already placed could be tedious and counterproductive.

	Play your level regularly. After you reach a major milestone, try actually doing the things in your level as a player would. There is a big difference between the experience of a player in a game and that of a designer with a free-floating camera in the World Editor.

	Do not forget to optimize. Some specific World Editor objects are more appropriate than others. Use Ground Cover instead of a 3D model with lots of grass or trees attached. As much as possible, use the Sun rather than numerous point lights to handle ambient lighting. There are other such optimizations which will become apparent towards the end of development.

	SAVE AND SAVE OFTEN. This cannot be stressed enough. Computers crash, power goes out, cats jump on keyboards, and in rare circumstances you may encounter a yet undiscovered issue which causes data corruption. Any number of accidents can result in hours of work being lost. We recommend you save as often as you can.

Conclusion

Now that you know the purpose of the World Editor, and how to access it, we can move on to learning how to use it. Before you start placing objects or creating levels, you should learn the interface. Continue on to the World Editor Interface.

Interface

The default World Editor view consists of five main sections:

	File Menu (Yellow)

	Found at the very top of the World Editor window, you will find menus that controls the global functionality of the editor, such as opening/saving levels, toggling camera modes, opening settings dialogs, and so on.

	Tools Bar (Blue)

	Located just below the File Menu, this bar contains shortcuts to all of the tools, their settings, and some options found in the File Menu.

	Tool Palette (Dark Blue)

	The Tool Palette changes based on what Tool you are currently using. For example, when using the Object Editor you will have icons for moving and rotating an object, wheras the Terrain will have icons for moving and rotating an object, whereas the Terrain Editor display icons for elevation tools.

	Scene View (Red)

	Main scene view of your level and its objects. In the upper left you can see the Tool Palette.

	Scene Tree Panel (Gold)

	While using the Object Editor, one of the floating panels available to you is the Scene Tree. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. The Library tab is what you will use to add new objects to your level after which they will appear in the Scene tab.

	Inspector Panel (Brown)

	While using the Object Editor, a selected object’s properties will be shown in this panel. Most of your object editing will be performed here.

[image: ../../_images/WEInterface.png]

File Menu

File Menu allows you to: Create, save, open, and close levels; Open, import, and export level data to/from other tools; Run your level to test it and exit the World Editor.

[image: ../../_images/WEFileMenu.png]
The Edit Menu allows you to: Control editor actions such as undo and redo; Cut, copy, paste, and delete objects you have selected; Select objects using a name pattern or by type filtering; Access dialogs to control various World Editor settings.

[image: ../../_images/WEEditMenu.jpg]
The View Menu: Opens the Visibility Layers dialog which toggles debug rendering modes; Toggle the visibility of other aspects of the editor.

[image: ../../_images/WEViewMenu.jpg]
The Object Menu allows you to: Manipulate a selected object’s settings by locking/unlocking it, hiding/showing the object, resetting its transforms, and so on.

[image: ../../_images/WEObjectMenu.jpg]
The Drop Location sub-menu selection informs the World Editor where it should place newly created objects.

[image: ../../_images/WEDropLocationMenu.jpg]
The Physics Menu allows you to Start and Stop PhysX simulation in the Editor, set the simulation speed and reload all PhysX objects and actors. (this menu is enabled if T3D game engine have enabled Nvidia PhysX.)

[image: ../../_images/WEPhysicsMenu.jpg]
The Camera Menu allows you to choose your camera type, adjust its speed and motion, and drop it at certain locations.

[image: ../../_images/WECameraMenu.jpg]
The World Camera sub-menu allows you to change the way the camera moves.

[image: ../../_images/WEWorldCameraMenu.jpg]
The Player Camera sub-menu allows you to switch between perspectives while moving around as a player.

[image: ../../_images/WEPlayerCamera.jpg]
The Camera Speed sub-menu allows you to adjust how fast the camera moves.

[image: ../../_images/WECameraSpeedMenu.jpg]
The Editors Menu allows you to select which set of editing tools is currently active in the World Editor.

[image: ../../_images/WEEditorsMenu.jpg]
The Lighting Menu allows you to switch between Advanced and Basic lighting modes, as well as perform level relights.

[image: ../../_images/WELightingMenu.jpg]
Contains shortcuts to documentation and forums for Torque 3D.
TODO - update image

[image: ../../_images/WEHelpMenu.jpg]

Tools Bar

The Tools Bar is the best way to switch between tools. It is made of two components: Tool Settings (top bar) and Tools Selector (bottom bar).

[image: ../../_images/ShortToolbar.png]
Tool Settings is made of up three sub-sections: the editor selector, camera settings, and Object Editor. The editor selector and camera setting will always be displayed. The Object Editor will display available settings for the currently selected tool. The Tools Selector will always display the same shortcuts for selecting tools.

This section focuses on the elements of Tool Settings.

The first three icons switch between the editor’s operating modes. Each icon represents a different editing mode and only one mode can be active at any time. There are three modes: World Editor, GUI Editor, and Game Mode. The World Editor is represented by the mountain icon. The GUI Editor is represented by the boxes icon. The Game Mode is represented by the arrow icon.

[image: ../../_images/EditorIcons.jpg]
World Editor mode provides tools for manipulating the “world” of your game including terrain, creatures, and so on.

GUI Editor mode provides tools for manipulating the Graphical User Interface (GUI) of your game such as health meters, cursors, and so on.

Play Game Mode runs your game and lets you play through it.

Note

When you use this icon to play your game the World Editor actually closes completely. To return to the World Editor you must press F11 or exit the game and relaunch the World Editor from the Main Menu.

Next to the editor selector, you will find the camera and visibility settings.

[image: ../../_images/CameraIcons.jpg]
The camera icon will let you choose your camera type. The drop-down menu next to it will let you switch between camera speeds. The eye icon is the visualization settings which toggle debug rendering modes for various graphical modules, such as normal mapping, wireframe, specular shading, etc. The icon that looks like a camera in a box will move your camera to whatever object you have selected, filling up your view with its boundaries.

[image: ../../_images/WorldSettingsIcons.jpg]
The World Settings make up the rest of this bar when using the tools. The first icon lets you determine your snapping options (snapping to terrain, a bounding box of an object, which axis, etc.). The next icon toggles snapping to a grid. The magnet icon determines soft snapping to other objects. The numeric indicator determines the distance of the snap option.

The box icon with an arrow is a selection tool that allows you to select an object according to its bounding box. This makes selecting small, detailed objects much easier. The next icon that looks like a bullseye will change the selection target from the object center to the bounding box center. The small icon with arrows and mountains will change the object transform and the world transform.

The next two icons show descriptors in your scene. The first icon that looks like a box in a square will display object icons for the various objects in your scene. The second icon will show text descriptors for the objects in your scene.

The last two icons in the bar are prefab icons. The first icon lets you group selected items into a “prefab” (or prefabricated collection) of objects. The second icon will ungroup your prefab items.

Tool Selector and Palette

[image: ../../_images/ObjectEditorTool.jpg]
Object Editor:
Used to place objects in the world, group them, and lay out your scenes.

[image: ../../_images/TerrainEditorTool.jpg]
Terrain Editor:
Used to edit, save and load terrain objects in your scenes.

[image: ../../_images/TerrainPainterTool.jpg]
Terrain Painter: To paint textures onto terrains in scenes.

[image: ../../_images/MaterialEditorTool.jpg]
Material Editor: Change texture and shader properties.

[image: ../../_images/SketchTool.jpg]
Sketch Tool: Create prototype geometry for quick level layout testing.

[image: ../../_images/DatablockEditor.jpg]
Datablock Editor: Edit properties of objects in the scene.

[image: ../../_images/DecalEditorTool.jpg]
Decal Editor: Edit decals and decal properties.

[image: ../../_images/ForestEditorTool.jpg]
Forest Editor: Edit forest areas in the scene.

[image: ../../_images/MeshRoadTool.jpg]
Mesh Road Tool: Create mesh roadways along the terrain.

[image: ../../_images/MissionEditorTool.jpg]
Mission Area Editor: Edit the Mission Area object.

[image: ../../_images/NavEditorTool.jpg]
Navigation Editor: Create and edit navigation mesh used in artificial intelligence (AI) for pathfinding.

[image: ../../_images/ParticleEditorTool.jpg]
Particle Editor: Create and edit particle properties for particle effects in the scene.

[image: ../../_images/RiverTool.jpg]
River Tool: Create rivers in the scene.

[image: ../../_images/DecalRoadTool.jpg]
Decal Road Tool: Create decal readways in the scene.

[image: ../../_images/ShapeEditorTool.jpg]
Shape Editor: Edit, change, and set properties on meshes.

Scene Tree

The Scene Tree panel is available while using the Object Editor tool. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. You can select specific objects to modify them.

[image: ../../_images/SceneTree_SceneTab.png]
Each object in the tree has an icon, unique ID, an object type, and a name. Whenever you click on an object in the tree, it is selected in the level and vice versa. Most of your objects can stand alone in the tree, but you can also use a SimGroup object to organize related entries.

At first glance, a SimGroup looks like a folder and acts much like one to help organize your tree. It does not physically exist in your level, but you can reference it by name or ID from script or the engine. This is handy for grouping several game objects you might need to iterate through and invoke an action on. Even if you do not use that feature, it is still a good idea to group similar objects under a SimGroup to help organize and better navigate your trees as some levels can grow to a large number of objects.

Library Tab

The Library tab is what you will use to add objects to your level. Once an object has been added to your level, it will appear in the Scene tab (described above). There are four sub-categories on the Library tab, which are separated as sub-tabs: Scripted, Meshes, Level, and Prefabs. Each category contains objects that serve very specific purposes.

[image: ../../_images/SceneTree_LibraryTab.jpg]

Scripted Tab

The first tab, Scripted, is automatically populated with game objects that have been created via script. For example, let’s say you have a ceiling fan object with an associated script which controls how and when the fan blades rotate. It would appear in the Scripted tab as follows:

[image: ../../_images/ScriptedObject.jpg]
A discussion of scripting and how to associate scripts with an object is beyond the scope of this document. See the TorqueScript Tutorial for more information.

Meshes Tab

When you simply wish to add a 3D art asset, you will use the Meshes Tab. You can browse the various folders containing assets in your project’s “art” directory. From here you can add DTS, COLLADA, and DIF files.

[image: ../../_images/MeshObject.jpg]

Level Tab

The Level Tab lists all the Torque 3D objects that can be used to populate your level. Objects are further divided into category folders. To view what is in a folder, double click it. To leave a folder and view the folder list, click the left pointing arrow icon. To move directly to another folder, select it from the drop down list.

[image: ../../_images/LevelTab.png]
Each sub-category contains objects with similar themes:

[image: ../../_images/LevelTab_Environment.png]

	The Environment sub-category contains most of the objects you will add to your level, such as Terrain, Sun, Clouds, Waterblocks, and similar objects.

	The ExampleObjects sub-category contains example rendering classes created in C++.

	The Level sub-category contains objects that manage Time of Day, level boundaries, and similar objects.

	The System sub-category contains engine-level objects such as SimGroups.

Prefabs Tab

The prefab system allows you to group multiple objects together and combine them into a single file. This new object can then be repeatedly placed into your level as a whole, making it easier for you to add complex groups of objects with only a few mouse clicks. When you create a prefab from multiple selections, you will save it to a *.prefab file using the group prefab icon. The World Editor will automatically load these files in the Prefabs tab.

[image: ../../_images/PrefabsTab.jpg]

Inspector

Whenever you add an object to a level, you will most likely start modifying them immediately. You can use the Inspector Panel to change the properties of an object
TODO - Update image

[image: ../../_images/WEInspectorPanel.jpg]
While there are a few shared property sections, most object types will have a unique set of properties. Editing is as simple as selecting an object in the level, locating a field that you want to change, such as “className” or “media”, then either editing the existing value or entering a value if no default value is given. There are different types of values such as strings, numbers, check boxes, vectors, and even values that require the use of a file browser or color picker.

Options

The Options dialog is used to change your current session’s audio and video properties as well as mouse and keyboard control bindings. The Options dialog is accessed from the main menu by selecting Edit > Game Options… in the Full Template

[image: ../../_images/OptionsDlg.png]
You will use the Graphics tab to adjust your game resolution, screen mode, detail levels, and so on. The Audio tab allows you to adjust your current game’s volume, both globally and channel specific.

World Editor Settings

The World Editor Setting dialog is important to editing.

[image: ../../_images/WorldEditorSettings.png]
Through this dialog, you can change various aspects of how your tools render and function. The Axis Gizmo section will control what is rendered on your object, such as the Axis gizmo while moving the object, increase/decrese the scalar. You can also adjust the rendering of the editing plane in relation to the object.

The Camera section here you can change the default values and adjust it to your needs, like invert the Y axis, camera speed, etc

The Object editor section will allows you to modify the render text of the object or icon and change some colors.

There are several options you can tweak the sensitivity, add defaults options, adjust colors, adjust visibility or have more precise or dramatic modifications.

PostFX Manager

The PostFX Manager GUI allows level editors to control various post-processing effects. Select the Enable PostFX checkbox to toggle PostFX on and off.

[image: ../../_images/postfx_toggle_off.png]
Use the effect tabs to access the effect settings; select one of the effect tabs to view details and an in-game example of the effect, and use the checkbox to toggle the current effect on and off.

[image: ../../_images/postfx_tabs_ssao.png]
PostFX settings can be saved to file and and loaded automatically with the level. To achieve this, simply save the settings with the same name as the level file. For example, for Burg.mis, save the PostFX settings in a file called Burg.postfxpreset.cs in the same folder as the level file.

[image: ../../_images/postfx_footer.png]

SSAO

Screen space ambient occlusion (SSAO) is an approximation of true Ambient Occlusion. Enabling the effect will darken creases and surfaces that are close together. Outdoor areas with brighter ambient light will show the effect better.

[image: ../../_images/postfx_ssao_general.png]

	Quality

	Controls the number of ambient occlusion samples taken; higher quality is more expensive to compute.

	Overall Strength

	Controls the overall intensity/darkness of the effect (applied on top of near/far strength).

	Blur (Softness)

	Blur depth tolerance.

	Blur (Normal Maps)

	Blur normal tolerance.

[image: ../../_images/postfx_ssao_near.png]
SSAO parameters for pixels near to the camera (small depth values).

	Radius

	Occlusion radius.

	Strength

	Occlusion intensity/darkness.

	Depth min

	Minimum screen depth at which to apply effect.

	Depth max

	Maximum screen depth at which to apply effect.

	Tolerance

	Unused

	Power

	Unused

[image: ../../_images/postfx_ssao_far.png]
SSAO parameters for pixels far away from the camera (large depth values).

	Radius

	Occlusion radius.

	Strength

	Occlusion intensity/darkness.

	Depth min

	Minimum screen depth at which to apply effect.

	Depth max

	Maximum screen depth at which to apply effect.

	Tolerance

	Unused

	Power

	Unused

HDR

Control several High Dynamic Range (HDR) effects including Bloom and Tone mapping.

[image: ../../_images/postfx_hdr_bright.png]

	Tone Mapping Contrast

	Amount of interpolation between the scene and the tone mapped scene.

	Key Value

	The tone mapping middle grey or exposure value used to adjust the overall “balance” of the image.

	Minimum Luminence

	The minimum luninace value to allow when tone mapping the scene. Is particularly useful if your scene very dark or has a black ambient color in places.

	White Cutoff

	The lowest luminance value which is mapped to white. This is usually set to the highest visible luminance in your scene. By setting this to smaller values you get a contrast enhancement.

	Brightness Adapt Rate

	The rate of adaptation from the previous and new average scene luminance.

[image: ../../_images/postfx_hdr_bloom.png]

	Bright Pass Threshold

	The threshold luminace value for pixels which are considered “bright” and need to be bloomed.

	Blur multiplier/mean/Std Dev

	These control the gaussian blur of the bright pass for the bloom effect.

[image: ../../_images/postfx_hdr_effects.png]

	Enable color shift

	Enables a scene tinting/blue shift based on the selected color, for a cinematic desaturated night effect.

Light Rays

This effect creates radial light scattering (also known as god rays). It works best when the scene contains a very bright light, in the example outpost level you should be able to see some scattering occuring around the trees.

[image: ../../_images/postfx_rays.png]

	Brightness

	Controls how bright the rays and the objcet casting them are in the scene.

	Samples

	The number of samples for the shader.

	Density

	Controls the destity of the rays.

	Weight

	Add or remove weight of the rays for a better effect.

	Decay

	Controls the decay of the rays.

DOF

Depth of Field (DOF) simulates a camera lens, and blurs pixels based on depth from the focal point. DOF is commonly used when zooming in with a weapon.

[image: ../../_images/postfx_dof_general.png]

	Enable Auto Focus

	Determines how the focal depth is calculated. When auto-focus is disabled, focal depth is set manually by calling DOFPostEffect::setFocalDist. When auto-focus is enabled, focal depth is calculated automatically by performing a raycast at the screen-center.

[image: ../../_images/postfx_dof_focus.png]

	Near/Far Blur Max

	Sets maximum blur for pixels closer/further than the focal distance.

	Focus Range (Min/Max)

	The min and max range parameters control how much area around the focal distance is completely in focus.

	Blur Curve Near/Far

	Controls the gradient of the near/far blurring curve. A small number causes bluriness to increase gradually at distances closer/further than the focal distance. A large number causes bluriness to increase quickly.

Vignette

This effect add a vignette around the vision of the player, like if your where using a helmet or goggles.

[image: ../../_images/postfx_tabs_vignette.png]

	Radius

	Adjust the maximum exposure of vignetting.

Sharpness

This effect is currently unavailable.

[image: ../../_images/postfx_sharpness.png]

Nightvision

This effect is currently unavailable.

[image: ../../_images/postfx_night_bright.png]
This effect is currently unavailable.

[image: ../../_images/postfx_night_distort.png]

Manipulators

The last World Editor visual we will describe is the gizmo. A gizmo is a three dimensional rendering of an object’s transforms. While using the Object Editor tool, you can use a gizmo to adjust an object’s location, rotation, and scale without having to manually input number values in the Inspector Panel.

Each gizmo has a unique appearance to notify you of what you are adjusting based upon the tool that you are using.

Move Tool Gizmo

When you wish to move an object from one place to another, you will use the Move Tool. This is represented by a gizmo with arrows pointing toward different axes.

You can grab an arrow to move the object along an axis, or grab a space between two arrows to move it in both directions.

[image: ../../_images/TranslateGizmo.jpg]
If you look carefully, you should see letters at the end of each arrow. These correspond to Torque 3D’s world coordinate system. The engine utilizes the right-handed (or positive) Cartesian coordinate system, where Z is up (top), X is side (right), and Y is front (forward). This applies to the rest of the gizmos.

Scaling Tool Gizmo

The Scaling Tool is represented by a gizmo that looks similar to the Translate gizmo. Instead of arrows, there are blocks at the end of the gizmo lines. Dragging one of the boxes in a direction will shrink or grow your object, depending on which direction you move.

[image: ../../_images/ScaleGizmo.jpg]

Rotation Tool Gizmo

While using the Rotation Tool, the orientation gizmo will be rendered. This gizmo looks and acts much differently than the previous two. Instead of straight lines, multiple circles will surround your object.

[image: ../../_images/RotateGizmo.jpg]
Dragging the red circle in a direction will rotate the object along the X-Axis. Green rotates around the Y-Axis. Blue rotates around the Z-axis. The off color circles allow you to rotate an object along multiple axes.

Editors

	Overview

	Interface

	Terrain Editor

	Terrain Painter

	Material Editor

	Sketch Tool

	Datablock Editor

	Decal Editor

	Forest Editor

	Mesh Road Editor

	Particle Editor

	River Editor

	Decal Road Editor

	Shape Editor

Overview

Purpose

The World Editor is used to build and edit game levels. This includes adding and modifying terrains, buildings, foliage, cloud layers, vehicles, environmental effects, lighting effects, and much more. The World Editor is the first (and most important) tool a new user should learn.

A sample game level as seen inside the World Editor:

[image: ../../_images/WorldEditorIntroImage.jpg]
The World Editor is not a tool for creating game objects. Objects must be created using applications appropriate for the object type (i.e., 3DS Max or Blender3D to create a 3D model). However, once an object is loaded it can be modified by the World Editor in a variety of ways. The simplest modification would be a change in scale (size), but more complex modifications are also possible. For example, the Torque Material Editor can be used to alter (or completely replace) textures on a 3D object or add shader effects.

A typical World Editor workflow might go as follows (in very simplified terms):

	Create a 3D model in an application like 3DS Max, Maya, or Blender.

	Save that model to a sub folder inside your game/art directory.

	Launch World Editor (which will automatically find that model if step 2 was done correctly).

	Add the model to your level; position, scale, rotate, and adjust its materials as desired.

	Test your changes in-game with the push of a single button.

	Return to the World Editor and continue to tweak your level.

Of course, there is a lot more to the World Editor than positioning 3D models. You will also be working with 2D assets like grey scale height-maps to create terrains, as well as specialized tools for creating rivers, forests, and roads.

Finally, it is worth noting that Torque 3D includes numerous art assets for you to play with… so you can skip steps 1 and 2 above and start building game levels right away!

Using the World Editor Documentation

The World Editor documentation follows a logical progression. Those who wish may work through it in a methodical way. Others may choose to skip difficult sections and jump directly to the tutorials at the end or to focus on only the features of interest.

Everyone learns differently, but we’ve found that a good way for new users to get started quickly is to follow these three steps:

	Continue reading this document (“Overview”) in its entirety. It covers: how to launch the World Editor, how to look and move around in a game level, and it offers a few important tips for new (and experienced) users.

	With the World Editor open, quickly skim the next document, “Interface”. You should only spend five-to-ten minutes getting an initial feel for the basic layout of the interface. Do not try to learn any features in detail.

	Try to add moving clouds to your level by following the Basic Cloud Layer instructions. Whether you are successful or not, spend no more than five minutes on this task.

Do not be concerned if you have trouble completing Step 3. Its purpose is to give you a specific task that requires direct interaction with the interface. That small exposure to the interface will go a long way towards making the remainder of the documentation more meaningful and easy to follow.

Once you’ve completed the three steps above, how you proceed is up to you. For those who prefer to jump around, we recommend you start by carefully reviewing the Interface document.

How to Launch the World Editor

There are two ways to open the World Editor: from main menu clicking the World Editor button or by using hot keys from within a running Torque game. You will likely use both methods during development.

Launching from Within a Running Game

While your game is running, you can open or close the World Editor at any time using hot key combinations:

	On Windows and Linux, to open or close the World Editor, press the F11 key.

	On Mac OS X, to open or close the World Editor, press CMD+FN+F11.

Note

When you first launch the World Editor, it is likely you will do so from the Main Menu. However, after you have modified your level, if you decide to test it out by clicking the Play Game button (as described in the “Interface” document), you will need to use the F11 hotkey to get back to the World Editor. Otherwise, you would be forced to quit your game and relaunch the World Editor.

Looking and Moving Around

While working in the World Editor, you will need to move and look around to inspect your level.

	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD keys can also be used). If you have a mouse-wheel, it can be used to move forward or backward.

	Look Left/Right/Up/Down by holding the right mouse button down while moving the mouse.

	Pan Left/Right/Up/Down by holding down the middle mouse button (Mouse 3) while moving the mouse. On most mice with a scroll wheel, this is achieved by depressing (not scrolling) the mouse wheel.

Note

There are a number of Camera options, discussed further in the Interface document, which in some cases may alter the behavior of these controls in minor ways.

When play testing your game outside of the World Editor, default control is typical of most First Person Shooters and can be remapped by pressing Ctrl-O (Windows) to bring up an options dialog. A few important controls are listed below:

	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD key can also be used).

	Look around by moving the mouse.

	Fire/Alt Fire are triggered by the left and right mouse buttons.

	Jump is activated by the Space Bar.

	First/Third person view is toggled by pressing TAB.

	C**hange weapons** by scrolling the mouse wheel (or press Q key).

	Exit vehicles by pressing Control-F.

	Return to World Editor by using the F11 hotkey (as discussed above).

Tips

The following is a general list of knowledge you should keep in mind while editing a level in your game:

	Try to design your levels outside of the editor first. Sometimes it is helpful to have a simple verbal or visual design ready before you actually start editing. Even if it is a simple blueprint on a napkin, a level editor/artist with a reference to work from will cover ground much more quickly.

	Prioritize your object placement. It makes sense to polish certain aspects of a level before others. For example, try to finish your Sky, Sun, and Terrain before you move on to adding rivers, foliage, and other objects. Performing major adjustments to a terrain with hundreds of objects already placed could be tedious and counterproductive.

	Play your level regularly. After you reach a major milestone, try actually doing the things in your level as a player would. There is a big difference between the experience of a player in a game and that of a designer with a free-floating camera in the World Editor.

	Do not forget to optimize. Some specific World Editor objects are more appropriate than others. Use Ground Cover instead of a 3D model with lots of grass or trees attached. As much as possible, use the Sun rather than numerous point lights to handle ambient lighting. There are other such optimizations which will become apparent towards the end of development.

	SAVE AND SAVE OFTEN. This cannot be stressed enough. Computers crash, power goes out, cats jump on keyboards, and in rare circumstances you may encounter a yet undiscovered issue which causes data corruption. Any number of accidents can result in hours of work being lost. We recommend you save as often as you can.

Conclusion

Now that you know the purpose of the World Editor, and how to access it, we can move on to learning how to use it. Before you start placing objects or creating levels, you should learn the interface. Continue on to the World Editor Interface.

Interface

The default World Editor view consists of five main sections:

	File Menu (Yellow)

	Found at the very top of the World Editor window, you will find menus that controls the global functionality of the editor, such as opening/saving levels, toggling camera modes, opening settings dialogs, and so on.

	Tools Bar (Blue)

	Located just below the File Menu, this bar contains shortcuts to all of the tools, their settings, and some options found in the File Menu.

	Tool Palette (Dark Blue)

	The Tool Palette changes based on what Tool you are currently using. For example, when using the Object Editor you will have icons for moving and rotating an object, wheras the Terrain will have icons for moving and rotating an object, whereas the Terrain Editor display icons for elevation tools.

	Scene View (Red)

	Main scene view of your level and its objects. In the upper left you can see the Tool Palette.

	Scene Tree Panel (Gold)

	While using the Object Editor, one of the floating panels available to you is the Scene Tree. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. The Library tab is what you will use to add new objects to your level after which they will appear in the Scene tab.

	Inspector Panel (Brown)

	While using the Object Editor, a selected object’s properties will be shown in this panel. Most of your object editing will be performed here.

[image: ../../_images/WEInterface.png]

File Menu

File Menu allows you to: Create, save, open, and close levels; Open, import, and export level data to/from other tools; Run your level to test it and exit the World Editor.

[image: ../../_images/WEFileMenu.png]
The Edit Menu allows you to: Control editor actions such as undo and redo; Cut, copy, paste, and delete objects you have selected; Select objects using a name pattern or by type filtering; Access dialogs to control various World Editor settings.

[image: ../../_images/WEEditMenu.jpg]
The View Menu: Opens the Visibility Layers dialog which toggles debug rendering modes; Toggle the visibility of other aspects of the editor.

[image: ../../_images/WEViewMenu.jpg]
The Object Menu allows you to: Manipulate a selected object’s settings by locking/unlocking it, hiding/showing the object, resetting its transforms, and so on.

[image: ../../_images/WEObjectMenu.jpg]
The Drop Location sub-menu selection informs the World Editor where it should place newly created objects.

[image: ../../_images/WEDropLocationMenu.jpg]
The Physics Menu allows you to Start and Stop PhysX simulation in the Editor, set the simulation speed and reload all PhysX objects and actors. (this menu is enabled if T3D game engine have enabled Nvidia PhysX.)

[image: ../../_images/WEPhysicsMenu.jpg]
The Camera Menu allows you to choose your camera type, adjust its speed and motion, and drop it at certain locations.

[image: ../../_images/WECameraMenu.jpg]
The World Camera sub-menu allows you to change the way the camera moves.

[image: ../../_images/WEWorldCameraMenu.jpg]
The Player Camera sub-menu allows you to switch between perspectives while moving around as a player.

[image: ../../_images/WEPlayerCamera.jpg]
The Camera Speed sub-menu allows you to adjust how fast the camera moves.

[image: ../../_images/WECameraSpeedMenu.jpg]
The Editors Menu allows you to select which set of editing tools is currently active in the World Editor.

[image: ../../_images/WEEditorsMenu.jpg]
The Lighting Menu allows you to switch between Advanced and Basic lighting modes, as well as perform level relights.

[image: ../../_images/WELightingMenu.jpg]
Contains shortcuts to documentation and forums for Torque 3D.
TODO - update image

[image: ../../_images/WEHelpMenu.jpg]

Tools Bar

The Tools Bar is the best way to switch between tools. It is made of two components: Tool Settings (top bar) and Tools Selector (bottom bar).

[image: ../../_images/ShortToolbar.png]
Tool Settings is made of up three sub-sections: the editor selector, camera settings, and Object Editor. The editor selector and camera setting will always be displayed. The Object Editor will display available settings for the currently selected tool. The Tools Selector will always display the same shortcuts for selecting tools.

This section focuses on the elements of Tool Settings.

The first three icons switch between the editor’s operating modes. Each icon represents a different editing mode and only one mode can be active at any time. There are three modes: World Editor, GUI Editor, and Game Mode. The World Editor is represented by the mountain icon. The GUI Editor is represented by the boxes icon. The Game Mode is represented by the arrow icon.

[image: ../../_images/EditorIcons.jpg]
World Editor mode provides tools for manipulating the “world” of your game including terrain, creatures, and so on.

GUI Editor mode provides tools for manipulating the Graphical User Interface (GUI) of your game such as health meters, cursors, and so on.

Play Game Mode runs your game and lets you play through it.

Note

When you use this icon to play your game the World Editor actually closes completely. To return to the World Editor you must press F11 or exit the game and relaunch the World Editor from the Main Menu.

Next to the editor selector, you will find the camera and visibility settings.

[image: ../../_images/CameraIcons.jpg]
The camera icon will let you choose your camera type. The drop-down menu next to it will let you switch between camera speeds. The eye icon is the visualization settings which toggle debug rendering modes for various graphical modules, such as normal mapping, wireframe, specular shading, etc. The icon that looks like a camera in a box will move your camera to whatever object you have selected, filling up your view with its boundaries.

[image: ../../_images/WorldSettingsIcons.jpg]
The World Settings make up the rest of this bar when using the tools. The first icon lets you determine your snapping options (snapping to terrain, a bounding box of an object, which axis, etc.). The next icon toggles snapping to a grid. The magnet icon determines soft snapping to other objects. The numeric indicator determines the distance of the snap option.

The box icon with an arrow is a selection tool that allows you to select an object according to its bounding box. This makes selecting small, detailed objects much easier. The next icon that looks like a bullseye will change the selection target from the object center to the bounding box center. The small icon with arrows and mountains will change the object transform and the world transform.

The next two icons show descriptors in your scene. The first icon that looks like a box in a square will display object icons for the various objects in your scene. The second icon will show text descriptors for the objects in your scene.

The last two icons in the bar are prefab icons. The first icon lets you group selected items into a “prefab” (or prefabricated collection) of objects. The second icon will ungroup your prefab items.

Tool Selector and Palette

[image: ../../_images/ObjectEditorTool.jpg]
Object Editor:
Used to place objects in the world, group them, and lay out your scenes.

[image: ../../_images/TerrainEditorTool.jpg]
Terrain Editor:
Used to edit, save and load terrain objects in your scenes.

[image: ../../_images/TerrainPainterTool.jpg]
Terrain Painter: To paint textures onto terrains in scenes.

[image: ../../_images/MaterialEditorTool.jpg]
Material Editor: Change texture and shader properties.

[image: ../../_images/SketchTool.jpg]
Sketch Tool: Create prototype geometry for quick level layout testing.

[image: ../../_images/DatablockEditor.jpg]
Datablock Editor: Edit properties of objects in the scene.

[image: ../../_images/DecalEditorTool.jpg]
Decal Editor: Edit decals and decal properties.

[image: ../../_images/ForestEditorTool.jpg]
Forest Editor: Edit forest areas in the scene.

[image: ../../_images/MeshRoadTool.jpg]
Mesh Road Tool: Create mesh roadways along the terrain.

[image: ../../_images/MissionEditorTool.jpg]
Mission Area Editor: Edit the Mission Area object.

[image: ../../_images/NavEditorTool.jpg]
Navigation Editor: Create and edit navigation mesh used in artificial intelligence (AI) for pathfinding.

[image: ../../_images/ParticleEditorTool.jpg]
Particle Editor: Create and edit particle properties for particle effects in the scene.

[image: ../../_images/RiverTool.jpg]
River Tool: Create rivers in the scene.

[image: ../../_images/DecalRoadTool.jpg]
Decal Road Tool: Create decal readways in the scene.

[image: ../../_images/ShapeEditorTool.jpg]
Shape Editor: Edit, change, and set properties on meshes.

Scene Tree

The Scene Tree panel is available while using the Object Editor tool. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. You can select specific objects to modify them.

[image: ../../_images/SceneTree_SceneTab.png]
Each object in the tree has an icon, unique ID, an object type, and a name. Whenever you click on an object in the tree, it is selected in the level and vice versa. Most of your objects can stand alone in the tree, but you can also use a SimGroup object to organize related entries.

At first glance, a SimGroup looks like a folder and acts much like one to help organize your tree. It does not physically exist in your level, but you can reference it by name or ID from script or the engine. This is handy for grouping several game objects you might need to iterate through and invoke an action on. Even if you do not use that feature, it is still a good idea to group similar objects under a SimGroup to help organize and better navigate your trees as some levels can grow to a large number of objects.

Library Tab

The Library tab is what you will use to add objects to your level. Once an object has been added to your level, it will appear in the Scene tab (described above). There are four sub-categories on the Library tab, which are separated as sub-tabs: Scripted, Meshes, Level, and Prefabs. Each category contains objects that serve very specific purposes.

[image: ../../_images/SceneTree_LibraryTab.jpg]

Scripted Tab

The first tab, Scripted, is automatically populated with game objects that have been created via script. For example, let’s say you have a ceiling fan object with an associated script which controls how and when the fan blades rotate. It would appear in the Scripted tab as follows:

[image: ../../_images/ScriptedObject.jpg]
A discussion of scripting and how to associate scripts with an object is beyond the scope of this document. See the TorqueScript Tutorial for more information.

Meshes Tab

When you simply wish to add a 3D art asset, you will use the Meshes Tab. You can browse the various folders containing assets in your project’s “art” directory. From here you can add DTS, COLLADA, and DIF files.

[image: ../../_images/MeshObject.jpg]

Level Tab

The Level Tab lists all the Torque 3D objects that can be used to populate your level. Objects are further divided into category folders. To view what is in a folder, double click it. To leave a folder and view the folder list, click the left pointing arrow icon. To move directly to another folder, select it from the drop down list.

[image: ../../_images/LevelTab.png]
Each sub-category contains objects with similar themes:

[image: ../../_images/LevelTab_Environment.png]

	The Environment sub-category contains most of the objects you will add to your level, such as Terrain, Sun, Clouds, Waterblocks, and similar objects.

	The ExampleObjects sub-category contains example rendering classes created in C++.

	The Level sub-category contains objects that manage Time of Day, level boundaries, and similar objects.

	The System sub-category contains engine-level objects such as SimGroups.

Prefabs Tab

The prefab system allows you to group multiple objects together and combine them into a single file. This new object can then be repeatedly placed into your level as a whole, making it easier for you to add complex groups of objects with only a few mouse clicks. When you create a prefab from multiple selections, you will save it to a *.prefab file using the group prefab icon. The World Editor will automatically load these files in the Prefabs tab.

[image: ../../_images/PrefabsTab.jpg]

Inspector

Whenever you add an object to a level, you will most likely start modifying them immediately. You can use the Inspector Panel to change the properties of an object
TODO - Update image

[image: ../../_images/WEInspectorPanel.jpg]
While there are a few shared property sections, most object types will have a unique set of properties. Editing is as simple as selecting an object in the level, locating a field that you want to change, such as “className” or “media”, then either editing the existing value or entering a value if no default value is given. There are different types of values such as strings, numbers, check boxes, vectors, and even values that require the use of a file browser or color picker.

Options

The Options dialog is used to change your current session’s audio and video properties as well as mouse and keyboard control bindings. The Options dialog is accessed from the main menu by selecting Edit > Game Options… in the Full Template

[image: ../../_images/OptionsDlg.png]
You will use the Graphics tab to adjust your game resolution, screen mode, detail levels, and so on. The Audio tab allows you to adjust your current game’s volume, both globally and channel specific.

World Editor Settings

The World Editor Setting dialog is important to editing.

[image: ../../_images/WorldEditorSettings.png]
Through this dialog, you can change various aspects of how your tools render and function. The Axis Gizmo section will control what is rendered on your object, such as the Axis gizmo while moving the object, increase/decrese the scalar. You can also adjust the rendering of the editing plane in relation to the object.

The Camera section here you can change the default values and adjust it to your needs, like invert the Y axis, camera speed, etc

The Object editor section will allows you to modify the render text of the object or icon and change some colors.

There are several options you can tweak the sensitivity, add defaults options, adjust colors, adjust visibility or have more precise or dramatic modifications.

PostFX Manager

The PostFX Manager GUI allows level editors to control various post-processing effects. Select the Enable PostFX checkbox to toggle PostFX on and off.

[image: ../../_images/postfx_toggle_off.png]
Use the effect tabs to access the effect settings; select one of the effect tabs to view details and an in-game example of the effect, and use the checkbox to toggle the current effect on and off.

[image: ../../_images/postfx_tabs_ssao.png]
PostFX settings can be saved to file and and loaded automatically with the level. To achieve this, simply save the settings with the same name as the level file. For example, for Burg.mis, save the PostFX settings in a file called Burg.postfxpreset.cs in the same folder as the level file.

[image: ../../_images/postfx_footer.png]

SSAO

Screen space ambient occlusion (SSAO) is an approximation of true Ambient Occlusion. Enabling the effect will darken creases and surfaces that are close together. Outdoor areas with brighter ambient light will show the effect better.

[image: ../../_images/postfx_ssao_general.png]

	Quality

	Controls the number of ambient occlusion samples taken; higher quality is more expensive to compute.

	Overall Strength

	Controls the overall intensity/darkness of the effect (applied on top of near/far strength).

	Blur (Softness)

	Blur depth tolerance.

	Blur (Normal Maps)

	Blur normal tolerance.

[image: ../../_images/postfx_ssao_near.png]
SSAO parameters for pixels near to the camera (small depth values).

	Radius

	Occlusion radius.

	Strength

	Occlusion intensity/darkness.

	Depth min

	Minimum screen depth at which to apply effect.

	Depth max

	Maximum screen depth at which to apply effect.

	Tolerance

	Unused

	Power

	Unused

[image: ../../_images/postfx_ssao_far.png]
SSAO parameters for pixels far away from the camera (large depth values).

	Radius

	Occlusion radius.

	Strength

	Occlusion intensity/darkness.

	Depth min

	Minimum screen depth at which to apply effect.

	Depth max

	Maximum screen depth at which to apply effect.

	Tolerance

	Unused

	Power

	Unused

HDR

Control several High Dynamic Range (HDR) effects including Bloom and Tone mapping.

[image: ../../_images/postfx_hdr_bright.png]

	Tone Mapping Contrast

	Amount of interpolation between the scene and the tone mapped scene.

	Key Value

	The tone mapping middle grey or exposure value used to adjust the overall “balance” of the image.

	Minimum Luminence

	The minimum luninace value to allow when tone mapping the scene. Is particularly useful if your scene very dark or has a black ambient color in places.

	White Cutoff

	The lowest luminance value which is mapped to white. This is usually set to the highest visible luminance in your scene. By setting this to smaller values you get a contrast enhancement.

	Brightness Adapt Rate

	The rate of adaptation from the previous and new average scene luminance.

[image: ../../_images/postfx_hdr_bloom.png]

	Bright Pass Threshold

	The threshold luminace value for pixels which are considered “bright” and need to be bloomed.

	Blur multiplier/mean/Std Dev

	These control the gaussian blur of the bright pass for the bloom effect.

[image: ../../_images/postfx_hdr_effects.png]

	Enable color shift

	Enables a scene tinting/blue shift based on the selected color, for a cinematic desaturated night effect.

Light Rays

This effect creates radial light scattering (also known as god rays). It works best when the scene contains a very bright light, in the example outpost level you should be able to see some scattering occuring around the trees.

[image: ../../_images/postfx_rays.png]

	Brightness

	Controls how bright the rays and the objcet casting them are in the scene.

	Samples

	The number of samples for the shader.

	Density

	Controls the destity of the rays.

	Weight

	Add or remove weight of the rays for a better effect.

	Decay

	Controls the decay of the rays.

DOF

Depth of Field (DOF) simulates a camera lens, and blurs pixels based on depth from the focal point. DOF is commonly used when zooming in with a weapon.

[image: ../../_images/postfx_dof_general.png]

	Enable Auto Focus

	Determines how the focal depth is calculated. When auto-focus is disabled, focal depth is set manually by calling DOFPostEffect::setFocalDist. When auto-focus is enabled, focal depth is calculated automatically by performing a raycast at the screen-center.

[image: ../../_images/postfx_dof_focus.png]

	Near/Far Blur Max

	Sets maximum blur for pixels closer/further than the focal distance.

	Focus Range (Min/Max)

	The min and max range parameters control how much area around the focal distance is completely in focus.

	Blur Curve Near/Far

	Controls the gradient of the near/far blurring curve. A small number causes bluriness to increase gradually at distances closer/further than the focal distance. A large number causes bluriness to increase quickly.

Vignette

This effect add a vignette around the vision of the player, like if your where using a helmet or goggles.

[image: ../../_images/postfx_tabs_vignette.png]

	Radius

	Adjust the maximum exposure of vignetting.

Sharpness

This effect is currently unavailable.

[image: ../../_images/postfx_sharpness.png]

Nightvision

This effect is currently unavailable.

[image: ../../_images/postfx_night_bright.png]
This effect is currently unavailable.

[image: ../../_images/postfx_night_distort.png]

Manipulators

The last World Editor visual we will describe is the gizmo. A gizmo is a three dimensional rendering of an object’s transforms. While using the Object Editor tool, you can use a gizmo to adjust an object’s location, rotation, and scale without having to manually input number values in the Inspector Panel.

Each gizmo has a unique appearance to notify you of what you are adjusting based upon the tool that you are using.

Move Tool Gizmo

When you wish to move an object from one place to another, you will use the Move Tool. This is represented by a gizmo with arrows pointing toward different axes.

You can grab an arrow to move the object along an axis, or grab a space between two arrows to move it in both directions.

[image: ../../_images/TranslateGizmo.jpg]
If you look carefully, you should see letters at the end of each arrow. These correspond to Torque 3D’s world coordinate system. The engine utilizes the right-handed (or positive) Cartesian coordinate system, where Z is up (top), X is side (right), and Y is front (forward). This applies to the rest of the gizmos.

Scaling Tool Gizmo

The Scaling Tool is represented by a gizmo that looks similar to the Translate gizmo. Instead of arrows, there are blocks at the end of the gizmo lines. Dragging one of the boxes in a direction will shrink or grow your object, depending on which direction you move.

[image: ../../_images/ScaleGizmo.jpg]

Rotation Tool Gizmo

While using the Rotation Tool, the orientation gizmo will be rendered. This gizmo looks and acts much differently than the previous two. Instead of straight lines, multiple circles will surround your object.

[image: ../../_images/RotateGizmo.jpg]
Dragging the red circle in a direction will rotate the object along the X-Axis. Green rotates around the Y-Axis. Blue rotates around the Z-axis. The off color circles allow you to rotate an object along multiple axes.

Terrain Editor

The Terrain Editor is used to modify a TerrainBlock’s surface in real time within the World Editor.

With the Terrain Editor, you can elevate, excavate, smooth, flatten, and randomize sections of your terrain as if you were painting on the ground with a simple set of brushes. This is a great way to add the final details and polish to your level before populating it with objects.

The Terrain Editor is a powerful tool and allows for more than just adding hills or holes. You can cut channels for rivers, generate valleys for a mountainous region, turn a rocky mountain chain into a series of smooth hills, and other similar advanced operations.

Interface

To switch to the Terrain Editor press the F2 key or from the main menu select Editors > Terrain Editor.

[image: ../_images/TerrainEditor.jpg]
There are three main areas of the interface. On the far left is the tool palette, which is used to select what kind of modification you wish to make.

	Grab Terrain

	Allows you to manually raise or lower terrain under brush.

	Raise Height

	Adds dirt to terrain beneath brush, thus elevating it.

	Lower Height

	Excavates terrain below brush, thus lowering it and creating holes.

	Smooth

	Smooths jagged terrain beneath brush, creating more rounded elevation.

	Smooth Slope

	Smooth slopes in terrain.

	Paint Noise

	Creates random divots, elevation, and depressions under brush. Used for adding detail.

	Flatten

	Flattens terrain, elevated or excavated, to the level of brush’s starting point.

	Set Height

	Set terrain to fixed height.

	Clear Terrain

	Make holes in terrain.

	Restore Terrain

	Cover holes in terrain made with the Clear Terrain tool.

At the top, the Toolbar has updated to show various brush options. The brush options will change the intensity and pattern of your terrain modification.

	Shape

	Toggles between a round or square brush.

	Size

	Changes the size of the grid that makes up the brush, increasing or decreasing the amount of terrain being modified.

	Pressure

	Determines the amount of modification being applied to the terrain.

	Softness

	Determines how much of the brush is affected by the pressure and intensity.

	Softness Curve

	Customize how softness is applied.

	Height

	The brush starting height.

Finally, while moving the mouse over the terrain, you will see a circle drawn around the mouse cursor. This is the Terrain Editor brush and is controlled by your mouse. You can use this brush to “paint” your terrain adjustments by left clicking and dragging the cursor.

Brush Settings

Now we will go into deeper explanation of how the brush options can affect your terrain editing, and how the editor lets you know what you are doing. On the toolbar at the top of the screen, find the Brush Settings section.

Shape

You should see a circular icon and square icon. Toggling between the two will change the shape of your brush.

Size

In the Size section you will find a box with a number in it. When you click on the arrow, a slider will appear. This slider goes from 0 to 100, and it changes the size of your brush allowing it to modify larger sections of the terrain.

Pressure

The Pressure setting is a decimal number ranging from 0.0 to 100.0, and determines how much change is applied to the terrain under the brush.

The easiest way to understand brush pressure is to think of using a real paintbrush on a piece of paper. The harder you press as you stroke, the more paint the brush will leave on the paper. Pressing lightly but going over and over the same spot again and again will also leave more paint behind.

Since you can not press harder or softer on the terrain with a mouse button the Pressure value lets you simulate how much affect the brush has when you are “painting” terrain changes. The higher the Pressure setting, the more dramatic the change will be under the brush over time.

For example: select the Raise Height tool; set the Pressure to 1; place the mouse over the terrain; then quickly press the mouse button and release it. You will see the terrain slightly rise under the brush. Now change the Pressure to 100 and click elsewhere on the terrain in the same manner. You will see the terrain under the brush rise much more quickly and higher than during the first operation.

Like a real paintbrush, our terrain brush left more change behind because its pressure was greater. The same change can be accomplished by clicking the same spot on the terrain multiple times with a lower setting. The lower the setting, the more control you will have to make accurate changes to the terrain.

You will also notice that the ground rose higher in the center than around the edges of the brush. Again, this mimics the real world where the pressure around the edges of a paintbrush will be less because there are less bristles, which makes the edges of the brush softer than the center. Therefore the edges will leave less paint behind than the center.

Softness

The Softness setting directly affects the intensity of the entire brush’s surface. Like the others, it is represented by a slider. The number is a decimal value ranging between 0.0 and 100.0, with 100.0 being the softest and 0.0 the hardest.

The harder the brush is, the more dramatically the terrain under the brush will change. Think of a paint brush that has been dipped in paint and allowed to somewhat dry. The entire brush will be harder and thus will leave more paint behind than the same brush which has not dried and hardened. Since the entire brush has hardened the pattern that it leaves will be the same, that is more paint in the center and less at the edges, but the overall amount of paint will increase across the whole surface. If you allow the brush to completely dry then the entire brush will be the same hardness and thus will leave the same amount of paint across its entire surface.

Because you can not change the softness of a mouse cursor, the Terrain Editor provides the Softness settings to emulate these characteristics. Setting the softness to 0.0, meaning the brush has no softness at all, will result in the entire brush being hard. The edges will be just as hard as the center and so the entire brush will leave the same amount of change behind. The result will be in a sharp rise between the terrain and the brush edges, producing a cliff.

[image: ../_images/ZeroSoftness.jpg]
Conversely, if you set the brush to 100.0, meaning maximum softness the brush will exhibit its natural behaviour returning to very soft edges and a harder center. Setting the Softness to 100.00 (maximum softness) will cause the change at the edges to be much less dramatic than the change in the center and will result in a gentle rise from the edges to the center, producing a rolling hill.

[image: ../_images/Softness100percent.jpg]

Softness Curve

The previous section discussed how changing the Softness affects the brush over its entire surface mimicking the natural effects of a brush which is harder in the center and softer at the edges due to the distribution of its bristles. The Brush Softness Curve allows you to customize this behaviour further by changing the way softness and hardness is distributed within the brush.

Click the curved line next to the brush Softness slider. The Brush Softness Curve dialog box will appear.

[image: ../_images/StockBrushCurve.jpg]
The graph contains multiple nodes which can be moved by clicking and dragging them up or down. Modifying the nodes will determine which parts of your brush are hard or soft. As the graph shows, going from left to right will determine where in the grid you are changing the hardness.

Left nodes are closer to the center of the brush, and each node moving to the right will move toward the outer edges of the brush. The higher a node is situated, the harder it is. The following image is a visual of how this system works:

[image: ../_images/BrushCurveVisual.jpg]
The circular pattern represents the shape of the brush looking straight on at its tip. Hardness of the brush is represented by red, softness by green, and yellow indicates variations in between. The node in the upper left represents the very center of the brush, since it is at the far left on the Inside-Outside axis. Because it is also at the very top of the Hard-Soft axis, it means that the brush is at its hardest at that location. So the combination of these two node positions indicates that the brush is at its hardest (indicated by red) in the very center.

On the other end of the graph line, the node in the lower right represents the very edge of the brush, since it is at the far right on the Inside-Outside axis. Because it is also at the very bottom of the Hard-Soft axis it means that the brush is at its softest at that location. So the combination of these two node positions indicates that the brush is at its softest (indicated by green) all around the edge.

If you were to drag each node so that the line is reversed, the brush will be softer toward the center and harder toward the edges.

[image: ../_images/ReverseBrushCurveVisual.jpg]
To get an unusual setting, you can create a “wavy” version of the curve. Alternating the nodes in extremes from top to bottom, will result in rings of softness with the brush.

[image: ../_images/WavyBrushCurveVisual.jpg]
Now that you are familiar with the interface, it is time to edit the terrain.

Grab Terrain Tool

Let’s start by selecting the Grab Terrain tool from the palette. With the Grab Terrain tool, you can move a section of terrain up or down depending on which direction you are dragging your mouse.

Use the circle brush, size 20, 100 pressure, and 100 softness. Hover your brush over a section of terrain, hold down the left mouse button, then move your mouse up. The terrain should dynamically adjust to your cursor location.

[image: ../_images/AdjustHeightBefore.jpg]
When you are satisfied with the height, let go of the mouse to see your terrain modification.

[image: ../_images/AdjustHeightAfter.jpg]
Use the mouse to cover part of your new adjustment with the brush. Notice how the brush clamps to the terrain, maintaining the shape you are using while still selecting a section.

[image: ../_images/BrushTerrainClamping.jpg]
Despite the elevation of your current selection, the section under the hardest part of the brush will still adjust more dramatically. Using the default Softness Curve, if the center of the brush is just to the edge of a hill, you can adjust nearby terrain to match elevation. Terrain under the softer part of the brush will still elevate, but not as much.

[image: ../_images/AdjustmentIntensity.jpg]
Before moving on to the next tool, we will experiment with the softness value. Set the softness of your current brush to 1 (very hard). Move the brush over a flat section of the terrain.

[image: ../_images/HardAdjustmentBefore.jpg]
Click on the terrain and drag your mouse up. Instead of an elevated hill with a smooth slope, your brush should have created a flat plateau with completely vertical sides. With a softness of 1, your brush’s shape will be used to extrude the terrain in a sharp manner.

[image: ../_images/HardAdjustmentAfter.jpg]

Raise Height Tool

The Raise Height tool can only elevate the terrain, but it does so in a very controlled manner. Instead of manually lifting, you can “paint” the terrain in a sweeping motion by dragging the mouse while holding the left button. The longer you keep the brush in one location, the higher that section will be and the higher the Pressure setting, which was reviewed earlier, the faster it will change.

Set your brush size to 20, pressure to 40, and softness to 100. Find a flat section of the terrain and move your mouse cursor to that location to hover the brush.

[image: ../_images/RaiseHeightBefore.jpg]
When you are ready, click and hold the left mouse button and begin dragging your brush in a direction. The terrain should elevate wherever your brush passes over. You can use this to create a hill over a long section of terrain.

[image: ../_images/RaiseHeightAfter.jpg]
Using a lower brush pressure results in less dramatic terrain elevation as you “paint”. This allows you to be more exact in cases where you need to.

Lower Height Tool

The Lower Height tool functions completely opposite of the Raise Height tool. Instead of elevating, you can dig holes in the terrain with this tool. Again, use a circular brush with 20 size, 40 pressure, and 100 softness. With the Lower Height tool selected, locate a flat section of the terrain and hover your brush over it.

[image: ../_images/ExcavateBefore.jpg]
Click and hold down the left mouse button. As you do so, the terrain will sink down below the brush. If you sweep your mouse as if you are painting, you will create a path of lowered terrain. The longer you hold the mouse in a single location, the deeper the hole will be.

[image: ../_images/ExcavateAfter.jpg]

Smooth Tool

The Smooth tool erodes jagged terrain sections under the brush to create a smoother surface. This tool will only work if you sweep the brush across a surface. Simply holding down the left mouse button will have little to no effect.

Keeping the same settings we have been working, locate a jagged section of terrain. If you have to, create one with the Raise Height tool first. Make sure the elevation difference is significant. Select the Smooth tool then hover the brush over the applicable terrain.

[image: ../_images/SmoothBefore.jpg]
Click and hold the left mouse button, then make small circles around the peak of the terrain section. The tip should lower and have a broader surface. The broader your sweep, the more terrain is affected by the smoothing process.

[image: ../_images/SmoothAfter.jpg]

Paint Noise Tool

The Paint Noise tool is used to give your terrain modifications a more randomly defined look. The tool uses a noise algorithm for sporadic elevation and excavation. Essentially, it causes fluctuation in the amount of terrain it modifies and how intensely it changes.

Select the Paint Noise tool, then set your brush to size 15, 50 pressure, and 100 softness. Locate a large section of flat terrain and move your camera to a high elevation.

[image: ../_images/AddNoiseBefore.jpg]
Click and hold the left mouse button down then begin to “paint” the terrain by dragging it in random patterns. Try making several concentric circles, varying spirals, zig-zag motions, etc. You should eventually see some definition forming.

[image: ../_images/AddNoiseAfter1.jpg]
When you are finished with the tool, fly your camera around the section of the terrain to see how the terrain was affected. Keep in mind that most of these changes were random, which can add much needed detail to your terrain but can cause some weird effects. The Smooth tool can be used to go back and blend out any such effects that do not look natural.

[image: ../_images/AddNoiseAfter2.jpg]
You can use this tool on terrain that has already been modified to remove unrealistic adjustments, such as perfectly smooth or flat slopes.

Flatten Tool

The Flatten tool is used to make the terrain surrounding the brush’s starting point be equal to that points elevation. In other words, this either lower or raise your terrain to the same elevation as that starting point.

Use a circular brush with 15 size, 50 pressure, and 100 softness. Find a section of terrain that is elevated. Position your brush near it, but on a flatter section of the terrain.

[image: ../_images/FlattenBefore.jpg]
Click and hold your left mouse button, then drag it toward and over the elevated terrain until you have swept over most of it. You should see that the tool has flattened a strip of terrain, based on the brush’s location as it swept. The flattening process will become weaker the further you take the brush into the higher terrain such that it will not cut a path that is exactly the elevation of the starting point but rather relative to it and the terrain you are crossing. If you sweep the Flatten tool slowly across a hilly terrain, you will see that it is well suited for specialized tasks such as creating road and rail beds or mountain passes. Creating these types of features can be accomplished using the other tools but this tool in particular makes that job much easier.

If you make several sweeps in the same direction, from the same starting point, your terrain will eventually smooth out into a flat plateau almost level with your original starting point.

[image: ../_images/FlattenAfter2.jpg]
This is generally handy for clearing a smooth path from one elevation to another. However, this is not the optimal approach for flattening huge sections of terrain. The other tools can perform that process much faster and more efficiently.

Set Height Tool

The Set Height tool will allow you to determine the exact height for the terrain brush. Use a circular brush with a size of 15, pressure of 50 and softness of 100, and a height of 520.

[image: ../_images/SetHeightBefore.jpg]
Now, when you press the left mouse button, it will create a plateau at exactly that height.

[image: ../_images/SetHeightAfter.jpg]

Clear Terrain Tool

The Clear Terrain tool will allow you to remove pieces of the terrain. This is an effective way to carve out entrances to caves. That way your artist can create a detailed cave level and your level editor can “carve” out an entrance in the terrain. Using the previous tools, create a small hillside.

[image: ../_images/ClearTerrainStep1.jpg]
Now, set your brush size to 5 and zoom into an area that looks like a promising cave entrance.

[image: ../_images/ClearTerrainStep2.jpg]
When you select the terrain area, it will remove the mesh data from the terrain, creating an opening.

[image: ../_images/ClearTerrainStep3.jpg]
Now you can place your cave model underneath the terrain so that the player can explore the world under your terrain.

Restore Terrain Tool

The Restore Terrain tool complements the Clear Terrain tool. It will restore the mesh data for the terrain. That way, you can have better control over the transition between your models and terrains. If you select the Restore Terrain button and then left-click on the previously cleared area, you will see it restore the terrain to its previous state.

[image: ../_images/ClearTerrainStep2.jpg]

Terrain Painter

Just as the name implies, the Terrain Painter is a tool built into Torque 3D’s World Editor which allows you to paint your terrain with various materials, such as grass, dirt, rocks, and so on.

Like the rest of the editors, the Terrain Painter is a WYSIWYG editor. As you change your terrain materials and paint the surface, you can see what the changes will look like in real time as if you were playing your game.

You can use the Terrain Painter to make wide-spread modification to a blank terrain, or use finer and more detailed brushes to touch up imported terrain layers/textures. Let’s get started by setting up your environment.

Interface

To switch to the Terrain Editor press the F3 key or from the main menu select Editors > Terrain Painter.

[image: ../_images/TerrainPainter.jpg]
There are four main areas of the interface you will focus on while using this tool.

The Brush

Using the Terrain Painter is very similar to painting on a piece of paper with a brush except here you are painting on the terrain by dragging the mouse across the screen. Your brush is represented as a circle or a square in your scene’s view. This visual outline allows you to know where your brush is located and what portion of the terrain it will affect when you move it.

[image: ../_images/PainterCircleBrush.jpg]
The image shown above is displaying the default brush style when you first open the Terrain Painter. If you wish to change your brush type, you can modify it via the Brush Settings found in the Tool Settings toolbar at the top of the screen. Brush Settings are only active while using the Terrain Painter.

The image shown above is displaying the default brush style when you first open the Terrain Painter. If you wish to change your brush type, you can modify it via the Brush Settings found in the Tool Settings toolbar at the top of the screen. Brush Settings are only active while using the Terrain Painter.

[image: ../_images/PainterSquareBrush.jpg]
You will find the Brush Size slider next to the shape settings. You can move the slider from left (smaller) to right (larger) to change the size. The stock value is typically small, usually a 9x9 grid. The more you increase the slider value, the greater the grid will grow. The change will add an equal number of rows and columns, as shown below.

[image: ../_images/PainterLargeBrush.jpg]
You can find the Terrain Painter palette docked on the right side of the editor. This panel is similar to a traditional painter’s palette in the real world. Instead of swatches of color, the Terrain Painter’s palette is populated by TerrainMaterials which you use to paint the terrain.

[image: ../_images/PainterPalette.jpg]
A TerrainMaterial is a collection of three textures combined into a single layer. The three textures are the base (also known as diffuse), detail, and normal map. A preview of which TerrainMaterial (or layer) is shown in the box at the top of the palette labeled Terrain Painter Material Preview.

Terrain Materials Editor

When you wish to add a new TerrainMaterial, click on the New Layer entry in the palette. Once you click on the entry, the Terrain Materials Editor window will appear. This tool is completely separate from the basic Material Editor, as TerrainMaterials are structured and used much differently than other Torque 3D materials which are used on shapes in the world placed with the World Editor.

[image: ../_images/TerrainMaterialEditor1.jpg]

	Terrain Materials

	The TerrainMaterials list contains all the currently available textures for creating terrain materials.

	New Button

	Clicking the Page icon in the Terrain materials header creates a new TerrainMaterial entry for editing.

	Delete Button

	Clicking the Trash can icon in the Terrain materials headerdeletes the currently selected TerrainMaterial.

	Apply & Select Button

	Clicking this button closes the Terrain Materials Editor and returns to what ever operation brought you to the dialog, for the purposes of this article it returns you back to the Terrain Painter Material Selector and adds the selected TerrainMaterial as a new material ready to be used for painting.

	Cancel Button

	Close editor without making a choice.

Clicking on an entry in the Terrain Materials list updates the Material Properties pane on the right to display the current properties of that material.

The Material Properties pane contains a Name field, which is used as the label assigned to the material and three sub-sections which describe the textures that define the material.

The Diffuse sub-section shows a preview and the properties of the materials Diffuse texture, which provides the color and base appearance of the material. The Diffuse texture is also commonly referred to as the Base texture for this reason.

The Detail sub-section shows a preview and the properties of the materials Detail Map, which gives the material a more defined, crisp look. If you are familiar with advanced rendering concepts this is accomplished using additive blending and per-layer fade distance techniques.

The Normal sub-section shows a preview and the properties of the materials Detail Map, which gives the material a more defined, crisp look. If you are familiar with advanced rendering concepts this is accomplished using additive blending and per-layer fade distance techniques.

	Name

	Assigns the name of the TerrainMaterial which will appear in the Terrain Materials list.

	Edit Button

	Clicking this button allows you to select the texture to assign to this aspect of the material.

	Trash Can Button

	Clicking this button clears the texture that has been selected for this section.

	Use Side Projection

	Terrain diffuse textures are normally applied top-down, which can result in stretching. This toggle causes a material to smoothly merge and conform to steep terrain if needed.

	Diffuse Size

	Controls the physical size, in meters, of the base texture.

	Detail Size

	How close the camera must be before the detail map begins rendering in meters.

	Detail Distance

	Determines how bold the detail appears on the base texture.

	Parallax Scale

	Adjusts the intensity of the parallax depth in normal maps.

Painting

Before we begin painting, we will add a second TerrainMaterial to our palette (if the project you have open already has more than one feel free to skip this step).

To add a new material click the New Layer button in the Terrain Painter Material Selector. The Terrain Materials Editor will open. Click any TerrainMaterial in the list other than the one that is already in your palette, such as the “rocktest” material shown here.

[image: ../_images/TerrainMaterialEditor1.jpg]
Once you have the material selected, click the Apply & Select button. Once you have done this, the new layer will have been added to your palette and available for painting.

This is a good time to take a look behind the scenes to understand a little of how Torque 3D organizes materials and how it uses them for other operations to your advantage.What you can not see in the interface is that the system has associated each of the TerrainMaterials in your palette with a numbered layer. Throughout these documents you will see, or may have already seen, that material layers are used to control aspects of object placement such as which layer automatic object placement will occur on.

If you started with a project that was created with the Full template and added the rocktest material in the last step then the system now considersgrass1 to be layer0 and rocktest to be layer1. This allows you, whenever asked, to select layers using something meaningful to you rather than remembering some random numbering system. When asked to select a layer you can simply pick the grass or rocktest layer from a list and the system will use and apply the proper numbered layer to perform the related operation.

All this becomes very important in reducing the amount of work that is needed to create realistic terrain. The TerrainMaterials that you apply with the Terrain Painter tool not only give the terrain the appearance of natural materials but they can be used to automatically generate and restrict foliage and other shapes when used in conjunction with objects such as GroundCover.

[image: ../_images/PainterPaletteRocks.jpg]
Now, on to learning to paint. Make sure you have the new material selected in the Terrain Painter Material Selector. So we can more easily see the modifications we are about to make, set your brush size to about 25. Now, find a section of the terrain you wish to paint. Here, we started in a corner of the TerrainBlock.

[image: ../_images/PaintRockBefore.jpg]
Click and hold down the left mouse button, then begin dragging the brush around the screen in a sweeping motion. The terrain will update in real time to reflect the painting of the new TerrainMaterial. When you let go of the mouse button, the Terrain Painter will stop laying down the material.

[image: ../_images/PaintRockAfter.jpg]
You should have noticed that your brush clamped to the terrain as long as the cursor was over the block. This happens regardless of any terrain modification or elevation occurring, as shown in the following example. Notice how the brush distorts to wrap around the elevated terrain.

[image: ../_images/PainterBrushClamping.jpg]
Even though you just paved a large section of rock material, you can still paint over it. Decrease the Brush Size to approximately 9, so we can paint a more exact line of terrain. We are going to paint a path over our rocky area. In the Terrain Painter palette, select the first material (desert_sand_03 in this image).

[image: ../_images/SwitchToDesert.jpg]
Now, using your mouse cursor move the brush to the edge of our rocky area. You can start it just before the rocky area, or even on top of it.

[image: ../_images/PaintPathBefore.jpg]
Click and hold down the left mouse button to begin painting then sweep your mouse in a curving motion across the rocky area. When you are finished, let go of the mouse and examine or your winding path made of grass.

[image: ../_images/PaintPathAfter.jpg]
If you were to drop down to the player’s camera view, you can see where the two TerrainMaterials meet each other after editing.

[image: ../_images/PathCloseup.jpg]
Take the time to experiment with different brush sizes and shapes to see what kind of patterns you can come up with. When you are ready, read on to learn how to add a new TerrainMaterial with higher quality and detail.

Material Editor

Torque 3D’s Material Editor allows an artist to quickly create and edit a game object’s materials without ever touching a line of code. This tool can preview and edit materials mapped to an object in real time from the World Editor. Materials are categorized for ease of organization, and the editor is designed to be backwards-compatible with any existing script files. Materials are defined within script files named materials.cs

The Material Editor quickly comes into play when you are building your level by placing objects into the scene. As an example situation, let us assume you have a light fixture you or another artist has exported for use in Torque 3D. The creation of this object was a multi-step process.

The object’s geometry had to be created in a 3D modeling app, such as 3DS Max, Maya or Blender. Once the geometry was finished, a 2D graphical application was used to create the various textures that make up the high quality appearance: base texture (diffuse map), normal map, detail map, etc.

The rendered view of this object looks fine in the originating application, which leads you to believe it is ready to be imported into your game’s level. When you drop the lighting fixture into the world, there is a good chance it will fit right in based on your existing design. The theme and color scheme are likely a match.

However, once your object is in the level you might notice something is off. While the stand alone object viewed in an external tool looked great, the object now seems out of sync with your level’s lighting, tone, or specific room theme.

This is not the fault of the artist or design. What has happened is the materials for your object have either not been assigned or need to be tweaked to perfection in specific instances. Instead of going back into the art tool or adjusting properties in code, you can use the Material Editor to edit the appearance of your object by adjusting the texture maps and their properties.

Interface

To switch to the Material Editor press the F4 key or from the main menu select Editors -> Material Editor.

[image: ../_images/MaterialEditor.jpg]

Main Editor

Each major section of the Material Editor is separated via a header, such as Lighting Properties or Animation Properties. The fields found in these sections directly manipulate a materials properties in real time.

Material Preview

	Cube

	Changes the Preview Mesh.

	Square Symbols

	Change Normal Light Color.

	Preview in World

	Show changes made in material editor on selected object in scene view.

	Bottom Right

	Click square to change color of background preview.

Material Properties

	Edit Material

	Select and Edit an Existing Material (E).

	Floppy Disk

	Save material.

	Trash Can

	Delete Material.

	Name.dts

	Name of 3D asset using this material.

	First Drop Down

	Texture associated with material.

	Material

	Name of material.

	Square with Ball

	Swap current material mapped to this mesh for another.

	2nd Trash Icon

	Remove this material from mesh target.

Basic Texture Maps

	Diffuse Map

	Base texture for material.

	Normal Map

	Bump map that provides higher detail to mesh without extra polygons.

	Overly Map

	Texture draw on top of other maps.

	Detail Map

	Texture providing additional detail via lightening and darkening base map using high pass filter.

	Light Map

	Texture using baked lighting info.

	Tone Map

	Map which scales the RGB values of material. Used to calculate HDR.

Advanced Texture Maps

	Diffuse Map

	Base texture for material.

	Normal Map

	Bump map that provides higher detail to mesh without extra polygons.

	Overly Map

	Texture draw on top of other maps.

	Detail Map

	Texture providing additional detail via lightening and darkening base map using high pass filter.

	Light Map

	Texture using baked lighting info.

	Tone Map

	Map which scales the RGB values of material. Used to calculate HDR.

Lighting Properties

	Specular

	Enables the use of Pixel Specular (shininess) for this layer. The slider adjust the strengt, and you can set the color of the specularity.

	Glow

	Determines if this layer will Glow or not.

	Exposure

	Intensifies glow and emission.

	Emissive

	Causes an object to not be affected by lights. Good for materials from light source objects.

Animation Rotate Properties

	Purpose

	Causes material to rotate along the surfaces of the mesh it is mapped to.

	U and V Sliders

	Determines the direction of U/V coordinate rotation.

	Speed

	Rate of coordinate rotation.

Animation Scroll Properties

	Purpose

	Causes material to scroll along the surfaces of the mesh it is mapped to.

	U and V Sliders

	Determines the direction of U/V coordinate scrolling.

	Speed

	Rate of coordinate scrolling.

Animation Wave Properties

	Purpose

	Causes the material to scroll in a wavy manner along the surfaces of the mesh it is mapped to.

	Wave Type

	Switch between sine, triangle, and sqaure wave patterns.

	Amplitude

	Changes the positive and negative crest of the wave (intensity).

	Frequency

	Adjust wave length, which is the number of waves per time interval.

Animation Sequence Properties

	Purpose

	Animates texture by frames.

	Frames per Sec

	How many frames to display per second.

	Frames

	Number of total frames in the sequence.

Advanced Properties

	Purpose

	Adjusts advanced parameters that affects transparency calculations.

	Transparency Blending

	Sets material to use transparent blending modes.

	Transparent Z Write

	Can be used to help force a proper Z Ordering when Z Ordering issues occur. Only valid on materials with Transparency.

	Alpha Threshold

	When enabled, causes pixels under a specific alpha threshold to get discarded rather than be computed.

	Cast Shadows

	Material determines whether target mesh is allowed to cast shadows.

	Double Sided

	Determines if this material will be rendered from both sides of a polygon.

	Blending Box

	Determines type of blending and reflection applied on the transparent object.

Material Selector

When you wish to swap the material mapped to an object or create a new material, you will use the Material Selector. To change the material on an object, it must first be selected. If you do not know how to select an object, refer to the Object Editor documentation, then switch back to the Material Editor (F4). The Material Properties pane on the right side of the screen displays the properties that describe the material of the selected object.

At the top-right of the pane there is a value named Material. Click on the globe to the right side of it. This will bring up the Material Selector window.

[image: ../_images/MaterialSelector.jpg]
The center section of this dialog displays a list of all materials currently loaded in the game. OClicking on any material selects it which will cause the panes on the right to update and display information about the material. This information is limited to a preview of the material’s Diffuse texture, the name of the diffuse texture, and a list of filter tags.

On the left is a list of filters. The filter system is used to organize your materials for ease of use, and contains types and tags. To create a new tag, click the new tag button:

[image: ../_images/CreateNewFilter.jpg]
The Create New Tag dialog will pop up. Enter a name for your new the tag then click the Create button. In this example, you will be grouping all the materials related to cliffs. Whenever a material is selected, the Material Tags section on the right will be updated to show all the tags that you have created, each with a checkbox. Clicking the box of a specific tag will associate that tag with the current material. Clicking a checked box will dissociate the tag from the material.

The list of materials can be filtered using the tags assigned to them. To filter the material list use the tags section on the far left. When you click on the check box for tag it tells the system to include materials that have that tag in the list. Any materials that do not have at least one of the checked tags will be filtered out of the list.

Editing an Existing Material

Your game’s levels can potentially contain thousands of different objects with varying purposes: explosive barrels, ammo crates, static light fixtures, solid walls, etc. Each one will have a material that might need subtle tweaking to fit in, such as a glowing light bulb.

In this example, you will adjust the properties of this bridge materials.

Remember that you can preview the changes in the scene as well as the preview box in the Material Editor. You will start by toggling the Specular property of the material used for the metal pipe. Without Specular enabled, an object will not have a shine and will thus appear flat.

[image: ../_images/MatSpecOff.jpg]
When the Specular property is enabled, the cube in the preview box will have a shiny appearance. In the scene, the metal will also be shinier due to the lighting reflection.

[image: ../_images/MatSpecOn.jpg]

Creating a New Material

While developing your game, you will most likely be using your own assets. When you add a model to the scene, it will be assigned the default “No Material” texture which serves as a warning to the designer that no material has been assigned to an object. This material is automatically used for all assets before they have a mapped materials.

[image: ../_images/CubeAdded.jpg]
If you have already created the textures for your object, creating and assigning a material is a simple process. Start by clicking the globe symbol next to the Material name box.

The Material Selector dialog will appear. Click the Create New Unmapped Material button found at the top right of the Material section’s header.

[image: ../_images/CreateNewMaterial.jpg]
A new material will be added to the list with a name similar to newMaterial_0. Click on the material to view it in the Diffuse Preview section.

Click the Select button to use that selected material for the object you are editing. After the Material Selector closes, you will be prompted to save any material changes that you may have made before entering the Material Selector. Do so if you wish to retain any changes that you made prior to creating the material.

Your new material will have replaced the material selection in the Material Properties pane back in the Material Editor and should now be displayed in the Material field. Type in the real name you want for your new material to be known by then press the Enter key. In this example, the name of the material is “boxxy.”

Before editing anything else, click the Save Material button, represented by the floppy disk symbol to save the new material.

Note

You MUST press the Enter key after typing the material name BEFORE clicking the Save Material button or the material will not be properly saved.

Now, scroll down to the Texture Maps section of the Material Editor. This is where you will be adding the actual texture files that define this new material. Click on the Diffuse Map preview or the Edit button in that section to open a file browser. Navigate to your diffuse texture, or sometimes referred to as the base texture. Select the file that you want to use as for this new material then click the Open button.

Your preview window and scene should immediately be updated to reflect the addition of your texture.

Repeat the process to add your Normal map. Click on the preview or edit button in the Normal Map section. When the file browser appears, select your normal map texture. Once again, your scene will be updated to reflect the changes that have been made to the material. Click the save button to retain these changes.

[image: ../_images/NormalAdded.jpg]
If you open the Material Selector again, you will notice your new material has been saved in the list. This material is now available to be assigned to any other meshes within the project without having to go through the whole process of redefining it again.

Sketch Tool

The Sketch Tool is a tool that allows you to quickly generate meshes without going to 3rd party modeling applications, such as Maya or 3DS Max. It is not meant to create final or game ready art, just rough shapes that are placeholders for your real art. For example, you can use this tool to sketch the shape of a building you want. The rough design can fit your needs for a simple design and estimated measurements.

Interface

To switch to the Material Editor press the F4 key or from the main menu select Editors > Material Editor or click on the orange box icon to get started.

[image: ../_images/STBlankLevel.jpg]
The Tools Palette will populate with basic manipulation icons:

	Select Object

	Select a convex object or individual face

	Translate

	Move an individual face

	Rotate Object

	Rotate an individual face

	Scale Object

	Grow or shrink an individual face

As with the other editors, extremely helpful usage hints will be displayed in the bottom left corner of the editor. Shortcuts and basic descriptions will appear based on which tool you are using.

Creating a Convex Shape

The very basic interface allows you to quickly sketch out convex shapes. All of your editing can be performed via mouse actions. To begin creating a convex shape, hold down the Alt key and left mouse button to begin drawing a base. The base will follow where your mouse cursor is being dragged, shrinking or growing as it goes.

[image: ../_images/STCreateBase.jpg]
Once you let go of your mouse button, the base will stop growing. From here you can move your mouse cursor up and down to change the height of your new box. You do not have to hold down the mouse button during this time.

[image: ../_images/STCreateHeight.jpg]
Once you are happy with your convex shape’s height, left click one last time. The box will become a solid object and automatically be selected. If you make a mistake, hit Ctrl-Z to undo and erase the shape then repeat the process.

When you are ready to begin shaping the box, left click one of its faces. The currently selected face will be highlighted in bright pink:

[image: ../_images/STSelectFace.jpg]
At this point, you can start using the Sketch tools to edit the specific face you have selected.

Editing a Convex Shape

Let’s move some surfaces around. Start by selecting a faceof the object by (left clicking on it). Three colored lines will now extend from the center of that face - these represent the axes for the three dimensions x, y and z. This is called the axis gizmo. Activate the Move Selection tool by clicking the icon on the Tools Palette on the left of the screen or press the shortcut key 2:

[image: ../_images/STSelectFace.jpg]
Once the Move Selection tool is activated, arrows will appear on the ends of the axis gizmo. Click on the X-axis and drag it outward. Your face will move in the direction you are dragging your mouse. The entire convex shape will adjust according to where the face as moved. You will be able to move the face in any direction in three-space:

[image: ../_images/STTranslateFace.jpg]
Next, activate the Rotate Selection tool by clicking the icon on the Tools Palette on the left of the screen or press the shortcut key 3. A spherical gizmo will appear representing the orientation manipulators. The axis gizmo straight lines will now be displayed as three curved colored lines:

[image: ../_images/STRotateBefore.jpg]
Click and hold one of the colored lines (an axis), and drag it in a direction. The selected face will begin to slope according to the new orientation:

[image: ../_images/STRotateAfter.jpg]
Finally, activate the Scale Selection tool by clicking the icon on the Tools Palette on the left of the screen or pressing the shortcut key 4. Click on the top face of the box. A squared like gizmo will appear which will allow you to choose what parameters to adjust. You can adjust the (width, height, depth, or any combination of the three):

[image: ../_images/STScaleBefore.jpg]
Instead of adjusting one parameter at a time, we are going to adjust width and height. Move your mouse over the different squares to see how they highlight. Click the bottom square of the gizmo, in between the red X and yellow Y axis and hold down the mouse button. Drag your mouse in either direction to shrink or grow the face. The more you shrink, the more like a pyramid it will be come:

[image: ../_images/STScaleAfter.jpg]
The last action this guide will address is extruding. The Sketch Tool extruding feature creates new geometry from a selected a face. Start by creating a new convex shape - review the section, Creating a Convex Shape, if you don’t remember how.

[image: ../_images/STNewConvex.jpg]
Next click on a single face of the shape. Make sure you have a face selected, and not the entire object. The selected face should be highlighted with a in bright pink. Activate the Move Selection tool. A hint will display at the bottom of the editor: “Move selection. Shift while beginning a drag extrudes a new convex.”

[image: ../_images/STExtrudeBefore.jpg]
Perform this action as described. With the face selected, hold down the Shift key, move the mouse over one of the colored arrows, and click and drag outwards from the object. The exact dimensions of the original face will be duplicated, constructing a new convex based on those parameters. This may not be apparent until you click on a face and see that the area of the new face is separate from the original:

[image: ../_images/STExtrudeAfter.jpg]
You can now select faces on the new convex object and continue editing it as a new object:

[image: ../_images/STExtrudeAfter2.jpg]

Object Manipulation

When you are finished sculpting a convex shape, you can manipulate it as you would with any other game object using the Object Editor. This includes selection, translation/rotation/scaling, and editing specific properties.

Unlike the Sketch Tool, selecting a convex shape using the Object Editor it treats the object as a whole. There is no individual face selection. Switch to the Object Editor by pressing the F1 key then click on one of your objects:

[image: ../_images/STObject.jpg]
You may then manipulate the object using the normal Move Selection, Rotate Selection, and Scale Selection tools of the Object Editor. You can even use the other more complex Object Editor commands such as copying an object. To copy the object: hold the Shift key; activate the Move Selection tool by pressing the 2 hotkey; press and hold the Shift key; then drag the mouse to a new position in any direction. When you release the mouse button you will have a new duplicate copy of the original object:

[image: ../_images/STDuplicate.jpg]
This can also be used for mass production of objects by copying multiple objects at once. Change back to the Select Arrow tool by pressing the 1 hotkey. Click one of your objects to select it. Take note of the position of the gizmo that appears and the little cube at the gizmos origin. Now select the other object. Again take note of the position of the gizmo and the cube for this object. Now press and hold down the Shift key then click your other object again. You will notice there are now two small cubes, one over each object, and one gizmo relatively near the center of the two objects. This indicates that both objects are currently selected. You now have a selection group.

Change to the Move Tool by pressing the 2 hotkey. The cubes will disappear, and large arrows will appear on the ends of the gizmo. If you mouse over either object, you will see a faint transparent cube pop up. This indicates that object is a part of the selection group. Clicking any arrow and dragging the mouse will not move all the objects at once. Likewise, pressing and holding down the Shift key, then clicking and drag will duplicate all the objects in the selection group:

[image: ../_images/STDuplicate2.jpg]
The new copy of the objects will now be the current selection and they can be moved as a group or immediately copied again with another Shift-drag operation. The above method combined with rearranging the individual objects after copying them is a great way to piece together multiple convex shapes to create more complex arrangements. For example, you might have unique convex objects for a roof, wall, chimney, and so on. You could only create one wall, then duplicate it four times so that they are all the same size then arrange them into a building with the Move Selection tool:

[image: ../_images/STHouse.jpg]
Once you get the hang of the Sketch Tool, you can sculpt unique and complex shapes. Entire levels can be prototyped to use placeholder art, created right inside Torque 3D, while you or your artists work on the final assets using the tools that they are familiar with.

Datablock Editor

The configuration properties that describe dynamic objects in Torque 3D are stored in information structures called datablocks. The T3D Datablock Editor is used to quickly and easily change any parameter of any datablock from within the world Editor.

Interface

To switch to the Datablock Editor press the F6 key or from the main menu select Editors > Datablock Editor. Or alternately click the Datablock icon from the World Editor toolbar.

[image: ../_images/DatablockEditor1.jpg]
The Datablock editor has two components: the Datablock Library pane and the Datablock properties pane. These panes appear at the right of the screen whenever the Datablock Editor is active. The Datablock Library pane is further divided into two tabs. The first, labelled Existing, contains a categorized list of all the existing datablocks. The second, labelled New, is used to create new instances of those datablocks.

[image: ../_images/Data_toollib1.jpg]
Clicking any existing datablock will cause the Datablock properties pane to update to display the current properties of that datablock.

The image below shows the selection of the DefaultCar datablock, under the WheeledVehicleData category. This datablock contains variables related to vehicle performance.

[image: ../_images/Data_toolprop1.jpg]

Creating a new Datablock

Creating a new datablock can be done by creating a copy from an already existing datablock. To do so first select the New tab in the Datablock Library pane.

Then choose the type of datablock you wish to create from the list. Then press the New icon.

[image: ../_images/Data_new2.jpg]
You will be presented with a new window giving you the option to name the new datablock and to copy values from one of the existing instances of the datablock type, if you want to. For example, in this scenario the DefaultCar datablock would be available in the dropdown box because it already exists at the time when creating a new datablock.

After clicking the Create button a new copy of the datablock will be added to the library, under the datablock type you first selected. In this example, you will create a new WheeledVehicleData datablock and name the new version “raceCar”. This new version can now be found in the Library, under the Existing tab, in the WheeledVehicleData section.

Saving a Datablock

After editing the new datablock or any other datablock, you will need to save it. You will see a small “*” in the header of the properties right after the Datablock label if the datablock needs saving.

Click the small floppy disk icon to save your datablock changes.

[image: ../_images/Data_save1.jpg]

Note

Any new datablock which has been saved will be added into the managedDatablocks.cs document which can be found at the location: projectgameartdatablocksfor your scripters to access later.

Deleting a Datablock

If you no longer need a datablock you can easily delete it by selecting the Delete icon.

[image: ../_images/Data_dal1.jpg]
After pressing this icon you will get a notification window stating that the datablock has been removed. The World Builder will need to be restarted to completely remove the file.

Decal Editor

[image: ../_images/Decal_Header.jpg]
Decals in Torque 3D refer to image textures that are overlaid on objects such as the terrain or players to give the appearance of surface affects such as leaves, flowers, or litter on the ground, or for dynamic changes to the environment, such as foot prints, or burn marks from explosions without the need to create and place special terrain materials or objects to represent the effects. Torque 3D’s Decal Editor provides you with control over decals of any type, including placement and other attributes. Decals can be placed via the editor to any visible surface within the world.

As with the other Torque 3D editors this can be easily achieved by using the built-in WYSIWYG (What-You-See-Is-What-You-Get) editing tools.

Interface

To access the Decal Editor press the F7 key or select it from the drop down menu at the top of the World Editor, by choosing Editors > Decal Editor. Or select the Decal icon from the World Editor tool bar.

[image: ../_images/DecalEditor.jpg]
The Decal editor has two main parts, one where you can add and manipulate the size, rotation and position of the decal, and the other for adjusting the decal properties. On the upper-left hand side of your screen, you’ll see a toolbar which provides tools for decal placement and manipulation. On the right of the screen, there is the Decal Editor pane which displays a list of decals, and the Template Properties pane below it, which displays properties of the selected decal along with a texture preview.

In the Decal Editor pane on the top right, under the Library tab, is a list of the decal datablocks defined in the system, which are really decal descriptions. In the Instances tab, there is a list of all decals that have been created within the current project.

Adding a New Decal Datablock to the Library

Before you can paint a decal to your world, the datablock needs to exist in the decal library. To add a new decal, simply press the New Decal icon at the top of the Decal Editor pane. This will add a new blank decal to the library, ready for you to select or add a material and set up its properties.

Naming a New Decal Datablock

After creating a new decal you will want to name it. This can be achieved by selecting the name property and entering a new name, then pressing the Enter key.

Removing Decal Datablock from the Library

To remove an existing decal from the library simply select the decal in the list then click the Delete icon.

[image: ../_images/Decal_remove.jpg]
If you select Yes all instances of the selected decal will be removed. The datablock will continue to exist until the World Editor is restarted.

Missing Decals

If a decal exists in the level, but is not rendering, it means the datablock for it has either been deleted, renamed, or corrupted. The Retarget button allows you to assign an existing datablock to a missing decal.

To open the retarget dialogue, select the decal that you wish to fix then click the Retarget icon at the top of the Decal Library pane.

[image: ../_images/Decal_missing.jpg]
The Retarget Decal Instances dialog box will open. From here you can reassign the decal datablock. Select a Decal Datablock from the drop down list that you wish to use for the selected decal.

Editing Tools

The Decal Editor placement and manipulation tools appear on the toolbar down the left of your screen whenever the Decal Editor is active. Each tool can be activated by clicking the appropriate icons or by pressing its hotkey. Hotkeys are assigned 1 through 5 from top to bottom in the toolbar and are visible by hovering the mouse over the icon. These tools will enable you to quickly place, scale and rotate your decals.

Adding a Decal

Before adding a decal, a datablock for the decal must exist in the Decal Library. Please see the section “Adding a New Decal Datablock to the Library” above.

To add a decal to a level select a decal from the Library tab of the Decal editor pane, click the Add Decal tool, and then click on the terrain where you would like to see your decal instance appear. The same decal can be placed in a level multiple times. Each such copy is referred to as an instance of the decal.

Selecting a Decal

The selection tool enables you to directly select a decal instance that has already been placed in the level by simply clicking on it. Its datablock properties will then be shown in the Template Properties pane for viewing and/or editing.

Deleting a Decal Instance

There will be times when you need to delete an a decal instance. The decal can be selected by the Selection tool (see the “Selecting a Decal” section) and then pressing the Delete key. Or you can select the required decal from the Instances tab in the Decal Editor pane, then press the Delete key or press the Delete button, represented by the trash can icon.

Note

This will only delete the selected decal instance in the world, not the decalâ€™s datablock listed on the Library tab.

Moving a Decal

To move a decal instance simply select the decal using any method described above then click the Move tool icon. The normal Object Editor movement gizmo will appear. Click any axis arrow using the left mouse button, then hold the button down and drag the mouse to move the decal in that direction. Release the mouse button to drop the decal at the new location.

Scaling a Decal

If you find that the decal is either too small or too large you can use the Scale tool to resize the decal. This uses the standard world gizmo, but will not scale on the vertical axis due to decals being restricted to two-dimensions. Click any axis cube using the left mouse button, then hold the button down and drag the mouse to scale the decal in that direction. Release the mouse button to leave the decal at the new scale.

Rotating a Decal

If for any reason you find that you need to rotate a decal, you can use the Rotate Tool do so. To rotate a decal, select the decal by any method described above, and then click the Rotate Tool icon. The standard world rotational gizmo will appear. Click any rotation circle using the left mouse button, then hold the button down and drag the mouse to rotate the decal in that direction. Release the mouse button to leave the decal at the new location.

Note

Because decals are two-dimensional rotating a decal will never cause the decal to leave the surface upon which it has been placed. Rather, when a decal is rotated by any axis the decal will rotate in two-dimensions locked to that surface. This can cause some strange effects if the surface that contains a decal is curved with a radius less than the size of the decal. As with all the other T3D editors, the more that you experiment and use the tools the more familiar you will be with them. With practice and time you will find many uses for the Torque 3D decal system.

Properties

A Decal has only a small amount of properties which can be edited using the Template Properties pane:

	Size

	The size of the decal rendered onto the surface.

	Material

	Specifies the Material selected to display as the decal.

	Lifespan

	Time in Ms (milliseconds) that the decal will exist in the world after being placed dynamically.

	FadeTime

	Time for the decal to fade out in Ms (milliseconds).

	Frame

	Index of texture rectangle to use for this decal, if the texture consists of multiple images.

	Randomize

	Randomizes the texture rectangle (frame) used for each instance of the decal. So it essentially uses a random frame.

	TexRows

	Defines the number of image rows in a multiple image material.

	TexCols

	Defines the number of image columns in a multiple image material.

	ScreenStartRadius

	Distance check for rendering the alpha channel of the decal.Visibility check based on the scale of the decal

	ScreenEndRadius

	Distance check for rendering the alpha channel of the decal.Visibility check based on the scale of the decal

	Render Priority

	If more than one decal are on top of each other the decal with the higher priority will rendered first

	Clipping Angle

	The angle in degrees used to display geometry that faces away from the decal projection direction.

[image: ../_images/Decal_RC.jpg]

Forest Editor

[image: ../_images/foresteditorheader.jpg]
The Forest Editor is a tool that allows you to quickly create massive amounts of vegetation for your level including patches of trees, forests, and fields of smaller elements such as shrubs and plants. Entire forests can be laid down using simple techniques similar to painting on a canvas, where instead of paint your brushes, lay down 3D models on the terrain.

Interface

To access the Forest Editor press the F8 key, or select it from the drop down menu at the top of the World Editor, by choosing Editors > Forest Editor, or click on the leaf icon to get started.

The Tools Palette on the left of the screen will populate with Forest Editor specific tool buttons represented by icons.

	Select Item

	Select an individual object in forest

	Translate Item

	Move the currently selected object

	Rotate Item

	Rotate the currently selected object

	Scale Item

	Grow or shrink the currently selected object

	Paint

	Used for painting objects on terrain

	Erase

	Used for erasing objects from a terrain

	Erase Selected

	Used to delete the currently selected objects

The Forest Editor has two main panels which will appear on the right of the screen whenever the Forest Editor is active.. On the top is the Forest Editor pane which is divided into two tabs: Brushes and Meshes. The Forest Editor works in a manner similar to painting on a canvas with a brush, except instead of paint the Forest Editor lays down shapes onto the terrain of your level. A Brush in the Torque 3D Forest Editor is composed of one or more mesh elements, which can be alternated between when painting.

The Meshes tab contains a list of all Forest Mesh elements which can be assigned to a brush. A forest mesh is really a datablock which is an information structure that defines a model and the properties which control it in the forest.

On the bottom of the right side of the screen is the Properties pane. The Properties pane displays information about the currently selected element in active tab of the Forest Editor pane.

Before we can use these tools and paint a forest, we need to import a forest mesh and set up a brush.

Creating a Forest Mesh

To create a forest mesh tart by clicking on the Meshes tab in the Forest Editor pane. There are two icons in the top right. The trash bin deletes the currently selected existing mesh, and the leaf icon will adds a new mesh. Click on the Add New Mesh icon.

[image: ../_images/FEAddNewMesh.jpg]
A file browser should appear. Locate the sample tree mesh file, defaulttree.DAE, which can be located in the game/art/shapes/trees/defaulttree folder.

A new mesh will be added to the tab using the same name as the file you selected:

[image: ../_images/FEDefaultTreeAdded.jpg]
The Properties pane will also be populated with fields and values which describe the new mesh.

[image: ../_images/FEElementProperties.jpg]
Switch to the Brushed Tab. You will see that the new mesh has also automatically been added to the list of Brushesallow you to select it as the element to paint with.Select the new brush by clicking on its name. The Properties pane will be updated to display the properties of the brush which can be used to randomize the placement and appearance of the selected mesh.

Using a Brush

Now that you have an available brush you can begin painting a forest. Select the defaulttree brush from the sample assets. Move the mouse until a blue circle appears on the terrain. This is the outline of your forest brush and shows where you are going paint. To begin painting, left click the mouse and drag it around on the terrain.

[image: ../_images/FEBrushCircle.jpg]
If this is the first time you have painted a forest in a level then no Forest object exists in the level yet. However, a forest object must exist , so you will be prompted to confirm that you want to add one.

Answering No will abort the forest painting operation. Answering Yes will automatically create a new Forest object, add it to your level, and return you to the level with the brush still active ready to continue painting. You can examine the forest object the same way as any other object using the Object Editor but it has no useful properties to edit so lets skip it for now an continue on with our forest painting operation.

Once again, hold down the left mouse button and drag the mouse over terrain. As you move the brush trees will begin showing up in the wake of your brush. To change the size of your brush, pull the mouse wheel toward you to increase the size or push it away to decrease the size. The blue circle will grow or shrink to indicate your new size.

Note that you do not have the ability to move the camera forward and back in the Forest Editor because of the availability of the brush resizing feature. To move the camera forward and back while using the Forest Editor press the Up Arrow to move forward and the Down arrow to move backward.

Keep painting until you have a decent patch of trees:

[image: ../_images/FETreesPainted.jpg]
If you move your camera down to ground level, you can see how your forest will look from a player perspective. Youll notice that these are full 3D objects that react to collision, sunlight, and external forces.

[image: ../_images/FEGroundView1.jpg]

Adjusting Properties

You can edit the properties of a Mesh to adjust how each tree is placed when painting. To adjust the density of mesh placement switch to the Meshes tab then select your defaulttree entry. The Properties pane will update to display the properties of your mesh. Change the radius property from 1 to 2 then press the Enter key.

This radius tells the tool a rough amount of space this item takes up. The value is a decimal value and has no limits, but remember that if the value is too low your trees may overlap, and if it is too high you may not get any trees to appear because the spacing might be larger than the brush itself. Now when you paint you should get more spacing between the placed meshes.

[image: ../_images/FESpacedTrees.jpg]
As mentioned previously, you can use the Forest Editor to paint additional environmental objects such as rocks, shrubs, or any other 3D model. Since you can paint different types of objects, you might want to organize your brushes and meshes.

In the Brushes tab, click on the Add New Brush Group icon. This will add a new entry in the brush list, called “Brush”. Click on the text of the new brush group. This will allow you to edit the text of the brush. Name the brush group “Trees” then press the enter key. Now, you can click on the defaulttree element and drag it onto the Trees brush group. Switch to the Meshes tab, and click the Add New Mesh tree icon to add a new one. Select game/art/shapes/rocks/rock1.dts as your model.

The rock1 mesh will be added to your Meshes list. Unlike trees, the rock1 mesh is fairly large and somewhat spherical. Spreading out the placement of this mesh will help prevent dense blobs of rocks being placed. In the Mesh properties tab, increase the rock1 radius to 3.

Switch back to the Brushes tab. Create a new brush group and name it Rocks. Your rock1 mesh element should already be in the list, so drag it onto the Rocks brush group to keep things organized. Go ahead and paint down some rocks in your level. You should end up with a patch of huge boulders with fairly even spacing:

[image: ../_images/FERocksPainted.jpg]
You might have noticed all the boulders are the same size. For added realism, you can adjust the brush properties to randomize its appearance. Select rock1, then decrease the scaleMin and increase the scaleMax. Begin painting a new set of rocks. Now, you will end up with rocks of varying sizes. Some will be as small as your player, while others could be twice the size of the original mesh.

[image: ../_images/FEPaintVariedRock.jpg]

Editor Settings

The actions available in the tools palette give you absolute control of your forest placement. The first four tools allow you to adjust individual elements of your forest, such as a single tree. The Select Item tool allows you to select an individual element, which is indicated by a colored axis gizmo appearing on top of the item:

[image: ../_images/FESelectTree.jpg]
Once you have a tree selected, you can change its location without moving the entire forest. With the tree selected, activate the Move Item tool. The arrows gizmo will appear, allowing you to drag the tree around in the world. The Rotate tool, represented by a spherical gizmo, allows you to adjust the orientation of the tree in 3D space. You can use this to make individual trees lean in a specific direction. The Scale tool can be used to shrink or grow an individual tree. When you need to tidy up a forest, such as removing rogue trees, pressing the delete key when you have a tree selected will remove it from the scene.

[image: ../_images/FERotateTree.jpg]
If you need to delete entire sections of a forest, you may not want to delete each tree individually. Instead, you should use the Erase tool. The Erase tool is located directly below the Paint tool. When activated, the circle representing your brush in the world will turn from blue to red when you move your brush over the terrain:

[image: ../_images/FEEraseBrush.jpg]
Left click your mouse and drag the brush over a section of trees. Any trees under your brush will be removed from the forest object. This is much faster than deleting individual trees. If you want to remove a larger amount of trees such as clearing an area for a road, you can set the width of the brush to a specific width. Locate the Size dropdown on the Tool Settings bar and click on it. A slider will appear so you can increase the circumference of your brush. Set it to something fairly large, like 20.

Mesh Road Editor

[image: ../_images/Roadmeshheader.jpg]
The Mesh Road editor will help you create a solid mesh road structure upon your terrain. A mesh road is actually a 3D model representation of your road and is not solely dependent upon the terrain height. A mesh road can be raised above the terrain, or suspended between hills unlike a decal road, which painted on the surface of your terrain as a texture, and must follow the terrain exactly. Decal roads are created with the Decal Road Editor.

Interface

To access the Mesh Road Editor press the F9 key or activate it from the main menu of the World Editor by selecting Editors>Mesh Road Editor. Alternatively you can click the Mesh Road icon from the World Editor Tool Selector Bar.

[image: ../_images/Roadmeshintro.jpg]
Whenever the Mesh Road Editor is active three sections of the screen are updated to contain the editors tool. On the right side of the screen are the Mesh Roads pane and the Properties pane. At the top is the Mesh Roads pane which contains a list of all the road meshes currently in the level, if any are present. At the bottom is the Properties Pane which displays the properties of the currently selected road mesh.

At the left of the screen the Mesh Road placement tools will appear and are used to create and modify road meshes. At the top of the screen in the World Editor Tool Settings bar, a new set of icons will appear. These icons and their associated values will enable you to quickly set up the width and depth of the control points and modify the editor to show and hide some visual aids which can be used to guide your road placement.

Adding a Mesh Road

A road mesh is created by placing a number of control points across the terrain. Each point can be edited for Road height, Road width and Road depth. By adjusting these points we have full control over how our road will look. The default width and depth of control points can be set using the Default Width and Default Height properties on the Tool Settings Bar at the top of the editor window. Any new road meshes will be created using these settings until you change their values again.

To create a new road mesh select the Create Road icon from the tool bar then click on the terrain with the left mouse button where you would like to start your road. Move the mouse away from the clicked location to see the results. Each time you click the terrain you will see three things:

	a green square which represents the road location that you just placed

	a blue square which represents the next location that will be placed the road if you press mouse button again

	the surface of the road that will be placed the next time you click the button

Move the mouse to the next point on the terrain that you wish your road to travel to and then click again. Continue moving and clicking until you are finished with the initial placement of your road.

To complete the road placement process press the Esc key. This action will exit the Create Road tool leaving your new road selected and ready for adjustments.

To abort a road creation operation without placing a road at all press the Esc key before selecting a second road point. Once a second road point has been placed the only way to remove the road completely is to delete it, as explained later.

[image: ../_images/Roadmeshpath.jpg]
The new road will also show up in the Roads Mesh pane above the road Properties pane.

Editing a Mesh Road

The Road Mesh Editor provides several tools for modifying roads after they have been created. If at any time you make a mistake with any tool, you can press CTRL+Z to undo it.

Selection Tool

Once you have created your initial road you may need to edit some or all of the control points. This tool will allow you to directly select any created point for further editing. To activate the Selection Tool click its icon on the Tool Selector bar. Note that the Road Mesh Editor will automatically select this tool when you have finished creating a new road.

An entire road mesh can be selected by clicking anywhere on a road mesh other than one of its control points. This type of selection will result in the road being highlighted with a “spline”, which is a curved line that runs along the center line of the road, and a series of green squares which represent the roads control points. There are no operations that can be performed on a road as a whole within the Mesh Road Editor. Selecting a road allows you to see its centerline and it control points for individual selection and manipulation. To perform operations on the entire road such as moving it to a new location use the Object Editors tools as with any other shape in your level.

Control points can be selected individually to adjust each point as necessary. To select a control point left click on one of the colored squares that represent a roads control points. The selected control point will turn blue.

Selecting a control point also causes the Properties pane on the right of the screen to be updated to display the current property values of the control point. The Node Properties section will display the position, rotation, width and depth of the selected control point. Values can be directly entered into these fields to modify the point or the Move Tool can be used to manipulate the point using the mouse.

Moving a Road

If at any time you are unhappy with the placement of a selected Road Mesh control point you can use the Move Tool to adjust its position. To activate the Move Tool click its icon in the Tool Selector bar. The move gizmo will appear. The move gizmo is used to move the road point to a new location. Left mouse click on any arrowhead then drag the mouse to move the point along that arrows axis. Release the mouse button to relocate the control point to that new location. Left mouse click on the colored square at the origin of the axes then drag the mouse to freely move the point to without regard to any axis.

Scaling a Road

The width and depth of a road can be directly adjusted at a selected control point by using the Scale tool. To activate the Scale Tool click on its icon on the Tool Selector. The scaling gizmo will appear. Left mouse click on the colored cube at the end of any axis then drag the mouse while holding the button down to increase or decrease the size of the road along that axis. Note that if you drag the blue cube to adjust the depth of the road you may not visibly see the adjustment take place because the road depth may be increasing down into the terrain. To adjust the width and depth at the same time left mouse click on the colored cube at the origin of the axes then drag the mouse while holding down the button. Release the mouse button to change the road to that new width and depth.

Rotate a Road

The Rotate Tool can be used to rotate a road at any selected control point. To activate the Rotate Tool click its icon on the Tool Selector. The rotate gizmo will appear. Left click on any colored circle then drag the mouse while holding the button down to rotate the roads surface around that axis at the control point.

Inserting Extra Points

The Insert Point tool can be used to add extra points in a road to create a smoother curve. In order to insert a new point into a road the road must first be selected. See the Selection Tool above for details on how to select a road. To activate the Insert Point tool once a road has been selected click its icon on the Tool Selector bar. To place a new point on the selected road click on the road where you would like the new point to be placed. A new point will be added to the road mesh and will immediately the currently selected point as indicated by the blue square.

Removing Points

The Remove Point tool can be used to delete a control from a road mesh. In order to remove a new point from a road the road must first be selected. See the Selection Tool above for details on how to select a road. To activate the Remove Point tool click its icon on the Tool Selector bar. To remove a control from the selected road point click on the control point. This will remove only the selected point leaving all the others in place. No adjustments will be performed on the other existing control points.

Properties

The Properties pane on the right side of the screen can be used to configure a Mesh Road.

Transform

The transform section contains properties which control the placement, rotation and scale of the Road Mesh as a whole.

	Position

	The transform section contains properties which control the placement, rotation and scale of the Road Mesh as a whole.

	Rotation

	Indicates the rotation of the entire Road Mesh in the level.

	Scale

	Indicates the scale of the entire Road Mesh in the level.

Mesh Road

The Mesh Road section contains properties which determine and control the textures used to display the Road Mesh. To change any of the textures for the Road mesh click the globe icon to its right. Clicking one of these icons you will open up the Material Selection window.

Click on the material you want to use for the road mesh property then click the Select button. The material will be entered in the propertys field and will be used as the material for that portion of the Road Mesh.

	Top Material

	Indicates the Material to use for the top surface of the road mesh.

	Bottom Material

	Indicates the Material to use for the underside surface of the road mesh.

	Side Material

	Indicates the Material to use for the sides of the road mesh.

	Texture Length

	Indicates the size in meters of the texture measured along the road center.

	Break Angle

	Indicates the angle in degrees that the mesh roads spline will be subdivided into if its curve becomes greater than this threshold.

	Width Subdivisions

	Subdivide segments width-wise this many times when generating vertices.

[image: ../_images/RoadmeshTexL.jpg]
[image: ../_images/RoadmeshBa.jpg]

Particle Editor

[image: ../_images/Particle_head.jpg]
Torque 3D provides a full featured particle system with many parameters which can be manipulated to fine tune your particle effects. Particle effects are things such as fire balls, smoke, and water splashes that you create and place into your levels. The Torque 3D Particle Editor is the tool of choice for full control over the look and feel of your effects. At its most basic level a particle effect consists of: an emitter, a particle to be emitted from the emitter, and an image rendered to represent that particle.

The emitter controls: the creation of the particles; their movement; which directions the particles will travel, also referred to as the spread pattern and: how each particle blends into the world.

The particle controls its own life span, what image will be shown; how big the image is; what it’s color over time is; and some basic force settings.

Interface

The Particle Editor can be activated from the dmain menu by selecting Editors -> Particle Editor. Or alternately, click the Particle Icon from the Tool Selector bar.Whenever the Particle Editor is active the Particle Editor – Emitters pane will be present on the right side of the screen. This pane is further divided into two tabs:

	The Emitter tab contains properties about the currently selected emitter

	The Particles tab contains properties about the currently selected particle.

[image: ../_images/Particle_pne1.jpg]
Select either the Emitter tab or particle tab depending upon which object you wish to work with. In adition to the tabs there are also two buttons within the header of the Particle Editor.

One Shot Effect Types

There are two types of particle effect:

	continuous effects, which constantly emit particles

	one-shot effects, which only produce particles for a short time and then stop

Continuous effects run constantly so your changes can be seen in real-time as you adjust the properties of the emitter and its particles. In order to see your changes for one-shot emitters you need to replay the emission. To replay a one-shot emitter click the arrow icon to the right of the tabs.

The Temporary Emitter

When you open the Particle Editor you may have noticed it creates a temporary particle emitter in your current view. This temporary emitter is very useful for quickly trying out different particle editor settings.If your view is changed and you no longer see temporary emitter, press the little camera icon to the right of the tabs to place it back into view. It will always be placed in the center of your current view. The temporary particle emitter can be moved, rotated, and scaled like any other shape using the Object Editor.

New Emitter / Particle

To create a new blank emitter or particle that is ready to be configured, press the new icon on the Emitter or Particle tab as appropriate.

Save Emitter / Particle

After editing an emitter or particle save the new settings by pressing the save icon on the Emitter or Particle tab as appropriate. Particle emitters are updated in real-time. Any changes to a particle or emitter will be reflected through out your level when changes are saved. Any instances of the emitter or particle that you are editing will also be changed. As with a lot of Torque 3D Editors the Particle Editor writes the resulting data to script files which the engine runs to create the particle emitter when you game is being played.

	Emitters can be found in a file named: projectName/game/art/levels/levelName.mis

	Particles can be found in a file named: projectName/game/art/shapes/particles/managedParticleData.cs

Emitter Properties

The Emitter tab contains the properties that define an Emitter. Properties are grouped into sections:

[image: ../_images/Particle_pe1.jpg]

Basic

Basic properties affect the base emitter:

	Life

	The time duration in ms that the effect will emit particles.

	Life (Random)

	Substitutes a random value for the life property.

	Infinite Loop

	When enabled this emitter will continuously produce particles. This setting effectively causes the Life and Random Life properties to have no affect on the emitter.

	Amount

	The time in ms between each individual particle released from the emitter.

	Amount Random

	Random Variation amount to be applied to the amount setting.

Motion

These settings will affect the emitter spread pattern, speed, and particle image orientation:

	Speed

	The velocity the particle will leave the emitter in the defined spread pattern.

	Speed Random

	A random setting for varying the speed.

	Orient to Movement Direction

	Enabling this option fixes the particles image to the velocity direction of the particle. Note this will over ride any particle spin settings.

	Align to a Direction

	Enabling this option aligns the particles to a predefined vector set up in Align Direction option.

	Align Direction

	The vector used for particle alignment if the Align to a Direction option is checked.

[image: ../_images/Particle_peOrient.jpg]

Spread

These setting affect how the spread pattern will be dispersed:

	Angle Min

	The minimum angle for the emitter spread pattern.

	Angle Max

	The maximum angle for the emitter spread pattern.

	Depth

	The depth of the released pattern. A setting of 360 will create a spherical spread pattern when Angle Max is set to 360.

	Offset

	The distance from the emitter that particles will be released. Effectively the distance that the particle will be visible to the viewer.

[image: ../_images/Particle_peAngle.jpg]
[image: ../_images/Particle_peAngle2.jpg]
[image: ../_images/Particle_peOffset.jpg]

Particles

This affect assigns which particle(s) will be emitted from this emitter:

	Particle 1 - 4

	Select the particle from the drop down list to be used with this emitter. If at any time you need to remove a particle press the clear icon. Particle 1 can not be removed.

Blending

These setting affect how the particle(s) are rendered.

	Blend Type

	The types of blending available to be applied to the particles.

	Softness Distance

	The particle edge blending distance. Removes the hard edges where the particle meets an object.

	Ambient Factor

	Adjusts the alpha blend (level of the particles which affects how transparent they are).

	Sort Particles

	The order in which particles are rendered.

	Reverse Order

	When enabled, reverses the render order set in the Sort Particles setting

[image: ../_images/Particle_peSoft.jpg]

Particle Properties

The Particle tab contains the properties that define a Particle. Properties are grouped into sections:

[image: ../_images/Particle_p_prop.jpg]

Basic

Particle basic settings.

	Texture Map

	The image that will be used on the emitted particle. The Edit button will open a file browser to locate and select a particle image.

	Inverse Alpha

	Invert the alpha channel on the partice image (if one exists).

	Life

	The time in ms (milliseconds) after its creation that the particle will exist for.

	Life Random

	Random variation to the particle life span.

Motion

These settings affect the velocity of the particle.

	Initial Speed

	The initial velocity, that the particle will travel at after being emitted. (Not to be confused with emitter spread speed.)

	Acceleration

	The rate at which the particle’s velocity with increase or decrease. Positive values cause a particle to speed up over time after being emitted. Negative values cause a particle to slow down over time after being emitted.

	Gravity

	The gravitational force to be applied to particle. Positive values cause the particle to fall to the ground. Negative values cause the particle to rise from the ground.

	Drag

	The amount of force working against the particle velocity. Drag will slow a particle’s movement.

Spin

These settings affect if, and how, a particle rotates in degrees.

	Spin Min

	The minimum rotation to be applied to the particle.

	Spin Max

	The maximum rotation to be applied to the particle.

	Spin Speed

	The speed of particle’s rotation.

Overtime

These settings affect the particle based upon how long it has been in existence for. Each particle can have up to four color and size settings, which can be set to change over time.

	Colors

	Four color swatches indicate the color phases which a particle can pass through. To set any color click that swatch. To set a color value you may: enter R (red), G (green), and B (blue) color values; click anywhere within the gradient on the left or; click anywhere in the vertical “rainbow” strip. Red, green and blue color values range from 0 to 255 and indicate the amount of that color present in the overall particle color. The alpha value which represents the transparency of the particle color can be set by entering a decimal number between 0.0 and 1.0 in the Alpha field or by moving the slider with the mouse. The higher the number the less transparent the color will be.

	Size 1-4

	Each slider sets the size for the particle during each time stage.

	Time 1-4

	Each slider sets the time for that stage.

River Editor

[image: ../_images/RiverHeader.jpg]
The Torque 3D World Editor has a complete system for creating rivers and other small bodies of water. The River Editor is built-in WYSIWYG (What-You-See-Is-What-You-Get) editor with real-time feedback, giving you full control over how you would like to your river to appear.

Interface

To access the River Editor you can either activate it from the main menu by selecting Editors > River Editor. Alternatively you can click the River icon from the World Editor Tools Selector Bar.

[image: ../_images/RiverIntro.jpg]
The editor has two main parts, one where you can add and manipulate the river nodes (control points) for creation, the other for adjusting the river properties to create the river style (depth, width, flow, ripples etc). Whenever the River Editor is active three sections of the screen are updated to contain the editors tool. On the right side of the screen are three panes. At the top is the Rivers pane which contains a list of all the rivers currently in the level, if any are present. In the middle is the River Nodes pane which displays the properties of the currently selected river control point. At the bottom is the Properties Pane which displays the properties of the currently selected river. At the left of the screen the River placement tools will appear and are used to create and modify rivers and their control points. At the top of the screen in the World Editor Tool Settings Bar, a new set of icons will appear when the River Editor is active. These icons and their associated values will enable you to quickly set up the width and depth of the river and modify the editor to show and hide some visual aids which can be used to guide your river placement.

Adding a River

The river is created by placing a series of control points across the terrain which defines the path you would like your river to follow. Each control point, also called a “node”, will give you control of how the river will look at any given point. By adjusting each of these points we can have full control of where our river will go, its size, and its orientation.

The default width and depth of control points can be set using the Default Width and Default Height properties on the Tool Settings Bar at the top of the editor window. Any new rivers will be created using these settings until you change their values again.

To create a new river select the Create River icon from the tool bar then click on the terrain with the left mouse button where you would like to start your river. Move the mouse away from the clicked location to see the results. Each time you click the terrain you will see three things:

	a green square which represents the river location that you just placed

	a blue square which represents the next location that will be placed the river if you press mouse button again

	the surface of the river that will be placed the next time you click the button

Move the mouse to the next point on the terrain that you wish your river to travel to and then click again. Continue moving and clicking until you are finished with the initial placement of your river.

To complete the river placement process press the Esc key. This action will exit the Create River tool leaving your new river selected and ready for adjustments.

To abort a river creation operation without placing a river at all press the Esc key before selecting a second river point. Once a second river point has been placed the only way to remove the river completely is to delete it, as explained later.

[image: ../_images/Riverpath.jpg]
The new River will also show up in the Rivers list at the right top of the screen. You will notice that the river itself is color-coded. These visual aids will be of help in adjusting your river.

	RED

	The red lines at the edges of the river represent the river bounds. These lines need to be moved so that they are hidden by the terrain river bank to avoid gaps between the edge of the water and the surrounding terrain.

	GREEN

	The green surface represents the depth of the river. This surface needs to be adjusted to be just below the terrain at every point in order for underwater views to be correct. Whenever this surface is above the terrain it will cause an “air bubble” between the bottom of the water and the terrain.

[image: ../_images/Riverred.jpg]
The new River may not look correct but with the following set of tools you will be able to adjust the width, depth and path.

Editing a River

The River Editor provides several tools for modifying rivers after they have been created. If at any time you make a mistake with any tool, you can press CTRL+Z to undo it.

Selection Tool

Once you have created your initial river you may need to edit some or all of the control points. This tool will allow you to directly select any created point for further editing. To activate the Selection Tool click its icon on the Tool Selector bar. Note that the River Editor will automatically select this tool when you have finished creating a new river.

An entire river can be selected by clicking anywhere on a river other than one of its control points. This type of selection will result in the river being highlighted with a “spline”, which is a curved line that runs along the center line of the river, and a series of green squares which represent the rivers control points. There are no operations that can be performed on a river as a whole within the River Editor. Selecting a river allows you to see its centerline and it control points for individual selection and manipulation. To perform operations on the entire river such as moving it to a new location use the Object Editors tools as with any other shape in your level.

Control points can be selected individually to adjust each point as necessary. To select a control point left click on one of the colored squares that represent a rivers control points. A selected control point will turn blue.

Selecting a control point also causes the Properties pane on the right of the screen to be updated to display the current property values of the control point. The Node Properties section will display the position, rotation, width and depth of the selected control point. Values can be directly entered into these fields to modify the point or the Move Tool can be used to manipulate the point using the mouse. A selected control point will turn blue.

Moving a River

If at any time you are unhappy with the placement of a selected River control point you can use the Move Point tool to adjust its position. To activate the Move Point tool click its icon in the Tool Selector bar. The move gizmo will appear. The move gizmo is used to move the river point to a new location. Left mouse click on any arrowhead then drag the mouse to move the point along that arrows axis. Release the mouse button to relocate the control point to that new location. Left mouse click on the colored square at the origin of the axes then drag the mouse to freely move the point to without regard to any axis.

Scaling a River

The width and depth of a river can be directly adjusted at a selected control point by using the Scale Point tool. To activate the Scale Point tool click on its icon on the Tool Selector. The scaling gizmo will appear.

Left mouse click on the colored cube at the end of any axis then drag the mouse while holding the button down to increase or decrease the size of the road along that axis. To adjust the width and depth at the same time left mouse click on the colored cube at the origin of the axes then drag the mouse while holding down the button. Release the mouse button to change the river to that new width and depth. Changing the width and depth of the river in this manner is the main method to make sure that the red edges and the green surface, mentioned above, are concealed by the terrain.

The Scale point tool will allow you to quickly create very wide river sections, even as wide as a small lake, without having to use a WaterBlock.

[image: ../_images/Riverlake.jpg]

Rotating a river

The Rotate Tool can be used to rotate a river at any selected control point. To activate the Rotate Tool click its icon on the Tool Selector. The rotate gizmo will appear. Rotating a river at each control in along the path of a river can make a river appear to be flowing downhill as opposed to a flat surface as is created by default.

Adding extra Points

The Insert Point tool can be used to add extra points in a river to create a smoother curve. In order to insert a new point into a river the river must first be selected. See the Selection Tool above for details on how to select a river. To activate the Insert Point tool once a river has been selected click its icon on the Tool Selector bar. To place a new point on the selected river click on the river where you would like the new point to be placed. A new point will be added to the river and will immediately the currently selected point as indicated by the blue square.

Removing Points

The Remove Point tool can be used to delete a control from a river. In order to remove a new point from a river the river must first be selected. See the Selection Tool above for details on how to select a river. To activate the Remove Point tool click its icon on the Tool Selector bar. To remove a control from the selected road point click on the control point. This will remove only the selected point leaving all the others in place. No adjustments will be performed on the other existing control points.

Properties

The Properties pane on the right side of the screen can be used to configure or modify various facets of the river object, such as its flow, colors, underwater effects, etc.

Transform

This section contains properties which control the placement, rotation and scale of the River as a whole.

	Position

	Indicates the position of entire River in the level.

	Rotation

	Indicates the rotation of the entire River in the level.

	Scale

	Indicates the scale of the entire River in the level.

River

This section contains properties which control how the River is rendered which in turn will have an effect on the wave settings.

	Segment Length

	The river will be divided into segments of this length, in meters.

	Subdivide Length

	River segments will be subdivided in a way that each quad (four-sided polygon) is not any wider or longer than this distance in meters.

	Flow Magnitude

	The magnitude of the force vector applied to dynamic objects that are within the River. This will affect how thing floating or suspended in the water are driven by the flow of the river.

	Low LOD Distance

	Segments of the river at this distance in meters or more will be rendered as a single un-subdivided area without any undulation wave effects.

Water Object

This section contains properties that control the look and action of the water and contains several sub-sections.

	Density

	Affects the buoyancy of an object entering the water.

	Viscosity

	Affects a submerged object’s drag force.

	Liquid Type

	Type of datablock used to represent the type of liquid contained in the river (i.e. water, lava, etc.)

	Base Color

	Changes the color of the underwater fog which has the effect of coloring the water surface.

	Fresnel Bias

	Extent of Fresnel (reflection level based on viewing angle) affecting reflection fogging

	Fresnel Power

	Measures the intensity of the effect on the reflection, based on fogging.

	Specular Power

	Power used for secularity (lighting reflection) on the water surface (sun only)

	Specular Color

	Specular color used for the water surface (sun only)

[image: ../_images/RiverfresP2.jpg]

Waves

This sub-section contains properties that control the undulations on the water. Note: This effect actually moves the vertices of the mesh. This section has further sub-sections for controlling three wave sets, each sub-section is composed of the following properties that define the wave set.

	Wave Dir

	A vector describing the direction the waves flow towards the river banks.

	Wave Speed

	Speed of the wave undulation.

	Wave Magnitude

	Height of the wave.

	Overall Wave Magnitude

	This master parameter affects the depth of all the wave subsets, like a global wave height parameter.

	Ripple Texture

	The Normal map used for simulating the surface ripples.

Ripples

This sub-section contains properties that control the animation that simulates the effect of ripples bouncing off the river bank. This animation is performed using normal map to represent the ripples. This section has further sub-sections for controlling three ripple sets, each sub-section is composed of the following properties that define the ripple set.

	Ripple Dir

	A vector that modifies the surface ripple direction.

	Ripple Speed

	Controls the ripple speed.

	Ripple Tex Scale

	Intensifies the affect of the surface ripples by scaling the texture.

	Ripple Magnitude

	Intensifies the ripple effect.

	Overall Ripple Magnitude

	This parameter affects the depth of all the ripple subsets, like a global ripple intensity variable.

	Foam Tex

	The texture used to render the ripple effect.

Reflect

This section contains properties that control the rendering of surface reflections:

	CubeMap

	Cubemap to use instead of the default reflection texture, which is the current sky, if Full Reflect is turned off. Handy if you have not yet set up a sky for your project.

	FullReflect

	Enables dynamic reflection rendering, which causes the water surface to reflect the current sky, if available.

	Reflect Priority

	Affects the sort order of reflected objects.

	Reflect Max Rate Ms

	Affects the sort time of reflected objects.

	Reflect Detail Adjust

	Scale up or down the detail level for objects rendered in a reflection.

	Reflect Normal Up

	The reflection normal.

	Use Occlusion Query

	Turn off reflection rendering when occluded.

	Reflect Text Size

	Texture size used for the reflections.

Underwater Fogging

This section contains properties that control how the underwater view appears.

	Water Fog Density

	The intensity of the underwater fogging.

	Water Fog Density Offset

	The offset distance before the fogging occurs.

	Wet Depth

	The depth in world units at which full darkening will occur, giving a wet look to objects underwater.

	Wet Darkening

	The refract color intensity scaled to the depth of the player (wetDepth). The deeper under the water you go, the darker it will get.

[image: ../_images/Riverfog1.jpg]
[image: ../_images/Riverfog2.jpg]
[image: ../_images/Riverwet.jpg]

Misc

Other uncategorized properties.

	Depth Gradient Tex

	Texture for the gradient as the players moves deeper.

	Depth Gradient Max

	Maximum depth for the gradient texture.

Foam

	Foam Opacity

	Overall foam opacity.

	Foam Max Depth

	The depth that the foam will be visible from underwater.

	Foam Ambient Lerp

	An RGB color value that interpolates linearly between the base foam color and ambient color. This prevents bright white colors be viewable during situations such as Night.

	Foam Ripple Influence

	Intensity of the foam effect on ripples.

Distortion

This section contains properties that control how the water distorts the under water terrain when viewed from above.

	Distort Start Dist

	Determines the start of the distortion effect from the camera.

	Distort End Dist

	Max Distance that the distortion algorithm is performed. Lower values will show more of the distortion effect.

	Distort Full Depth

	Sets the scaling down value for the distortion in shallow water. The lower the value the more the distortion will be applied to the shallow area.

[image: ../_images/Riverdist.jpg]

Basic Lighting

This section contains properties that control the basic lighting effects on and in the water:

	Clarity

	Opacity or transparency of the water surface.

	Underwater Color

	Changes the color shading of objects beneath the water surface

Sound

This section contains properties that control sound under the water.

	Sound Ambience

	Ambient sound environment for when the listener is submerged.

Editing

This section contains properties that control whether the river can be edited.

	isRenderEnabled

	Toggles whether the object is rendered on the client.

	isSelectionEnabled

	Toggles whether the object can be selected in the tools.

	hidden

	Toggles whether the object is visible.

	locked

	Toggles whether the object can be edited.

Mounting

This section contains properties that control whether the river can be mounted to another world object, for example a sewer pipe or a cave.

	mountPID

	PersistentID of object we are mounted to.

	mountNode

	Node we are mounted to.

	mountPos

	Position where object is mounted.

	mountRot

	Rotation where object is mounted.

Object

This section contains properties that control whether the river object is persistent in the world.

	internalName

	Internal name of this object.

	parentGroup

	Group to which this object belongs.

	class

	Class to which this object belongs.

	superClass

	SuperClass to which this object belongs.

Persistence

This section contains properties that control whether the river object is persistent in the world.

	canSave

	Whether the object can be saved to the mission file.

	canSaveDynamicField

	Whether dynamic properties are saved at runtime.

	persistentID

	Unique ID of this object.

Decal Road Editor

[image: ../_images/RoadDecal_header.jpg]
The Road and Path Editor is used to create decal-based roads on your terrain. A decal-based road follows every contour of the terrain, unlike a Mesh Road which is a solid 3D object. By using the Road and Path Editor and a few choice materials, you can easily create dirt tracks, trails, paths, and simple roads. To create more complicate roads that rise above the terrain, span hills, or contain bridges use the Mesh Road Editor. The Road and Path Editor is a built-in WYSIWYG (What-You-See-Is-What-You-Get) editing tool which provides near real-time feedback so that you can see the changes and additions as you make them.

Interface

To access the Road and Path Editor activate it from the main menu of the World Editor by selecting Editors > Road and Path Editor. Alternatively, you can click the Road and Path icon from the World Editor Tool Selector Bar.

[image: ../_images/RoadDecal_intro.jpg]
Whenever the Road and Path Editor is active three sections of the screen are updated to contain the editors tools. On the right side of the screen are the Roads and Paths pane and the Properties pane. At the top is the Roads and Paths pane which contains a list of all the decal-based roads currently in the level, if any are present. At the bottom is the Properties Pane which displays the properties of the currently selected road. At the left of the screen the Road and Path placement tools will appear which are used to create and modify your roads. At the top of the screen in the world editor tool bar, a new set of icons will appear after selecting the Road Editor. These icons and their associated values will enable you to quickly set up the width of the control points and modify the editor to show and hide some visual aids which can be used to guide your road placement.

There is no depth parameter for decal-roads as there is for Mesh based Roads. As mentioned earlier decal-based roads sit right on the terrain surface and follow the terrain exactly. They do not have their own geometry.

Adding a Decal Road

A decal-based road is created by placing a number of control points across the terrain. Each point can be edited for width at any time. By adjusting these points we have full control over how our road will look. The default width of control points can be set using the Default Width property on the Tool Settings Bar at the top of the editor window. Any new roads will be created using these settings until you change their values again.

To create a new road select the Create Road icon from the tool bar then click on the terrain with the left mouse button where you would like to start your road. Move the mouse away from the clicked location to see the results. Each time you click the terrain you will see three things:

	a green square which represents the road location that you just placed

	a blue square which represents the next location that the road will be if you press mouse button again

	the road decals that were just placed

Depending upon the power of your computer there may be a delay between when you click the terrain and when the decals appear. Move the mouse to the next point on the terrain that you wish your road to travel to and then click again. Continue moving and clicking until you are finished with the initial placement of your road.

To complete the road placement process press the Esc key. This action will exit the Create Road tool leaving your new road selected and ready for adjustments.

To abort a road creation operation without placing a road at all press the Esc key before selecting a second road point. Once a second road point has been placed the only way to remove the road completely is to delete it, as explained later.

Editing a Decal Road

The Road and Path Editor provides several tools for modifying roads after they have been created. If at any time you make a mistake with any tool, you can press CTRL+Z to undo it. As with road placement, depending upon the power of your computer there may be a delay between when you perform and editing action and when the change appears in the scene.

Selection Tool

Once you have created your initial road you may need to edit some or all of the control points. This tool will allow you to directly select any created point for further editing. To activate the Selection Tool click its icon on the Tool Selector bar. Note that the Road and Path Editor will automatically select this tool when you have finished creating a new road.

The selection tool allows two types of selection relating to roads:

	An entire road can be selected by clicking anywhere on a road other than one of its control points. This type of selection will result in the road being highlighted with a “spline”, which is a curved line that runs along the center line of the road, and a series of green squares which represent the roads control points. The only operations that can be performed on a road as a whole is deleting it. To delete an entire road press the Del key and confirm the operation using the dialog box that will pop up. Unlike a Mesh Road you can not move a decal road as a whole using either the Road and Path Editor or the Object Editor. Selecting a road allows you to see its centerline and it control points for individual selection and manipulation.

	Selecting a control point also causes the Properties pane on the right of the screen to be updated to display the current property values of the control point. The Node Properties section will display the position and width of the selected control point. Values can be directly entered into these fields to modify the point or the Move Point Tool and Scale Point Tool can be used to manipulate the point using the mouse.

Moving a Road

If at any time you are unhappy with the placement of a selected Road Mesh control point you can use the Move Tool to adjust its position. To activate the Move Tool click its icon in the Tool Selector bar.

This editor’s move mode works a little bit different than the other editors as there is no gizmo over the selected control point when tool is active. To move the selected control point: click the left mouse button on the control point; hold down the button; and drag it to a new position. The road decal will always follow the contour of the terrain. There may be a small delay as the editor updates the decal road.

Scaling a Road

If you feel that the road is not the correct width, or you just want to make some variations in a dirt track, you can use the Scale Point tool to change the width. This tool works in a similar fashion to the Move Point tool as there is no gizmo over the selected control point when the tool is active. To activate the Scale Point tool click its icon on the Tool Selector.

To change the width of the road select the control point you would like to scale; click the control point using the left mouse button; hold the button down; and drag the point to the left to reduce the width, or drag it to the right to increase the width. As with the Move tool there may be a small delay as the editor updates the decal road. Release the button to leave the road at that width at any time.

Adding Extra Points

The Insert Point tool can be used to add extra points in a road to create a smoother curve. In order to insert a new point into a road the road must first be selected. See the Selection Tool above for details on how to select a road. To activate the Insert Point tool once a road has been selected click its icon on the Tool Selector bar. To place a new point on the selected road click on the road where you would like the new point to be placed. A new point will be added to the road and will immediately be the currently selected point as indicated by the blue square.

Removing Points

The Remove Point tool can be used to delete a control from a road. In order to remove a new point from a road the road must first be selected. See the Selection Tool above for details on how to select a road. To activate the Remove Point tool click its icon on the Tool Selector bar. To remove a control from the selected road point click on the control point. This will remove only the selected point leaving all the others in place. No adjustments will be performed on the other existing control points.

Properties

The Properties pane on the right side of the screen can be used to configure a decal-based Road.

Decal Road

This section contains properties that control the roads appearance.

	Material

	The texture assigned to this property will be used as the decal that displays on the terrain to represent the roads surface. Clicking the small round icon to it right will open the Torque 3D Material Selector window. From this window you can select a new material to assign to the Material property. For full details on how to use the Material Selector and how to create new materials see the Material Editor article.

	Texture Length

	The length the texture will be rendered at in meters, measured along the centerline of the road.

	Break Angle

	Indicates the angle in degrees that the mesh roads spline will be subdivided into if its curve becomes greater than this threshold.

	Render Priority

	Decal roads are rendered in descending order.

[image: ../_images/RoadDecal_TL.jpg]
[image: ../_images/RoadDecal_BA.jpg]

Shape Editor

The Shape Editor is used to view and edit the shapes that can be placed into your levels using the Object Editor. The Shape Editor can view and manipulate files in both the DTS (.dts) and COLLADA (.dae) formats. It can be used to quickly preview shapes before they are added to a level, and provides an easy way to add, edit and delete animation sequences, skeleton nodes, and rendering detail levels.

Interface

The Shape Editor can be activated from the main menu by selecting Editors > Shape Editor.

[image: ../_images/shape_editor.png]
The Shape Editor interface consists of five primary sections whenever it is active.

	Shape Selector

	The Shape Selector panel is used to choose a shape file for viewing and editing. It is composed of 3 tabs: Scene, Library and Hints. The Scene tab allows you to select a shape that has been placed in the current level. The Library tab allows you to browse and select any DTS or COLLADA shape from your project’s art folder. Finally, the Hints tab displays information about which nodes and sequences are expected by Torque for a given type of shape object.

	Shape View Window

	The main window shows a 3D view of the selected shape, and includes animation playback controls to play and single-step the selected sequence.

	Properties Window

	The Properties panel is used to view and edit the sequences, nodes, details and materials in the shape.

	Advanced Properties Window

	The Advanced Properties window displays Level-of-Detail information, and provides the ability to mount objects to other objects and animation thread control.

	Toolbar and Palette

	The Shape Editor adds several buttons to the standard World Editor toolbar to control the 3D shape view, and uses the familiar select/move/rotate palette for node transform manipulation.

Shape Selection

To start using the Shape Editor, first you need to select a shape. There are three ways to do this:

	Select an object in the World Editor, then activate the Shape Editor from the menu bar or the toolbar. If the object uses a DTS or COLLADA file, it will automatically be selected in the Shape Editor.

	Select an object using the Scene tree in the Shape Editor. This view is the same as that used in the World Editor, and provides a convenient way to select objects that have already been placed in the level. Note that the Shape Editor only allows selection of objects that use DTS or COLLADA files; selection of Interior or ConvexShape objects will be ignored.

	Select a shape file using the Library tab. This view is the same as that used in the World Editor Meshes tab, and allows you to browse the DTS and COLLADA assets in your project’s art folder. This method allows you to view and edit shape files that have not yet been placed in the level.

The Force DAE option checkbox at the top of the Shapes panel forces Torque to load the COLLADA file, even if an up-to-date cached.dts file is present. Note that if the model is already present in the scene (and thus already loaded into the Torque Resource Manager), the Force DAE option will have no effect, as the shape will be opened from memory instead of from disk. This option is also available in the Editor Settings panel when working in the World Editor.

You will be prompted to save if there are unsaved changes in the current shape when a new shape is selected. The selected shape will appear in the View window, and listings of its sequences, nodes and materials will be displayed in the Properties window.

Shape Hints

The Hints tab in the Shape Selection window shows you which nodes and sequences are required for a particular type of shape to work with Torque.

Simply select the desired object type from the dropdown menu and the list of required nodes and sequences will be displayed underneath. Items that are present in the selected shape will be marked with a tick mark. Hovering the mouse cursor over an item will display a short description of the item. Double-click the item to add it to the current shape.

Most items are optional - the shape will still load and run without a particular node or sequence, but the object may not perform correctly in-game. A Player object for example uses a node called cam as the 3rd person camera position. If this node does not exist, the shape origin is used instead, which will probably not be correct for most character shapes.

It is easy to extend the Shape Editor hints for custom object types by adding to the list in: tools/shapeEditor/scripts/shapeEditorHints.ed.cs.

Shape View

The Shape View window displays the shape as it would be seen in-game, and also provides helpful rendering modes such as transparent, wireframe and visible nodes.

[image: ../_images/shape_view.png]
The camera can be rotated by dragging the right mouse button, translated by dragging the middle mouse button (drag left+right buttons if your mouse does not have a middle button), and zoomed using the mouse wheel. Use the Camera->View menu (or the dropdown list in the bottom right corner) to switch between the Standard/Perspective view and the orthographic views (Top, Bottom, Left, Right, Front, Back).

Hovering the mouse over a shape node will display the node name, and left clicking a node in the view will select it in the Node Properties panel (and vice versa). Once a node is selected, its transform can be modified by dragging the 3D gizmo similar to how objects are positioned in the World Editor.

Animation Controls

At the bottom of the Shape View window are the animation playback controls:

[image: ../_images/animation_controls.png]
As well as allowing the selected sequence to be scrubbed with the slider, stepped one frame at a time, or played normally, the start and end frames of the sequence can be easily modified to facilitate sequence splitting or to correct off-by-one-frame looping errors. Sequence triggers appear as thin, vertical bars at the appropriate frame (as shown in the image above).

Pressing the in or out button, or modifying the text box directly (remember to hit Return to apply the change), will set the start or end frame of the sequence to the current slider position.

Properties Window

The Properties window is where you can view and edit the sequences, nodes, detail levels and materials in the shape. The top right corner has three buttons, which do the following:

	Save the shape

	Add a new sequence, node or detail; and

	Delete the selected sequence, node or detail

Sequences Tab

The Sequences tab (displayed as “Seq” onscreen) lists the sequences available in the shape, as well as a number of different properties about the selected sequence. In addition, the ‘root’ (non-animated) pose can be selected for display in the Shape View window. The sequence properties available to view and edit are:

	Name

	The name of the sequence. To rename a sequence, simply edit the value and press Enter.

	Source

	The source animation data for the sequence, for example, the path to an external DSQ file, or the name of another sequence in the shape.

	Priority

	The priority of the sequence. This determines which sequence will take precedence when more than one sequence is attempting to control the same node.

	in

	The first frame in the source sequence used for this sequence. Change this value to clip the start of the source sequence. This sequence will then start on the specified frame of the source regardless of what other frames may be before it in the source sequence.

	out

	The last frame in the source sequence used for this sequence. Change this value to clip the end of the source sequence. This sequence will then end on the specified frame of the source regardless of what other frames may be after it in the source sequence.

	Loop

	Flag indicating whether this sequence loops around when it reaches the last frame.

	Blend sequence

	Name of the sequence to use as a reference for generating blend transforms.

	Blend flag

	Flag indicating whether this sequence is a blend, that is, whether it can be played over top of another sequence.

	Blend frame

	Frame in the Blend sequence to use as a reference.

	Triggers

	The list of triggers in the sequence. Select a trigger and edit the values to modify the trigger.

Adding a sequence

An important feature of the Shape Editor is the ability to add new sequences to a shape from external animation files (DSQ or DAE). This allows animations to be shared by shapes that have a common skeleton (such as character models).

To add a new sequence click the New Sequence button. If a sequence is currently selected when the button is clicked, the new sequence will use that selected sequence as its initial source for animation keyframes. You can change the Source using the dropdown menu to select a different sequence, or to Browse for an external DSQ or DAE file. If the <rootpose is selected, pressing the New Sequence button will open the Browse window automatically.

Once the sequence has been created, you can edit its properties - including the start and end frames - using the Sequence Properties panel.

COLLADA <animation_clips

Currently, very few 3D modeling packages support the COLLADA <animation_clip element, which means a model with several animations will appear to have only a single sequence (or ‘clip’) when loaded into Torque. The Shape Editor allows you to split this single animation into multiple sequences by specifying different start and end frames for each sequence. The procedure for splitting animations is as follows:

	Select the combined animation sequence (usually called ambient).

	Press the New Sequence button to make a copy of this sequence, then rename the new sequence as desired.

	Use the animation slider in the 3D view to find the desired keyframe that you want the new split sequence to start at. Press the In button to set the start frame.

	Use the animation slider in the 3D view to find the desired keyframe that you want the new split sequence to stop at. Press the Out button to set the start frame.

Blend Animations

A blend animation is special in that it stores node transforms relative to a reference keyframe, instead of absolute transforms like other animations. This allows the sequence to be played on top of another sequence without forcing the animated nodes to a particular position.

The Shape Editor allows you to set and clear the blend flag for a sequence, as well as change the reference keyframe if desired. Each of these operations requires that a valid reference sequence and reference frame number is specified.

For example, most Player characters will have a blended look animation. The animation is a blend so that the character’s head can be made to look around while also doing something else (like running or swimming). To make the look animation a blend, first we set the reference sequence (e.g. root) and frame (e.g. 0), then we can set the blend flag.

Nodes Tab

The nodes tab shows the node hierarchy and various properties of the selected node. The node properties available to view and edit are:

	Name

	The name of the node. To rename, simply edit the value and press Enter.

	Parent

	The parent of the node in the hierarchy. A new parent can be selected from the dropdown menu if desired.

	Transform

	The position and orientation of the node. Node transforms can be edited in either World mode (where the transform is relative to the shape origin), or Object mode (where the transform is relative to the node’s parent). Node transforms can also be edited visually in the Shape View window by selecting the node and dragging the axis gizmo, similar to how object transforms are edited in the World Editor. In World mode, the gizmo uses the global X,Y,Z axes, while in Object mode, the gizmo uses the node relative X,Y,Z axes (useful for seeing which way the node points for eye or cam nodes)

Editing Nodes

The Shape Editor allows shape nodes to be added, moved, renamed and deleted.

To add a node, simply press the New Node button in the top right corner of the Properties panel. If a node is currently selected, it will automatically be used as the initial parent for the new node. A new parent node can be selected using the dropdown menu. Renaming the node is as simple as typing a new name in the edit box and pressing Enter to apply the change.

There are two ways to edit node transforms: The first way is to manually edit the position and rotation values in the Node Property panel. This method is most useful when trying to set an explicit value. For example, you may require that a node be offset by exactly 2 units in the X direction from its parent node. Node transforms can be specified as either relative-to-parent (Object mode) or relative-to-origin (World mode).

The second way to edit node transforms is in the 3D Shape View. Simply select the desired node in the 3D view or in the node tree then drag the axis gizmo to the correct position and orientation.

[image: ../_images/edit_node_transforms.png]
It should be noted that the Shape Editor tool is not intended as a replacement for a fully-functional 3D modeling application, and as such, it only allows the non-animated transforms of the shape nodes to be edited. That is, the node transforms when the shape is in the root pose. You cannot use the Shape Editor tool to define new animation keyframes. For this reason, it is recommended to edit node transforms only when the <rootpose is selected in the Sequence Properties list. Node transforms can be edited when any sequence is selected, but the results may not be as expected, since animated parent nodes will affect the node transform as seen in the Shape View.

To delete a node, simply select it in the 3D Shape View or the node tree and press the Delete button in the top right corner of the Properties panel. Note that deleting a node will also delete all of its children.

Detail Tab

The Detail tab of the Properties pane lists the detail levels and associated geometry (meshes) in the shape, as well as allowing certain properties to be edited.

If the Levels checkbox is checked on the Details tab in the Advanced Properties window, then selecting a mesh or detail level in the tree will switch to that detail level in the 3D view. The bounding box for the selected object can be displayed using the Toggle Bounding Box button on the toolbar. To view all collision geometry (as wireframe) no matter which detail level is selected, use the Toggle Collision Mesh button on the toolbar.

	Name (top-left field in Detail/Object Properties section)

	The name of the mesh or detail level. Note that an object may contain multiple level-of-detail meshes. Changing the object name will change the name of all meshes for that object.

	Size (top-right field in Detail/Object Properties section)

	The pixel size of the mesh or detail level. Changing the size for a mesh will move it from one detail level to another (creating a new detail level if required). Changing the size of a detail level will change the size for all meshes in that detail.

	Billboarding

	Allows a mesh to be set as a billboard.

	Object Node

	The name of the node this object is attached to. Changing this value will change the node for all level-of-detail meshes of the object.

	Import Shape into…

	Import geometry from another shape file. See Importing Geometry for more details.

	Re-compute bounds

	Recalculate the shape bounding box using the current pose and detail level.

The Shape Editor also allows meshes to be hidden inside the 3D view (equivalent to the ShapeBase::setMeshHidden script method). Simply right-click a mesh in the detail tree to toggle the hidden state. Note that all detail-level meshes for that object share the same hidden state, so hiding the Head 2 mesh will also hide any other meshes for the Head object.

Importing Geometry

The Shape Editor allows you to import geometry from another DAE or DTS file into the current shape via the “Import Shape into…” button. Geometry in the external file may be added to the currently selected detail level or to a new, automatically created detail level. The size of the new detail level can be edited after the geometry has been added.

The dropdown to the right of the “Import Shape into…” button has two options:

	The current detail option is useful when combining separate files that you want to be rendered at the same detail level. For example, if a player character was split into body part models as follows:

player_torso.dts
player_head.dts
player_left_arm.dts
player_right_arm.dts
player_left_leg.dts
player_right_leg.dts

To combine the models, open player_torso.dts in the Shape Editor, switch to the Details tab then Import each of the other files into the current detail. When the shape is rendered, all body parts will be rendered together.

+-base01
 +-start01
 +-Torso Object Torso with details: 2
 +-Head Object Head with details: 2
 +-LeftArm Object LeftArm with details: 2
 +-RightArm Object RightArm with details: 2
 +-LeftLeg Object LeftLeg with details: 2
 +-RightLeg Object RightLeg with details: 2

	The new detail option is useful when combining separate files that represent different detail levels of the same shape. For example, a vehicle model may have the following detail level files:

truck_lod400.dts
truck_lod200.dts
truck_lod60.dts
truck_col_lod-1.dts

To combine the models, open truck_lod400.dts in the Shape Editor, switch to the Details tab then Import each of the other files into new detail levels. The single truck object now has 3 visible detail levels (at pixel sizes 400, 200 and 60), and a single, invisible collision detail level (size -1).

+-base01
 +-start01
 +-Truck Object Truck with details: 400 200 60
 +-Collision Object Collision with details: -1

Note that when the new detail option is selected, the Shape Editor examines the filename of the imported model to determine the detail size. If the filename ends in “_LODX” (where X is a number), the new detail level will be created with size X. The detail level size can be changed after import if needed.

Materials Tab

The Materials tab (labelled as “Mat” in the window) shows the materials specified in the shape, as well as the Material each one is mapped to.

Selecting a material while the Highlight selected Material option is set will highlight all of the primitives that use the material in the shape view. Pressing Edit the selected Material will open the Material Editor dialog, allowing you to modify the Material properties and view the results in real-time in the Shape Editor view window. Hit the Back to Previous Editor button in the upper-left corner of the Material Properties pane to return to the Shape Editor. Do not forget to save any changes you make before returning to the Shape Editor.

Advanced Properties Window

The Advanced Properties Window allows you to further change the settings of the model loaded in the shape editor.

Details Tab

The detail size and mesh characteristics for each LOD need to be carefully determined in order to reduce the visual artifacts associated with switching and rendering detail levels. The Details Tab of the Advanced Properties window provides a convenient way to view and edit detail levels without having to re-export the model. It also allows non-rendered collision and LOS-collision detail levels to be visualised. The detail level properties available to view and edit are:

	Levels

	When set, the current detail level is selected by moving the slider. When unset, the current detail level is selected based on the camera distance, in the same way as LOD is handled in-game.

	Current DL

	The index of the currently selected detail level is shown to the right of the slider track.

	Polys

	The number of polygons (triangles) in the current detail level.

	Size

	The size (in pixels) above which the current detail level will be selected. This value can be edited to change the size of the current detail level (remember to press Return after editing the value to apply the change).

	Pixels

	The current size (in pixels) of the shape. This value is an approximation based on the shape bounding box, viewport height, and camera distance.

	Distance

	The distance from the shape origin to the camera.

	Materials

	The number of different materials used by all meshes at the current detail level.

	Bones

	The number of bones used by all skinned meshes at the current detail level. Non-skinned meshes will display 0 for this value.

	Primitives

	The total number of primitives (triangle lists, strips or fans) in all meshes at the current detail level. This is the minimum number of draw calls that will be executed for this detail level.

	Weights

	The number of vertex weights used by all skinned meshes at the current detail level. Non-skinned meshes will display 0 for this value.

	Col Meshes

	The total number of collision meshes in this shape.

	Col Polys

	The total number of polygons (triangles) in all collision meshes in this shape.

The Details Tab of the Advanced Properties window allows imposter detail levels to be added and edited. Imposters are a series of snapshots of the object from various camera angles which are rendered instead of the object when this detail level is selected. An imposter detail level is usually the last visible detail level (smallest positive size value).

Mounting Tab

The Mounting Tab of the Advanced Properties window allows you to attach other models to the main shape to visualise how they would look in-game, or to fine tune the position and rotation of mount nodes. When a model is mounted, it inherits the position and rotation of the node it is mounted to and will animate along with it. Press the Mount New Shape or Delete Mounted Shape buttons to add or remove mounted models respectively. The following properties of the selected mount can be modified:

	Shape

	DTS or DAE model file to mount.

	Node

	Node (on the main shape) to mount to. Only nodes that follow the mountX and hubX naming conventions will appear here.

	Type

	
	Object: Mount the model as a SceneObject. The model’s origin is attached to the selected mount node. This is equivalent to mounting the object using the following script call:

%obj.mountObject(%obj2, 0);

	Image: Mount the model as a ShapeBaseImage. The model’s mountPoint node (or origin if not present) is attached to the selected mount node. This is equivalent to mounting the object using the following script call:>

%obj.mountImage(%image, 0);

	Wheel: Mount the model as a WheeledVehicle tire. The mounted shape’s origin is attached to the selected mount node, and it is rotated to face the right way (whether on the left or right side of the vehicle). This is equivalent to mounting the object using the following script call:

%car.setWheelTire(0, %tire);

	Sequence

	Select a sequence for the mounted shape to play. Playback can be controlled using the slider and play/pause button to the right of the sequence dropdown box.

Threads Tab

The Threads Tab of the Advanced Properties window allows you to set up threads to play multiple sequences simultaneously, and to view transitions between sequences. A set of animation sequence playback controls that mirror the main animation controls are provided as a convenience so you don’t have to mouse too far to test out a new thread. The mini-timeline slider is also used to indicate sequence transition information.

	Thread

	The index of the thread. Press the Add New Thread or Delete Selected Thread buttons to add or remove threads respectively. If the shape contains any sequences, there will always be at least one thread (index 0) defined.

	Sequence

	Select the sequence for this thread to play. Changing the selected sequence while the thread is playing (and transitions are enabled) will cause a transition to the new sequence.

	Transition flag

	If enabled, changing the selected sequence for the thread will cause a transition from the current pose to the target pose. During the transition period, node transforms are smoothly interpolated towards the target pose. If transitions are disabled, changing the selected sequence for the thread will switch node transforms to the new sequence immediately.

	Transition lasts

	Transition duration in seconds. The default for Torque 3D is 0.5.

	Transition to

	Selects the start frame in the target sequence; the target sequence begins playing from this point. When slider position is selected the target sequence will play from wherever the mini-timeline slider has been set. Torque 3D defaults to having the new sequence start at position 0.0 so it is likely that you’ll want to keep the mini-timeline slider all the way to the left when in this mode. When synched position is selected, the new sequence will start playing at the same position along the timeline as the currently playing sequence. While in this mode, the mini-timeline slider will change from yellow to red during the transition period.

	Target anim

	Controls whether the target sequence plays during the transition period. When plays during transition is selected the target sequence will play during the transition; node transforms will be interpolated towards the changing target pose. When pauses during transition is selected the target sequence will not play during the transition, but will start once the transition has ended. Node transforms will be interpolated towards the initial target sequence frame.

Collision Tab

The Shape Editor can auto-fit geometry to a part or the whole of the shape for use in collision checking. Each time the settings are changed, the geometry in detail size -1 is replaced with the new auto-fit geometry. The node Col-1 (and any child nodes) may also be modified.

	Fit Type

	The type of mesh to auto-fit for this collision detail (see table below for details).

	Fit Target

	The geometry used to generate the auto-fit mesh. The target is either ‘Bounds’ (fit to the whole shape) or one of the shape sub-objects.

	Max Depth

	For convex hull auto-fit meshes, this specifies the maximum decomposition recursion depth. Increase this value to increase the number of potential hulls generated.

	Merge %

	For convex hull auto-fit meshes, this specifies the volume percentage used to merge hulls together. Increase this value to make merging less likely, and thus increase the number of final hulls.

	Concavity %

	For convex hull auto-fit meshes, this specifies the volume percentage used to detect concavity. Decrease this value to be more sensitive to concavity (and thus more likely to split a mesh).

	Max Verts

	For convex hull auto-fit meshes, this specifies the maximum number of vertices per hull. Increase this value to produce more complex (and CPU expensive) hulls.

	Box %

	For convex hull auto-fit meshes, this specifies the maximum volume error below which a hull may be converted to a box. Increase this value to allow more hulls to be converted to boxes.

	Sphere %

	For convex hull auto-fit meshes, this specifies the maximum volume error below which a hull may be converted to a sphere. Increase this value to allow more hulls to be converted to spheres.

	Capsule %

	For convex hull auto-fit meshes, this specifies the maximum volume error below which a hull may be converted to a capsule. Increase this value to allow more hulls to be converted to capsules.

	Update Hulls

	Re-compute convex hulls using the current parameters.

	Revert Changes

	Revert convex hull parameters to the values used for the most recent hull update.

The following types of geometry can be generated. The Box, Sphere and Capsule types are generally the most CPU efficient, and are converted to true collision primitives when the shape is loaded. The other types are treated as convex triangular meshes - the more triangles, the more expensive it is to test for collision against the mesh.

	Type

	Desciption

	Box

	Minimum extent object aligned box

	Sphere

	Minimum radius sphere that encloses the target

	Capsule

	Minimum radius/height capsule that encloses the target

	10-DOP

	Axis-aligned box with four edges bevelled; you can choose X, Y or Z aligned edges

	18-DOP

	Axis-aligned box with all edges bevelled

	26-DOP

	Axis-aligned box with all edges and corners bevelled

	Convex Hull

	Set of convex hulls

The k-DOP (K Discrete Oriented Polytope) types push ‘k’ axis-aligned planes as close to the mesh as possible, then form a convex hull from the resulting points as shown below.

[image: ../_images/autofit_meshes.png]
The Convex Hull fit type performs a convex decomposition of the target geometry to generate a set of convex hulls. The basic algorithm is described here. For each hull that is produced, the hull volume is compared to the volume of a box, sphere and capsule that would enclose the hull. The hull is replaced with the primitive type that is closest in volume to the hull with volume % difference less than Box, Sphere or Capsule % respectively. If none of the primitive volumes are less than their respective error setting, the hull will be retained as a triangular mesh.

Shape Editor Settings

The Shape Editor settings dialog can be accessed from the main menu by selecting Edit Editor Settings, and allows the appearance of the editor to be customized. These settings are persistent and will be automatically saved and restored between sessions.

Saving Changes

The Shape Editor does not modify the DTS or COLLADA asset file directly. Instead, changes made in the editor are saved to a TSShapeConstructor object in a separate TorqueScript file. This file is automatically read by Torque before the asset is loaded, meaning you can safely re-export the DTS or COLLADA model without overwriting changes made in the Shape Editor tool. The change set will be re-applied to the shape when it is next loaded by Torque.

If needed, you can also re-edit the generated TSShapeConstructor object, either manually with a text editor, or by using the Shape Editor tool again.

To save changes to the current shape, simply press the save button in the top right corner of the Properties window. The script filename is the same as the DTS or COLLADA asset filename, only with a .cs extension. For example, saving changes to ForgeSoldier.dts would save to the file ForgeSoldier.cs in the same folder.

The Shape Editor TSShapeConstructor object may also be accessed directly from the console. For example:

	Dump the shape hierarchy to the console (handy for debugging shape issues):

ShapeEditor.shape.dumpShape();

	Save the modified shape to DTS (instead of saving the change-set to a TSShapeConstructor script):

ShapeEditor.shape.saveShape("myShape.dts");

	Set ground transform information (not yet available in Shape Editor UI):

ShapeEditor.shape.setSequenceGroundSpeed("run", "0 4 0", "0 0 0");

Tutorials

	Building Terrains
	Introduction

	Setup

	Heightmap, Opacity Layer, Terrain Textures

	Importing A Heightmap
	Painting/Adjusting New Material

	Conclusion

	Creating a Sky
	Introduction

	Setup

	Delete Existing Objects

	A New Sun

	Adding A Skybox

	Changing Skybox Material

	Adding Clouds

	Conclusion

	Adding Lakes
	Introduction

	Setup

	Adding a WaterBlock

	Color and Fog

	Calming the Water

	Conclusion

	Adding Foliage
	Introduction

	Setup

	Adding GroundCover

	Creating GroundCover Material

	Assigning Terrain Material

	Basic Modifications
	Size Variations

	Elevation Limitations

	Clumping

	3D Shapes

	Advanced Modifications

	Conclusion

Building Terrains

Introduction

In this tutorial, we are going to create a lush valley using sample assets provided by Sickhead Games. For this guide, the terrain will be created by importing a heightmap, opacity maps, and creating new materials.

Setup

This article was written using a newly generated project with the Full Template, which ships with plenty of free assets for testing and learning. For this specific tutorial, you will want to download a zip file containing additional assets for testing: CLICK HERE TO DOWNLOAD THE ZIP FILE.

None of the modifications you are about to make are required for future tutorials, so feel free to create a new level or use an existing one for testing. As long as you have access to existing materials, you are good to go.

You will want to remove any existing TerrainBlocks since we will be creating one from scratch. Go ahead and delete any blocking objects, so you have a clean view.

[image: ../../_images/BlankTerrainScene.jpg]

Heightmap, Opacity Layer, Terrain Textures

To get high-quality and professional looking terrain, you will want to use a 3rd party external tool. Examples include L3DT and GeoControl. These tools allow you to generate extremely detailed heightmaps that can be imported by Torque 3D and generate terrain data.

Several assets are required to successfully import and render a high quality heightmap. Most terrain generating applications provide proper exporters to get the job done. First, we will cover what these assets are. The follow example assets were provided by Russell Fincher [http://www.garagegames.com/account/profile/44904] at Sickhead Games [http://www.sickhead.com/]. These files are available for download in the setup section of this tutorial.

The primary asset required is the heightmap, which is an image used to store elevation data rendered in 3D by the engine. The heightmap itself needs to be a 16-bit greyscale image, power of two, and square. The lighter an area of a heightmap, the higher the elevation will be in that terrain location.

Example Heightmap

[image: ../../_images/HeightMapExample1.jpg]
Next, you will want to use an opacity map. This map acts as a mask, which is designed to assign opacity layers. Opacity layers need to match the dimensions of the heightmap. 512x512 heightmap can only use a 512x512 opacity map.

If the opacity map is a RGBA image, four opacity layers will be used for the detailing (one for each channel). If you use an 8-bit greyscale image, only a single channel. You can then assign materials to the layers. This allows us to have up to 255 layers with a single ID texture map, saving memory which we can apply to more painting resolution.

Notice that the following example Opacity Map resembles the original heightmap.

Example Opacity Map

[image: ../../_images/ExampleOpacityMask1.jpg]
Finally, of course we want to use textures to paint the terrain. Instead of hand painting them, the opacity layer will automatically assign textures based on what channel they are loaded into. You will want to have three textures: a base (diffuse), a normal map, and a detail mask.

Diffuse

[image: ../../_images/ExampleBaseTex1.jpg]
Normal

[image: ../../_images/ExampleNormalMap1.jpg]
Detail

[image: ../../_images/ExampleDetailTex1.jpg]
The base represents the color and flat detail of the textures. The normal map is used to render the bumpiness or depth of the texture, even though it is flat. Finally, the detail map provides up-close detail, but it absorbs most of their colors from the base map.

Importing A Heightmap

Now that you know what assets are required, we are going to import our first heightmap. What we are going to do is create a highly detailed valley scene, with snowcapped mountains. Since this section focuses on the World Editor, and not 3rd party tools, you are going to use sample assets. This will save time and allow you to learn the World Editor functionality first.

If you do not have the required files, they are available for download in the setup section of this tutorial. Again, these high quality assets were provided by Russell Fincher [http://www.garagegames.com/account/profile/44904] of Sickhead Games [http://www.sickhead.com/] - Thanks Sickhead Games!

Create a folder in the game/art/terrains directory of your project called “sampleTerrain.” Unzip the contents of the file you downloaded into this new folder. You should have two heightmaps, identical except for varying resolution. You will also receive three sets of textures and opacity maps.

With your blank room running in the World Editor, click on File->Import Terrain Heightmap

[image: ../../_images/ImportTerrainHeightmap1.jpg]
A floating dialog will appear and allow you to setup your new terrain before importing it.

[image: ../../_images/ImportHeightMapDialog1.jpg]
Name: If you specify the name of an existing TerrainBlock in the dialog, it will update that TerrainBlock and its associated .ter file. Or else it creates a new one.

Meters Per Pixel: What was the TerrainBlock SquareSize, which is a floating point value that does not require power of 2 values.

Height Scale: The height in meters you want white in the heightmap to be.

Height Map Image: File path to .png or .bmp heightmap itself. Remember, this needs to be a 16-bit greyscale image, power of two, and square.

Texture Map: This involves opacity layers, which need to match the dimensions of the heightmap. If you add an RGBA image it will add 4 opacity layers to the list, one for each channel. If you add an 8-bit greyscale image, it will be added as a single channel. You can then assign materials to the layers. If you do not add any layers the terrain will be created with just the Warning Material texture.

Keep the name default value, theTerrain. Click the browse button near Height Map Image to open a file browser dialog. Go to where you saved the terrain files, game/art/terrains/sampleTerrain and open the heightmap1024.png.

[image: ../../_images/ChooseHeightmap1.jpg]
Next, click on the + button next to Texture Map to open another file browser. This is where we are going to add our opacity layers. Start by locating the prairie mask (game/art/terrains/sampleTerrain/prairie/prairie_maskX.png). You can choose the 512 or 1024, but you have to stick with that resolution for the rest of the files we will be adding.

[image: ../../_images/ChoosePrairieMask1.jpg]
Do not worry if you do not see the detail, as the mask is supposed to be solid white.

Repeat the process to add the rock wall mask.

[image: ../../_images/ChooseRockWallMask.jpg]
Perform this task one last time to add the snow mask.

[image: ../../_images/ChooseSnowMask.jpg]
Now that our opacity layers have been added, we are going to assign a material to each one. Click on the prairie layer, then click the Edit button in the bottom right. You will now see the Terrain Materials Editor.

[image: ../../_images/TerrainMaterialEditor2.jpg]
Click the New button, found at the top next to the garbage bin, to add a new material. You should see the entry newMaterial appear at the bottom of the list to the left, under Terrain Materials. On the right side of the gui under Material Properties, in the Name field type in Prarie, then hit Enter. If you don’t hit Enter after naming your new material, it will not be saved. In the list on the left, the newMaterial entry should change to Prairie.

Next click the Edit button next to the Diffuse preview box. Again, a file browser will pop up allowing you to open the base texture file for the prairie material - select and open the file gameartterrainssampleTerrainprairieprairie_base.png. Alternatively, you can click the preview box itself, which is a checkered image until you add a texture.

[image: ../../_images/ChoosePrairieBase1.jpg]
Once you have added the base texture, the preview box will update to show you what you opened. Next we’ll do the same thing for the detail map. In the Detail preview box, below the diffuse section, click the Edit button. Using the file browser, open the detail map for our prairie material - gameartterrainssampleTerrainprairieprairie_detail.png.

[image: ../../_images/ChoosePrairieDetail1.jpg]
Lastly, do the same thing for the normal map. In the Normal preview box, below the Detail section, click the Edit button. Use the file browser to open the prairie normal map - gameartterrainssampleTerrainprairieprairie_normal.png

[image: ../../_images/ChoosePrairieNormal1.jpg]
Now we need to set some parameters. In the Diffuse box, the Size parameter controls the physical size in meters of the base texture - set it to 500.

In the Detail box, set Size to 2. This means that the material will be scaled to two meters on the terrain. On a terrain that is 1024 square meters, the Prairie material will repeat a little less than 205 times. The Distance parameter determines how far away from the camera must be before the detail map renders - set it to 50. Set the Strength parameter to 2.

Your final material properties should look like the following:

[image: ../../_images/FinalPrairieMaterials1.jpg]
Click the Apply & Select button to assign the new Prairie material to the opacity layer.

The Import Terrain Height Map dialog will appear. Next, we will add the rock wall terrain material. In the Texture Map list, select the rockWallMask opacity layer, then click Edit.
Repeat the process of creating a new terrain material, using the rock wall textures. Your final result will look like this:

[image: ../../_images/FinalRockWallMaterials.jpg]
Notice that I have set the detail size to 2, and the detail distance to 50.

We are going to add our final terrain material now. Back in the Import Terrain Height Map dialog, select the snowMask opacity layer then click edit. Repeat the process of creating a new terrain material, using the snow textures. Your final result will look like this:

[image: ../../_images/FinalSnowMaterials.jpg]
Now, we are all set to generate the terrain. Back in the Import Terrain Height Map dialog, click on the import button. It will take a few moments for Torque 3D to generate the terrain data from our various assets. When the import process is complete, the new TerrainBlock will be added to your scene (you might need to move your camera to see it).

[image: ../../_images/HeightmapTerrainAdded1.jpg]
If you zoom in close to where materials overlap, you can notice the high quality detail and smooth blending that occurs.

[image: ../../_images/DetailBlending1.jpg]

Painting/Adjusting New Material

Go ahead and select the Prairie material in your Terrain Painter palette.

[image: ../../_images/SelectPrairieMat.jpg]
Pick any location on your terrain, using any size or shape brush you wish. It does not matter where you start.

[image: ../../_images/PrairiePaintBefore.jpg]
Once you are set, click and hold down the left mouse button to begin painting. Make sure you paint a fairly large area. We will be changing the properties of this material shortly, so we need to be able to see it from a distance.

[image: ../../_images/PrairiePaintAfter.jpg]
From a distance, you may notice that your Prairie material looks blurry and undefined. Even though the material has a detail texture, it is not visible from this far away. Double click on your Prairie TerrainMaterial in the Terrain Painter palette.

Once the editor pops up, click on the Prairie entry to view its properties. Up the Detail Distance from 50 to 250.

[image: ../../_images/IncreasePrairieDetailDistance.jpg]
Click select to close the editor. The terrain you have painted with the Prairie material has updated, and you should now see more definition even at a distance.

[image: ../../_images/PrairieDetailIncreased.jpg]
Now that the terrain looks better at a distance, what about close up? A closer view of the the Prairie-painted terrain will show off the detail texture quite well.

[image: ../../_images/PrairieRepeatBefore.jpg]
If you think the “grassy” appearance is too large or stretched, we can tweak that from the Terrain Materials Editor. With the Prairie layer still selected, open the editor. Lower the Detail Size value, which will cause the detail texture to repeat more often per meter.

[image: ../../_images/IncreasePrairieRepeat.jpg]
Click select to apply the changes. Again, your painted terrain will update immediately to reflect the changes you just made. Notice how much more detailed the TerrainMaterial.

[image: ../../_images/PrairieRepeatAfter.jpg]
The values we just set are somewhat extreme. You will need to experiment with the values on your own assets to find a balanced setting that looks well up close and from a distance. The last task we are going to accomplish is swapping TerrainMaterials between layers.

In this tutorial, grass1 is layer0 and Prairie is layer2. Since the first layer is the base material applied to the terrain, it makes up the majority of the level. Start by selecting the first layer (grass1) in the palette.

[image: ../../_images/SelectGrassMat.jpg]
Instead of manually painting the entire terrain a separate material, we can flip the layers. Double click the grass1 layer to open it up in the Terrain Materials Editor. Once it is open, select the Prairie TerrainMaterial from the list.

[image: ../../_images/SwapGrassForPrairie.jpg]
Click the select button. The Prairie TerrainMaterial will now be used for layer0, thus covering the majority of the TerrainBlock.

[image: ../../_images/MaterialSwapAfter.jpg]
The intricacy of using TerrainMaterials and the layer system becomes much more prominent when working with opacity layers, advanced modification, and adding specific objects such as GroundCover. Also keep in mind that any asset files you modify outside of Torque 3D will automatically update in the editor.

These last two shots are used to show you the scale of this massive terrain, which retains its high level detail and levels of detail (LODs):

From a Distance

[image: ../../_images/HeightmapFinalShot1.jpg]
Compare to Player Scale

[image: ../../_images/HeightmapFinalShot2.jpg]

Conclusion

This tutorial showed you how to create a high resolution terrain from scratch by importing a quality heightmap and opacity maps. Even after you have your terrain, you can continue to tweak it using the Terrain Editor and Terrain Painter tools.

Creating a Sky

Introduction

In this tutorial, we are going to create a basic sky for your level. Our sky will consist of the following three objects:

	Sun

	Skybox

	Basic Clouds

All three objects will be added from scratch and modified to work with each other to create a nice looking atmosphere. To get started, follow the setup procedure below.

Setup

This article assumes that you have read through the Toolbox and World Editor Basics sections of this documentation so that you are familiar with basic operations such as creating a new level and activating tools such as the Object Editor. If you have not, please review those documents and then return here to continue.

None of the modifications you are about to make are required for future tutorials, so feel free to create a new level or use an existing one now. As long as you have access to stock materials you are ready to go. For this article, we are going to use a new level.

Because every new mission starts with some kind of sky object (Sun, Skybox, etc), you are not technically starting from scratch. You will want to clear your level before beginning.

None of the modifications you are about to make are required for future tutorials, so feel free to create a new level or use an existing one. As long as you have access to stock materials, you are good to go. For this article, we are going to be using a new level.

Because every new mission starts with some kind of sky object (Sun, Skybox, etc), you are not technically starting from scratch. You will want to clear your level before beginning.

Finally, the textures for a simple Skybox are provided through this link: click here to download. You will use these later in the tutorial when creating a new Skybox material.

Delete Existing Objects

Start by switching to the Object Editor tool. Locate the Scene Tree panel, then select the Scene tab. Inside the MissionGroup locate any objects that contain the words sky, sun, or clouds in them. Select the object, then delete it by pushing the delete key, or by clicking the trash can icon.

[image: ../../_images/DeleteExistingSkyBox.jpg]
The objects should no longer be present in the Scene Tree. More importantly, the sky has now been removed from your level. Because nothing is rendered beyond a Skybox, Torque 3D will be rendering absolutely nothing where the sky used to exist.

Additionally, after you delete the Sun there might not be any lighting in your level. This will result in everything being completely shadowed, but we will fix that in just a minute. For now, save your blank level before continuing.

[image: ../../_images/NoSkybox.jpg]

A New Sun

Now we can add a Sun with default attributes. Start by opening the Library tab in the Scene Tree dialog. Once the Library tab is active, click on the Level tab, then double click the Environment subcategory. The list of available environment objects should now be visible.

[image: ../../_images/EnvironmentObjects1.jpg]
Double-click on the Basic Sun symbol. Once you do, the Create Object dialog will pop up.

[image: ../../_images/AddSun1.jpg]
Since we want to use stock values for everything, just click Create New without changing anything.

[image: ../../_images/SunNoSky.jpg]

Adding A Skybox

Now we can add a Skybox from scratch. You should still be viewing the environment category which is also where the Skybox object is located. If not, change back to the Library tab in the Scene Tree panel, then select the Level tab then double click the Environment folder. Locate the Skybox entry and double-click it.

[image: ../../_images/AddSkyBox1.jpg]
With your sky restored in the level, we can now tweak some settings to make it look nicer.

Changing Skybox Material

Without a designated material, your Skybox will still be rendering a single color. To change that use the Scene Tree click the Scene tab and select the Skybox. With the Skybox object selected, scroll through its properties until you find the Material field.

[image: ../../_images/SBSelectMaterialField.jpg]
Click on the small globe icon to open the Material Selector:

[image: ../../_images/SelectBlankSkyMat.jpg]
The Material Selector will show all of the materials that could be found by the engine. Look for one containing “Sky” in the description (e.g. BlankSkyMat). Select it by single clicking on the image, then press the Select button.

After the Material Selector dialog closes your scene will update and render your new sky choice:

[image: ../../_images/BlueSkyBox.jpg]
While technically rendering a material, a solid blue sky is not much to look at. If you want a photo-realistic Skybox created from digital images or Skybox creators, you will need to create a cubemap. You can create a cubemap using the Material Editor. Go ahead and click on the Material Editor icon to activate the tool:

[image: ../../_images/ActivateMatEd.jpg]
When the Material Editor loads, look for the Material Properties section on the right side of the screen, underneath the Material Preview window. At the top of the Material Properties section, you’ll see a small icon that looks like a blank piece of paper. That is the Create New Material button. Go ahead and click that icon.

[image: ../../_images/CreateNewMatButton.jpg]
This action will create a base material definition similar to this:

[image: ../../_images/SkyNewMaterial.jpg]
Cubemaps do not make use of diffuse, normal, or spec maps, so those can be deleted. Click on the trash bin icon Image:TrashIcon.jpg in each of the following groups - Diffuse Map, Normal Map, and Spec Map. This will delete the material associated with that group if it had one. The gray and white checkerboard pattern means that no material is assigned to a group. Change the name of your material by entering BlueSky in the text box next to the Mission label, then pressing the Enter key on the keyboard, then click the save button - the little floppy disk icon at the top.

NOTE: It is very important that you press Enter after typing your material name. If you just type the text and click directly on the save icon the material will not be saved!

Your current definition should resemble the following:

[image: ../../_images/SkyMatInitProps.jpg]
Now that the base material is setup, you can create a cubemap. Scroll down to the Advanced (all layers) section of the material in the Material Properties pane. Click on the heading to expand it if the content is not visible. In the middle is a drop down box that reads “None” and to the right is the word “Reflection.” Click this box then select the cubemap entry. Once you have done this, click on the Edit button:

[image: ../../_images/CMEditButton.jpg]
The Create Cubemap dialog will appear. From here you can select an existing sky cubemap or create a new one, which is what we are going to do. At the top of the cubemap list you will find three icons. Click on the page icon to create a new cubemap:

[image: ../../_images/CreateCubemap.jpg]
You will be prompted to name your new cubemap. Call it “BlueSkyCubemap”. Click the create button once you have finished.

[image: ../../_images/NameSkyCubemap.jpg]
You should now see the cubemap template consisting of six colorful squares bordering each other. It may not make sense at first glance, but each square represents a section of a cube if you were to slice it at the seams and lay it out.

[image: ../../_images/BlankCubemap.jpg]
The +/- X, Y, Z labels are coordinates, but we have also given them directional names (Left, Right, Top, Bottom, Front, and Back). If you need more visualization, imagine you have a box placed over your head with the sky painted on the inside. If you are looking straight up, you are viewing the Top. If the box unfolded at the edges, you would see exactly what you are viewing here.

We will now build the cubemap for the sky to demonstrate this. Make sure you have downloaded the Blue_Sky files, and unzipped them into your Torque3D/My Projects/ game/art/skies/game/art/skies directory, where is the name of the project you opened or created for this tutorial. Click on the X-POS (Left) icon on the cubemap display. A browser window will open:

[image: ../../_images/OpenSkyLeft.jpg]
Navigate to the directory where your sky art is located, click on the blue_0004.jpg file then click the Open button. The sky image will be placed on the left section of your cubemap:

[image: ../../_images/SkyLeftAdded.jpg]
The “sky” portion of the image will be on the right side of the picture if you selected the proper image.

Repeat this process for Front, Right, Back, Top, and Bottom. Here is the placement for the different graphic files:

	Right - blue_0002.jpg

	Front - blue_0001.jpg

	Back - blue_0003.jpg

	Top - blue_0005.jpg

	Bottom - blue_0006.jpg

Your final cubemap should look like the following:

[image: ../../_images/SkyCubemapDone.jpg]
As you can now see, it is as if you are looking straight up at a sky with clouds surrounding your view. Once you are finished, click on the save icon (small floppy disk at the top-left of the dialog). You will be prompted to save your cubemap before continuing:

[image: ../../_images/SaveCubemap.jpg]
Click Yes to save the cubemap and return to the Create Cubemap dialog. Click the Select button to close the dialog and apply the new cubemap to the Material Properties.

When you are finished with your cubemap, your BlueSky material preview should show a Skybox with a strong reflection. This is completely normal, and just shows that this image can be applied to both Skybox objects and water reflections:

[image: ../../_images/SkyMaterialPreview.jpg]
You will also notice that the new sky cubemap has been applied to the scene. This is only a preview and we have not yet told the scene to keep that cubemap as its Skybox. In the upper right hand corner of the Material Preview section there is a checkbox labelled “Preview in World”. If you uncheck this box you will see that the new Skybox has not really been assigned to your Skybox yet. Well do that next.

Switch back to the object editor (F1 shortcut) and make sure your Skybox object is selected. Scroll down to the Skybox section of the properties, then click on the Material Selector icon .. image:: img/GCMatPropIcon.jpg in the Material field. When the Material Selector appears, locate the BlueSky material and click Select.

[image: ../../_images/SelectBlueSkyMat.jpg]
Your Skybox should now be rendering the cubemap you created earlier. Instead of a bland, solid color you now have a more realistic Skybox with some clouds simulated in the distance. Much more interesting.

[image: ../../_images/BlueSkyFinal.jpg]

Adding Clouds

Finally, we are going to add some real clouds that are not a part of the Skybox. You have two choices for cloud layers: Basic Clouds and Cloud Layer. Since this a simple scene, we are going to go with Basic Cloud. Before proceeding, look at your Skybox and carefully note how the sky looks without a cloud object:

[image: ../../_images/SkyNoClouds.jpg]
When you are ready to add clouds start by switching to the Library tab in the Scene Tree panel. Click on the Level tab then select the environment folder. Once that is open, locate the Basic Clouds object (not the Cloud Layer object):

[image: ../../_images/BasicCloudLibrary1.jpg]
Double click the Basic Cloud object. A dialog will appear allowing you to fill out initial details. The Object Name is what you want your Cloud layer to be called in your MissionGroup. For now, just type in theClouds for the name.

[image: ../../_images/CreateBasicCloud1.jpg]
Click Create New and the Basic Clouds object will be added to your level. Three separate cloud layers will be rendering and moving across the sky slowly:

[image: ../../_images/SkyWithClouds.jpg]
Select the new cloud layer - switch to the Scene tab in the Scene Tree pane, and select theClouds from the list. Scroll to the BasicClouds section in the Inspector pane. Expand the Layers entry by clicking the + icon, then expand the entries [0], [1], and [2]. This displays the information on the three layers in this object.

The stock object will populate the three layers with sample cloud images. These are located by default in /My Projects/<Project>/game/core/art/skies. If for some reason you do not have these assets, you can download them by CLICKING HERE. Each image is a transparent PNG, which means that portions of the image are clear so that you can see the background through them. Transparency is a requirement for the clouds to render properly and with realistic depth since you need to be able to see each layer without it blocking those behind it.

Right now, the cloud layers are stretched and look very hazy, or perhaps not very visible at all depending on your computers monitor brightness and contrast. This stretching causes the clouds to not match the static clouds that are present right within the Skybox cubemap, so we are going to make some changes. A more desired appearance will be wispy, very white clouds.

The texScale property determines how often the texture will repeat on this layer. Increasing texScale will cause the texture to be repeated, which is referred to as being “tiled”, over a smaller area, which is be useful for low detail textures such as those used in this tutorial.

Increasing the texture repeat will make the layers appear to be more detailed and defined. For each layer [0], [1], and [2], set the texScale property to 4.:

[image: ../../_images/CloudTexScale4.jpg]
This is a good start, but the closest layer should be the most defined. Scroll down to Layers[2] and set the texScale to 8. This texture will repeat more often, making it appear to be closer and clearer:

[image: ../../_images/CloudTexScale8.jpg]
The last adjustment will affect the movement of the clouds. Since Layers[2] is the closest and most defined, wind simulation should be more dramatic. In other words, we want the closest cloud layer to move the fastest. A single property controls how fast the cloud layer moves: texSpeed.

If the property is set to 0, the cloud layer will not move. The higher the number, the faster your cloud texture will scroll across the sky. The stock value for Layers[2] texSpeed is 0.0003. Increase this value to 0.005, which will cause the clouds to scroll faster:

[image: ../../_images/CloudFastSpeed.jpg]
For reference, the following are the properties I have set in my scene. You can use these, or continue to make adjustments to your liking:

[image: ../../_images/BlueSkyProperties.jpg]
In the end, you should have a very nice looking blue sky with realistic clouds. The more clouds farther in the distance are presented by the Skybox, while the closer clouds are generated by the Basic Clouds object:

[image: ../../_images/FinalBlueSky.jpg]

Conclusion

In this tutorial, you learned how to create a basic sky using the Sun, a Skybox, and Basic Clouds. These objects are simpler and have less impact upon a computers performance than the Scatter Sky and Cloud Layer. With the right images and software, artists can make really amazing Sky boxes and cloud textures.

Other tutorials make use of these objects, but in different ways. Feel free to continue experimenting with this scene to see what results you can come up with.

Adding Lakes

Introduction

In this tutorial, we are going to create a lake using Torque 3D’s WaterBlock object. Since this will be an isolated body of water, you should not need more than one WaterBlock to get the job done. We will be adjusting several WaterBlock properties to obtain a very placid appearance.

Setup

This article will use a new project created from the Full template, which includes sample assets for testing and learning. To save time and focus on the World Editor we will use the sample assets and learn about asset creation later.

None of the modifications you are about to make are required for future tutorials, so feel free to create a new level or use an existing one for testing. As long as you have access to existing materials, you are good to go. For this article, we are going to be using a new level.

In order to simulate a realistic body of water, we are going to start by adding a new TerrainBlock. If you do not know how to add terrain, click here to review the TerrainBlock Guide. If you are familiar with the process, go ahead and create a new terrain from the File Menu. We do not need anything fancy, so use the following information:

[image: ../../_images/AddNoiseTerrain.jpg]
This should result in a mountainous terrain with plenty of valleys in which to add a body of water. If you are not happy with the results, use the Terrain Editor or create a new TerrainBlock all together. In the end your terrain should look similar to this:

[image: ../../_images/NoiseTerrainAdded.jpg]
Now that we have basic terrain, we will move on to the actual WaterBlock creation.

Adding a WaterBlock

To add a Water Block: switch to the Object Editor tool; click the Library tab; click the Level sub-tab; double-click the Environment folder; then locate the Water Block entry:

[image: ../../_images/LibraryWaterblock.jpg]
Double-click the Water Block entry. The Create Object dialog box should appear:

[image: ../../_images/AddWater.jpg]
Enter a name for your new Water Block then click the Create New button. A square body of water will be added to the scene. This is your WaterBlock. Like any other object, you can manipulate its transform using the gizmos.

[image: ../../_images/WaterblockAdded.jpg]
Before we proceed with modifying the WaterBlock properties, we should move the body of water to a more appropriate area. With the object selected, use the Transform Tool to move it to a valley in your terrain. It does not have to be perfect, but it will help simulate a lake in a crater.

[image: ../../_images/AdjustWaterblock.jpg]
The WaterBlock edges will clip appropriately and reflect the interaction with the terrain via incoming wave textures wherever it meets the land.

[image: ../../_images/SmoothShores.jpg]
Now that we have a positioned WaterBlock, we can begin editing its properties.

Color and Fog

We are now going to perform a few minor manipulations. For this article, we are going to take a stock WaterBlock and turn it into a lake. Landlocked bodies of water such as lakes tend to be calmer than an ocean or river.

The default WaterBlock is too choppy, fast, and murky. We are going to simulate a calmer, clearer lake similar to the placid Crater Lake in Oregon:

[image: ../../_images/Crater_Lake.jpg]
We will not need to modify all of them to simulate a lake. First, we are going to decrease the murkiness of the WaterBlock, which represents how clear the water is. Scroll through the properties until you see the Underwater Fogging section. Change the waterFogDensity field to 0.01.

[image: ../../_images/LowerFogDensity.jpg]
This is a drastic reduction. If you move your camera under the water, the difference is immediately noticeable.

0.5 Fog Density Under Water

[image: ../../_images/UnderwaterDarkFog.jpg]
0.01 Fog Density Under Water

[image: ../../_images/UnderwaterLightFog.jpg]
0.5 Fog Density Above Water

[image: ../../_images/AboveWaterDarkFog.jpg]
0.01 Fog Density Above Water

[image: ../../_images/AboveWaterLightFog.jpg]
Our lake is a little too clear at this point. Instead of playing around with the fog, we are going to adjust another property to reflect the color changes at lower depth. Under the Water Object section of the properties, find the fresnelBias field. Change the value to 0.01.

The change is subtle, but if you focus on the deepest points of the water you should see a difference. What we have done is decreased the water’s reflection amount based on the underwater fog intensity, which will stronger toward the middle where the water is deepest.

0.12 Fresnel Bias

[image: ../../_images/FresnelBefore.jpg]
0.01 Fresnel Bias

[image: ../../_images/FresnelAfter.jpg]
We will make one last adjustment to polish the high level appearance of the lake. The stock color is a little dark, but that can be modified easily. Under the WaterObject property section there is a field called baseColor. You can modify the value manually, but we are going to use a color picker by clicking on the square box at the end of the line.

[image: ../../_images/ClickColorBox.jpg]
The Color Picker dialog will appear immediately. With this dialog, we can adjust the color’s hue, intensity, and alpha. To illustrate a dramatic change, adjust the picker’s location to get a strong red value.

[image: ../../_images/RedColor.jpg]
After you click OK, our lake will take on a morbid appearance.

[image: ../../_images/RedLake.jpg]
If we were making a horror game this would fit in nicely, but we are making a normal lake. Open the Color Picker again and aim for a softer blue hue.

[image: ../../_images/BlueColor.jpg]
We have progressed from a murky pond to a clear, blue lake. Even with these small adjustments, we already have a drastic change in appearance from the default WaterBlock.

[image: ../../_images/BlueLake.jpg]

Calming the Water

The final changes we are going to make will reduce activity of the WaterBlock to simulate the waves on a lake. The oceans tend to be wavier than a lake because the wave action is created by currents, wind, and the gravity from the moon. On smaller lakes the wave action is cause solely by wind so they tend to be much less wavy than the ocean. Locate the Distortion section of the properties.

We need to intensify the distortion, which we can do by reducing that range. Reduce the distortEndDist from 20 to 1. After you make this change, you should immediately notice that objects below the water are more distorted.

[image: ../../_images/DistortLowered.jpg]
Finally, jump to the WaterObject section of the properties and make the changes listed in the table below to alter the wave action:

	Property

	New Value

	Wave[0]waveDir

	1 0

	Wave[0]waveSpeed

	0.1

	Wave[0]waveMagnitude

	0.01

	Wave[1]waveSpeed

	0.01

	Wave[1]waveMagnitude

	0.01

	Ripple[0]rippleSpeed

	0.01

	Ripple[1]rippleSpeed

	0.01

	Ripple[2]rippleSpeed

	0.01

After you have made these changes, your lake should be complete. Your waves will be slower and more dramatic.

Final Above Water Appearance

[image: ../../_images/FinalAbovewater.jpg]
Final Below Water Appearance

[image: ../../_images/FinalUnderwater.jpg]

Conclusion

This article has provided a strong starting point for adding lakes to your terrains to create more visually appealing levels.

Adding Foliage

Introduction

In this tutorial, we are going to create multiple types of foliage using a single GroundCover object. By the end, you should know how to add a GroundCover object, create a 2D material for it, assign terrain layers, and mix different variations of 3D shapes and 2D images.

Setup

This article will use a new project created from the Full template, which includes sample assets for testing and learning. To save time and focus on the World Editor, we will use the sample assets and learn about asset creation later.

If you have not covered the Building Terrains Tutorial, then please do so before working through this tutorial. It assumes that you have gone through that one before starting here.

Switch to the Terrain Painter editor by choosing Editors->Terrain Painter from the menu or by hitting F3. On the right side of the screen, find the Terrain Painter Material Selector pane. This lists the current materials loaded and available to paint the terrain.

Since GroundCover is directly tied to Terrain Materials, you will want to make sure you have more than one available. If you only have one material available, click the New Layer button in the Terrain Painter Material Selector pane, and select a new material to load.

In this example, I am using a sand texture and a grass texture:

[image: ../../_images/GCTerTex.jpg]
Select one of the materials and paint a small area on the terrain. We will be isolating a GroundCover example to this patch:

[image: ../../_images/GrassPatch1.jpg]
From the players perspective, you should still be able to distinguish between the terrain textures. This will help demonstrate the GroundCover populating on a specific layer:

[image: ../../_images/GrassPatch2.jpg]

Adding GroundCover

To add a GroundCover object: switch to the Object Editor (F1); select the Library tab in the Scene Tree panel; click on the Level tab; double-click the Environment folder; and locate the GroundCover entry:

[image: ../../_images/GroundCoverLibrary1.jpg]
Double-click the GroundCover entry. The Create Object dialog box will appear:

[image: ../../_images/CreateGroundCover1.jpg]
Enter a name for your GroundCover object. We will be creating a GroundCover object from scratch, so leave the rest of the fields blank for now, then click the Create New Object button. A new GroundCover object will be added to your level.

[image: ../../_images/GroundCoverAdded1.jpg]

Creating GroundCover Material

Because we did not select a material, the system will render small simple shapes on the terrain with the default orange “No Material” texture. To assign a material, scroll through the GroundCover properties until you get to the GroundCover General section. In the Material field, click on the globe icon to open the Material Selector:

Material Field

[image: ../../_images/GCMaterialField1.jpg]
When the Material Selector appears, you have the option to pick an existing material or create a new one. If you are working with the Full template, there will not be a decent grass texture loaded so we are going to create one. Click on the “Create New Unmapped Material” button:

[image: ../../_images/CreateNewMatButton.jpg]
Now click the Select button at the bottom right of the dialog. At this point, the new material has been applied to the GroundCover. The system is still rendering an orange shape, but for a very different reason. Previously, we had no material selected. Now we have a material, but it has not been assigned a texture. Click on the Material Editor icon in the Tool Selector bar to activate the Material Editor tool:

Activate Material Editor

[image: ../../_images/ActivateMatEd.jpg]
The Material Preview and Material Properties panes should now be visible on the right of the screen. Your GroundCover material will already be the active entry. At the top of the Material Properties pane find the Material field and change the value to Grass. This will be the name of your new material. Press the Enter key to apply the change, and then click the Floppy Disk icon to save it. NOTE: You MUST press Enter after typing your material name before clicking the save icon or your new material will not be saved!

[image: ../../_images/NameMaterialGrass.jpg]
Next, scroll down to the Basic Texture Maps section. Right now the Diffuse Map is assigned to the default “No Material” texture. Click on the preview image or the Edit button:

[image: ../../_images/GCEditDiffuse.jpg]
A file browser should pop up allowing you to select a texture. Navigate to the game/art/environment directory. Select the plant2.png texture, then click Open.

[image: ../../_images/SelectPlant2.jpg]
If you are not using the Full Template, but do not have a plant texture, you can use the following image (save to desktop or drag to your folder):

[image: ../../_images/Plant2.png]
After you load the plant2 texture as the Diffuse Map, your Material Preview will update to show the rendering. The GroundCover in your level will also automatically update. However, you will notice a glaring problem. The material is rendering black where there should be transparency:

[image: ../../_images/BlackPlantMat.jpg]
To fix this, scroll down to the Advanced (all layers) section of the Material Editor. Check the Alpha Threshold box, then set the value to something close to 20.13 (or whatever looks best to you):

[image: ../../_images/GCAlphaThreshold.jpg]
SAVE YOUR MATERIAL AGAIN by clicking the floppy disk icon at the top of the Material Properties pane. Once you are finished with your material, switch back to the Object Editor (F1). Your GroundCover should now be rendering the plant material you have selected. Now is a good time to also save your level.

[image: ../../_images/GCFinishedMat.jpg]

Assigning Terrain Material

Currently, the GroundCover is placing the grass material on all of the terrain:

[image: ../../_images/GCEverywhere.jpg]
To limit the placement of GroundCover to a specific region, such as the area we painted previously, you must set the terrain layer for the Ground Cover. In the Scene Tree pane, click the Scene tab and select your grass GroundCover object. Scroll down to the GroundCover General set of fields. GroundCover General contains a sub-section of properties, listed under Types. Types is an array where each entry controls a section of the GroundCover. Expand the Types field by clicking on the + icon.

[image: ../../_images/GCLayers1.jpg]
The GroundCover is a single object that is covering the entire terrain. The object itself is comprised of eight sections, Types[0] through Types[7]. Each section can be told what, where, and how to render a material or shape. You can feasibly have the GroundCover object rendering a unique material or shape on eight different terrain layers.

With the above information in mind, it is time to assign the GroundCover to terrain materials. Scroll through the properties until you get to Types[0]. Click on the box icon in the layer field. The Material Selector for terrains should appear. Select the material you used earlier to paint the patch, such as the dirt_grass shown here:

[image: ../../_images/GCPickGrass1.jpg]
Click the Select button, the GroundCover will stop placing the plant shapes on the entire terrain. It should now only be placing the foliage on the patch that you painted:

[image: ../../_images/GCCoverGrass1.jpg]
If you are having a difficult time seeing this change, locate the maxElements field and increase the value dramatically:

[image: ../../_images/GCIncreaseCount1.jpg]
The GroundCover should now be rendering with quite a few more shapes on the isolated terrain material. The higher the maxElements value, the more shapes will be rendered:

[image: ../../_images/GCCountIncreased.jpg]
Just for the sake of testing, go back to the Types[0]->layer property. Click on the box icon to open the Material Selector, then choose the sand texture (or whatever your main material is):

[image: ../../_images/GCPickSand.jpg]
Click the Select button to apply the material change. The plant billboard should now only be rendering on the main terrain material, avoiding all others including the patch of you painted earlier.

[image: ../../_images/GCCoverSand.jpg]
Before proceeding, go ahead and switch the Types[0]->layer field back to the isolated terrain material. Next, we will go through the more basic customizations of a GroundCover object.

Basic Modifications

Size Variations

Before we get into the really advanced changes, we will focus on editing a single section of the GroundCover: Types[0]. Right now, the GroundCovering should be rendering a single type of material within an isolated section of the terrain. The following changes will affect this section only.

Expand Types[0], then scroll down to the sizeMin and sizeMax values. The default values should be 1 and 1, which means every shape will be rendered at the same size. Go ahead and change that by setting the sizeMin to 0.8 and sizeMax to 5.

[image: ../../_images/GCAdjustSize1.jpg]
There should now be a dramatic staggering in the size of the shapes. Some will be huge, while others will look smaller than they originally did. This is a great way to increase the realism of your GroundCover:

[image: ../../_images/GCSizeAdjusted.jpg]
These sizes might be too extreme, so go ahead and balance them a little bit more so we can easily view the rest of our edits:

[image: ../../_images/GCAdjustSize2.jpg]

Elevation Limitations

The minElevation and maxElevation properties can be used to limit the GroundCover object to only generate shapes and materials within a range of terrain elevations. But, changes to these properties are difficult to see if your level is not set up to handle the parameters. We will walk through an example to illustrate. Go ahead and set the minElevation to 300. After doing so the GroundCover will disappear:

[image: ../../_images/GCMinElevation.jpg]
The elevation properties control the height range within which the GroundCover object will place shapes in your level based on the elevation of the terrain at each and every point. When the minSize was increased from -9999 to 300, that decreases the range within which shapes will be generated. he GroundCover object should now only be placing objects on the terrain where the terrains elevation is 300 meters and higher. The default elevation of TerrainBlock is higher than 300 meters , so it is too low for the GroundCover object to have placed shapes on it.

Perform a quick adjustment to illustrate this behavior.

[image: ../../_images/GCSetHeightValue.jpg]
Open the Terrain Editor (F2), then switch to the Set Height tool .. image:: img/SetHeightIcon.jpg. On the toolbar at the top of the screen, find the Height field and change it to 300. Select a portion of the terrain that should have the GroundCover, then click on it. The terrain should instantly shoot up to 300 . If you move your camera to the top, you should now be able to see your GroundCover:

[image: ../../_images/GCShowMinElev.jpg]
Go ahead and change the minElevation field back to -99999, so the grass returns to where it was originally

Clumping

The clumping ability of GroundCover is another way to add to the realism or diversity of your level. The clumping properties (minClumpCount, maxClumpCount, and clumpRadius) will cause the objects in your current Types[x] entry to group together in designated patterns.

To fully demonstrate this, make sure you can clearly see lots of objects being placed by the GroundCover. For example, I have switched to the sand terrain material (since I am using a dark shape) and increased the count to a huge number:

[image: ../../_images/ClumpBefore1.jpg]
The default values for the clump properties are all 1. This means the system will place a single shape within a 1 meter spacing. Set your GroundCover properties to the following:

[image: ../../_images/ClumpValues1.jpg]
The system will now procedurally place between two and six objects within a one meter space, creating clusters of shapes around the terrain:

[image: ../../_images/ClumpAfter1.jpg]
If there is too much clustering or your objects are unrealistically overlapping, you may need to increase the clumpRadius. Go ahead and set the clumpRadius to 5. There will still be clustering, but now the objects should space out more evenly:

[image: ../../_images/ClumpAfter2.jpg]
These were a few of the basic modifications you can make to a GroundCover object. There are a few additional properties which will be covered in later sections. For now, take some time to experiment with the values mentioned above. When you are ready proceed to the next section.

3D Shapes

Up till now, the shapes that the GroundCover has been placing have been rendered using billboards. If you are unfamiliar with this term, a billboard is a way of faking the appearance of a 3D object by using a flat image that is rotated as the camera moves so that it is always facing the camera. The material we have been using is a simple 2D image with transparency, representing a plant.

By just displaying this simple image and always rotating it to face the camera we avoid having to create an actual model of a plant with a trunk, limbs, and hundreds of leaves. Displaying and rotating a simple image in this manner uses much less processing power than rendering a full 3D model and all its details. Multiply that performance savings times the number of shapes that are generated by a GroundCover object and the result is more power for other aspects of your game, while still producing an adequate depiction of ground foliage.

However, if you wish to automate the placement of real 3D objects in your level, you can still do so using the GroundCover object. In this next example, we will replicate a 3D model of a tree rather than a billboard image of a tree. Keep in mind that creating a large forest using this method is not the best approach. It is merely an example using a 3D shape which you should have available to you since it is included in the Full template. Creating such a forest for use in a real level is best left up to the Forest Editor, since it is a more powerful tool designed to do just that. If you are not concerned with precision and collision, then the GroundCover object might work just fine.

Start by deleting any existing GroundCover objects in your scene. Using the same procedure as before, switch to the Terrain Painter tool and paint a much larger portion of the terrain with your secondary material:

[image: ../../_images/GCPaintLarge.jpg]
Now add some trees using a Ground Cover object. Switch to the Object Editor tool; select the Library tab; select the Level sub-tab; double-click the environment folder; locate the GroundCover object and double-click it. The Create Object dialog box will appear:

[image: ../../_images/GCNameTrees.jpg]
Enter a name for your ground Cover object, then click on the Shape File [Optional] field which will open a file browser. Navigate to the game/art/shapes/trees/defaulttree directory within your project. Select the defaulttree.DAE file, then click the Open button.

[image: ../../_images/GCTreeDae.jpg]
Your selection will be placed in the Shape File [Optional] field and will be the shape that the Ground Cover object will replicate. Click the Create New button to add your new GroundCover object to the scene. Unlike material billboards, the GroundCover object should be rendering full 3D models. Without designating a terrain material, the trees should be located on your entire terrain:

[image: ../../_images/GCTreesAdded.jpg]
Scroll down to the Types[0]->layer property. Click on the blue box to open up the Material Selector. Once the dialog appears, select the alternative material (such as the dirt_grass):

[image: ../../_images/GCPickGrass1.jpg]
After you click the Select button, the trees will only be placed on the terrain material you picked. In this case, the trees will only be located on the grassy terrain:

[image: ../../_images/GCTreesOnGrass.jpg]
The adjusting properties will affect 3D models the same as the billboards we were editing earlier. For example, you can increase the maxElements to a very high number to simulate a forest only on the grassy terrain:

[image: ../../_images/GCForest.jpg]
There is one property that is very specific to 3D models. You might notice that the trees disappear very quickly when you move away from them. This is controlled by the shapeCullRadius property. This property is the distance at which 3D shapes are completely prevented from rendering.

Low values might be OK for first person views, but at a higher range the results will not appear as you might expect. For example, this terrain looks void of trees in the upper half when in fact they are there but they are not being displayed. They are not displayed because they are further away from the camera than the shapeCullRadius distance of the Ground Cover Object:

[image: ../../_images/GCLowShapeCull.jpg]
If you increase the value of shapeCullRadius, you will be able to see 3D shapes further out from where the camera is located. Try setting the value to something like 500. If you want your whole terrain to be within the area covered by the shapeCullRadius, then you must enter a value at least as great as the Resolution property of the TerrainBlock when you created it:

[image: ../../_images/GCHighShapeCull.jpg]
You should now have a basic understanding of how the GroundCover system works. However, instead of moving on to the next guide we are going to dive deeper into the features that make Torque 3D GroundCover so powerful and flexible. Continue reading to learn a few more advanced modifications.

Advanced Modifications

In the same level you have been using, delete all GroundCover objects. If you have already discarded the level, then create a new terrain and make sure you have at least two separate terrain materials being rendered. Create a new GroundCover object, filling out only its name. Leave the other fields blank:

[image: ../../_images/GCNameFoliage.jpg]
Click the Create New button to add the new GroundCover object to the level. Next, we will create a new material for this GroundCover. However, this will be a special image. Instead of a single material representing an individual plant, we are going to create a material that represents five plants.

Save the following image to your game/art/environment/ directory:

foliage.png

[image: ../../_images/foliage.png]
Notice how this new image file contains several plant images, stitched together in a single 1024x1024 png file. The GroundCover can easily separate these individual plant images in order to use them all, but it needs a material to do so. Select your new GroundCover object. Scroll through the properties until you get to the GroundCover General section. Click on the Material Selector icon .. image:: img/GCMatPropIcon.jpg

Now we’re going to go through the process of creating a new material like we did before - you know the drill. When the Material Selector appears, click on the “Create New Unmapped Material” button. Then click the Select button.

[image: ../../_images/CreateNewMatButton.jpg]
At this point, the new material has been applied to the GroundCover. We have a material, but it has not been assigned a texture so once again you will see the special “No Material” texture. Go ahead and click on the Material Editor icon to activate the tool:

Activate Material Editor

[image: ../../_images/ActivateMatEd.jpg]
When the Material Editor opens, your GroundCover material will already be the active entry. Change the Material name to Foliage, hit Enter, then click the Floppy Disk icon to save. NOTE: You MUST press the Enter key before clicking the save icon or your new material WILL NOT be saved! Next, scroll down to the Basic Texture Maps section. Right now the Diffuse Map is assigned to the default “No Material” texture. Click on the preview image or the Edit button. A file browser should pop up allowing you to select a texture. Navigate to the game/art/environment directory. Select the foliage.png texture that you just placed there, and then click Open.

[image: ../../_images/SelectFoliagePng.jpg]
Your initial Foliage material is going to look very odd. This is due to the Alpha Threshold being disabled which causes the black areas to show as black rather than be transparent:

[image: ../../_images/InitialFoliageMat.jpg]
To fix this, scroll down to the Advanced (all layers) section of the Material Editor. Check the Alpha Threshold box, then set the value to something close to 20.13 (or whatever looks best to you):

[image: ../../_images/GCAlphaThreshold.jpg]
Save your material by clicking the floppy icon again. Once you are finished with your material, it should resemble the following in the preview:

[image: ../../_images/FinalFoliageMat.jpg]
Now is a good time to also save your level if you want. When you are ready switch back to the Object Editor using F1. Your GroundCover should now be rendering the combined plant material.

[image: ../../_images/BeforeUVEditor1.jpg]
Within each Types[x] entry, we can use the UV Editor to designate which part of the material to use for the billboard rendering. The UV Editoris located under the Types section of the properties, in the billboardUVs field. Click on the square icon to activate the UV Editor:

[image: ../../_images/UVEditorIcon.jpg]
The UV Editor is extremely simple to use. When the dialog appears, you will be presented a box comprised of nine points. You can drag the edges of the box around to isolate specific parts of a material:

[image: ../../_images/UVEditor.jpg]
With the foliage material, this is exactly what we need to draw a single plant for this layer. Choose one of the plants you wish to render on the grass, such as the one in the bottom left. Click and drag the blue boxes until just that plant is enclosed in the square:

[image: ../../_images/GCFirstUVEdit.jpg]
Once you are certain of your placement, click the OK button. The Types[0] layer will now only be rendering the section of the material that you surrounded. Rather than create five separate GroundCover objects, you can use a single material and one GroundCover object with each layer displaying a different plant, that is, section of the image.

[image: ../../_images/AfterUVEditor1.jpg]
In this manner we can also isolate the individual plant types to specific terrain textures. In Types[0]>layer, click the box icon to bring up the Material Selector. Select a terrain material to limit this plant to:

[image: ../../_images/GCPickGrass1.jpg]
Go ahead and make a few more edits to Types[0], such as adjusting the clumping properties. Ultimately, you are aiming to create something that appears varied, as it would in nature, rather than a systematic placement of objects:

[image: ../../_images/GCFinalGrassEdit.jpg]
For the next step, collapse the [0] entry and expand Types[1]. For this section of the GroundCover, we are going to render another piece of the foliage from that same texture on a separate terrain material. Go ahead and assign Types[1]->layer to another material that is in your level:

[image: ../../_images/Types1.jpg]
After you have assigned the terrain material, you might notice nothing is rendering. This behavior is controlled by the probability property:

[image: ../../_images/ZeroProb.jpg]
This property is a decimal value, which represents the likelihood (percentage) of an shape being placed by the GroundCover object. A value of 0.0 results in a 0 percent change, 0.5 is a 50% chance, and 1.0 is 100% chance that an object will be placed. By default, the probability is set to zero for all Types except Types[0].

Go ahead and set Types[1]->probability to 1, which will fully activate the placement of the foliage material. We need to make two more modifications. First, activate the UV Editor for this entry. Drag the UV boundaries to a less green image:

[image: ../../_images/GCSecondUVEdit.jpg]
Next, set Types[1]->layer to another material in your level to isolate the placement of our new billboards. The final result should be Types[0] rendering a one type of plant on one material, and Types[1] rendering a different plant on the other material:

[image: ../../_images/SeparateFoliage.jpg]
Separating billboards from within a single material is not the only function you can do when modifying the Types section. It is possible to mix in 3D shapes as well. Collapse Types[0] and Types [1], then expand Types [2]. Locate the Types[2]>shapeFilename property - click the box next to it:

[image: ../../_images/Types2ShapeFileName.jpg]
Navigate to the game/art/shapes/trees/defaulttree directory. Select the defaulttree.DAE file, then click open.

[image: ../../_images/GCTreeDae.jpg]
After you click open, the 3D shape will be set. Next, assign Types[2]->layer to the grass terrain material and set Types[2]->probability to 1. This will result in many trees rendering on the grass terrain:

[image: ../../_images/GCManyTrees.jpg]
For our example, there are way too many trees. Under the GroundCover General section we have the maxElements property set to 90,000. If we adjust this number, we will have less trees being placed. However, this also affects our other layers. This can be a problem.

Rather than fiddling with the maxElements property, we can adjust Types[2]->probability. Set the value of probability to 0.1, which will cause the GroundCover to place quite a few less trees:

[image: ../../_images/ReducedProb.jpg]
As you can see, the GroundCover is extremely powerful. With a single object, we were able to place multiple types of foliage (billboards), separate the foliage based on terrain material, and even mix in 3D models:

[image: ../../_images/GCFinal.jpg]

Conclusion

The GroundCover object can add an immense amount of ambiance to your level. It is one of the most powerful and flexible Torque 3D objects. Continue experimenting by trying different types of settings, art, and level arrangements.

Overview of GUI Editor

“GUI” stands for Graphical User Interface. It is the summation of all the controls (windows, buttons, text fields, etc.) that are used to interact with a game and its settings. Most interfaces in games consist of buttons to launch or join a game session, editing devices to change user preferences, options to change screen resolutions and rendering options, and elements which display game data to the user as they are playing.

[image: ../_images/GUIEditor.jpg]
GUI creation and design is extremely important to game development. Many decent games have been crippled by inaccessible GUIs, which is why having a built in GUI editor can be a blessing. The Torque 3D editor provides drag and drop functionality, with minimal fill in the blank requirements.

Torque 3D features a WYSIWYG GUI Editor, which allows you to create, edit, and test your GUI in game with maximum fidelity. 90% of your GUI creation can be done in the editor, leaving 10% for scripting advanced functionality.

GUIs are saved as a script (.gui), which allows you to further tweak values using your favorite text editor. Additionally, you can declare variables and define functions at the end of a GUI script, which will not be written over when modifying the GUI using Torques editor.

Multiple controls which can be combined to make up a single interface. Each control is contained in a single structure, which can be embedded into other GUI elements to form a tree. The following is an example of a GUI control which displays a picture:

// Bitmap GUI control
new GuiBitmapCtrl() {
 profile = "GuiDefaultProfile";
 horizSizing = "width";
 vertSizing = "height";
 position = "8 8";
 extent = "384 24";
 minExtent = "8 8";
 visible = "1";
 helpTag = "0";
 bitmap = "art/gui/images/swarmer.png";
 wrap = "0";
};

Once the above GUI is active in your interface, it will display the following:

[image: ../_images/swarmer.png]

Tutorials

	Creating a New GUI - TODO
	Introduction

	Setting Up

	Our First GUI

	First Control

	Text Control

	Dynamic Text

	Conclusion

	Adding Controls - TODO
	Introduction

	Setting Up

	Adding Controls

	Bring the GUI to Life

	A New Window

	Load GUI From Key Press

	Conclusion

	Mini Console - TODO
	Introduction

	Setting Up

	Add the Controls

	The GuiTextEdit Control

	Commanding the Console

	Activating the Console

	Conclusion

	Simple HUD
	Introduction

	Setting Up

	Adding Text Controls

	Configuring Text Output

	Conclusion

	Advanced Dialogs
	Introduction

	Setting Up

	Adding Controls

	Adding Functionality

	Scripting Hooks

	Conclusion

	Simple Inventory GUI
	Introduction

	Setting Up

	Bitmap Controls

	GUI Profile

	More Visual Editing

	Bitmap Buttons

	Adding Functionality

	Scripting Hooks

	Conclusion
	File List

Creating a New GUI - TODO

Introduction

Setting Up

Our First GUI

First Control

Text Control

Dynamic Text

Conclusion

Adding Controls - TODO

Introduction

Setting Up

Adding Controls

Bring the GUI to Life

A New Window

Load GUI From Key Press

Conclusion

Mini Console - TODO

Introduction

[image: ../../_images/3_FinalGui.jpg]
This is a simple tutorial to create a mini Console in a window, complete with clear button. You will use a small amount of script to make a toggle key for the mini-console and also look at how to use the text entry box.

Suggested Reading:

	GUI Editor Overview

	GUI Interface

	TorqueScript Reference

	GUI Tutorial 1 (Creating a New GUI)

	GUI Tutorial 2 (Adding Controls)

Covered in this tutorial:

	How to setup a small console

	Set up a clear button

	Bind this dialog to a key

	Learn how to use Text entry

	Take a Look at profiles and what they are

Setting Up

By now you should be use to the setup procedure. Open your tutorial project and head to the GUI editor or alternatively use the Torque 3D Toolbox approach. Create a new GUI using the following:

New GUI Name: miniConsole

Gui Class: GuiControl

Select the GuiControl and set its property profile to GuiModelessDialogProfile.

NOTE: The GuiModelessDialogProfile sets our GUI so that the background does not prevent mouse events from reaching objects beneath it. Simply put, the user can click through the clear parts.

Select a GuiWindowCtrl from the library, add it to the editor work area, and resize so that it can contain the console.

Add the Controls

STEP 1: The next task is adding the controls to our window. Select the GuiWindowCtrl control from the controls list so that it is highlighted and add the following controls:

	GuiScrollCtrl

	GuiTextCtrl

	GuiTextEditCtrl

	GUiButtonCtrl

Move and resize the controls so that they match the image below (text in red is to show where each control is):

[image: ../../_images/3_CreateNewWindow.jpg]
Save your GUI into your project game/art/gui folder with the name of miniConsole.gui. Next we need to set some control properties as follows:

GuiWindowCtrl property text: Mini Console
GuiTextCtrl property text: Direct Text
GuiButtonCtrl property text: Clear

STEP 2: Select the GuiScrollCtrl control as we are going use it as a container for our console. With the scroll control selected add a GuiConsole from the Editor category. In the controls list, the new console control should be nested inside the scroll control. Do not worry about resizing the console control. The scroll box will handle its size.

[image: ../../_images/3_SelectGuiConsole.jpg]
This will enable us to scroll through the console as it is larger than our window. If you preview your GUI (F10) you will notice that the color is wrong for the console and also the window may be a little to narrow. We can rectify this by changing the GuiScrollCtrl profile to ConsoleScrollProfile and resize the window and scroll control horizontal width.

You may have to move the other GUI components so that it looks tidy again.

[image: ../../_images/3_Tweaking.jpg]
Do not forget to save often!

The GuiTextEdit Control

What we are going to do now is make our text edit control send its contents to the console when we press enter. Basically echo to the console what we type into the text edit control. First set the Clear button property to:

button property Command: cls();

	
cls()

	Use the cls function to clear the console output.

Syntax:

cls()

	Returns

	No return value.

Examples:

cls();

Now when we press this button the console will be cleared. We can now test the GUI by closing the GUI Editor, press F10 and try it out.

GuiTextEditCtrl property name: txtDirect

GuiTextEditCtrl property AltCommand: echo(txtDirect.getValue());

	
echo(string, all)

	Sends output to the console

Syntax:

echo(string text, all [...]);

	Parameters

	
	text – Text sent to console

	[...] – Optional value, of any type, that will be appended to the text

	Returns

	No return value.

Examples:

// Print "Hello World" in the console
echo("Hello World");

You may have noticed that this time our command was placed into the AltCommand property, the reason for this is so that the control waits until we press enter to send the command string, instead of sending the command on each letter entered.

It would be good that when we pressed enter that the text edit control emptied itself, to save us having to highlight and delete the text ourselves next time we want to enter a new word. Change the property as follows:

GuiTextEditCtrl property AltCommand: echo(txtDirect.getValue()); txtDirect.setValue(“”);

Now when you enter a word and press return the word is displayed in the console and the text is removed from the edit box. Now is a good time to save.

Commanding the Console

To do this we are going to need a new text edit control and a text label. Select our GuiTextCtrl and GuiTextEditCtrl, then copy and paste. Move the new copy beneath the first. Change the copied controls properties as follows:

GuiTextCtrl property text: Command

GuiTextEditCtrl property name: txtEnterCommand

GuiTextEditCtrl property AltCommand: eval(txtEnterCommand.getValue()); txtEnterCommand.setValue(“”);

The first command in the script sends the contents of the text edit control txtEnterCommand to the console to be executed. The following then clears the text ready for the next command to be entered.

	
eval(script)

	Use the eval function to execute any valid script statement

Syntax:

eval(string script);

	Parameters

	script – A string containing a valid script statement. This may be a single line statement or multiple lines

	Returns

	const char* Returns the result of executing the script statement.

Examples:

eval("game/scripts/client/test.cs");

Note: If you choose to eval a multi-line statement, be sure that there are no comments or (\) comment blocks (**) embedded in the script string.

Your mini Console should now look a little like this.

[image: ../../_images/3_FinalGui.jpg]

Activating the Console

STEP 1: We are going to call our new console from Ctrl + ~ (tilde) to keep inline with the main console. Open the file scripts/client/default.bind.cs in Torsion or another text editor. Head to the end of this file and add the following:

function callMiniConsole(%val)
{
 if(%val)
 {
 if (miniConsole.isAwake())
 {
 // close the mini console.
 Canvas.popDialog(miniConsole);
 }
 else
 {
 //open the mini console
 Canvas.pushDialog(miniConsole);
 }
 }
}

GlobalActionMap.bind(keyboard, "ctrl tilde", callMiniConsole);

This function allows us to use the same key press to open / close the dialogue by checking the GUI status guiControl.isAwake.

STEP 2: Next open the file game/scripts/client/init.cs and look for the // Execute the GUI scripts and functions section and add the following:

exec("art/gui/miniConsole.gui");

Now run your project and press the Ctrl + ~ (tilde) key to see your mini Console.

STEP 3: One last edit to be made with our GUI, to enable the window close icon:

GuiWindowCtrl property closeCommand: Canvas.popDialog(miniConsole);

Remember to save before testing the close icon.

NOTE: If you want to use this as a project console you may remove the direct text control leaving the command text and text edit. This would be more useful as the first Text edit control was for instruction purposes only.

Conclusion

In this tutorial, you learned the following concepts:

	How to setup a small console

	Set up a clear button

	Bind this dialog to a key

	Learn how to use Text entry

	Take a look at profiles and what they are

The next tutorial will show you how to display a GUI while playing the game, which is the foundation for creating a HUD (Heads Up Display).

Simple HUD

Introduction

[image: ../../_images/4_FinalGui.jpg]
With this tutorial you will learn some simple scripts that will be used to display the game FPS and polygon count as a overlay or HUD (Heads Up Display). We will also cover how to capture a mouse event and put it to good use while a schedule timer is used to constantly update the text displayed on our screen.

Suggested Reading:

	GUI Editor Overview

	GUI Interface

	TorqueScript Reference

	GUI Tutorial 1

	GUI Tutorial 2

	GUI Tutorial 3

Covered in this tutorial:

	Display text on the Game screen

	Show how to detect a mouse click

	Simple use of the schedule timer

	Show game fps and poly count

	Locate and Edit the playGui

Setting Up

Open up your tutorial project and start the GUI editor as we have in the previous tutorials in the series. This time we are going to edit the main playGui.gui. This GUI is the main play screen overlay where your in game HUD for ammo and other player feedback is displayed.

The main GUI control in this case is not GuiControl that we used in a dialog. This one uses GameTSCtrl, which is a GUI for rendering 3D scenes. Head to the file menu File->Open From File and point your file browser to data/FPSGameplay/scripts/gui. Load the file playGui.gui.

This GUI may have a few controls already but we shall ignore them for now.

Adding Text Controls

STEP 1: For this project we are only going to need to display text so add a new GuiTextCtrl from the control Library. Set its property to:

property text: Time

Next resize it to fit the text content. Ensure this control is selected, then copy andpaste a new control to the right of it and set this controls property to:

property text: 00
property name: lblTime

STEP 2: Select both of the text controls then copy and paste them three more times. Set their properties as follows:

Below Time:

Left Text property text: Clicks:
Right Text property text: 00
Right Text property name: lblClicks

Below Clicks:

Left Text property text: FPS
Right Text property text: 00
Right Text property name: lblFps

Below FPS:

Left Text property text: Poly
Right Text property text: 00
Right Text property name: lblPoly

[image: ../../_images/4_AddMoreText.jpg]
If you need aid in lining your text controls, the editor has a few tools to help you. The selected control can be moved / nudged by pressing the up/down/left/right keys. The tool bar also has a few icons for aligning up the controls:

[image: ../../_images/4_AlignmentBar.jpg]
Select all the left text controls and press the Align left icon:

[image: ../../_images/4_AlignLeft.jpg]
This will make their left edges line up nice and neat. If you want the text controls to be evenly spaced vertically, press the Distribute Vertically icon:

[image: ../../_images/4_DistributeVertical.jpg]
Get to know these layout helpers as they will save you time in a larger GUI. Remember to make a save!

Optional: If you think the black text will not show up in your project you could always add a GuiPanelCtrl, resize it, and send to the back by pressing the tool bar Send To Back icon.

[image: ../../_images/4_SendToBack.jpg]
It should look like this:

[image: ../../_images/4_ViewFinal.jpg]
Save and close down your project.

HINT: If you can not see all the numbers or text in a GuiTextCtrl, remember to resize the control until you can see all of its contents.

Configuring Text Output

Now our text controls are in place we need a little bit of script to bring it to life.

STEP 1: Open your data/FPSGameplay/scripts/client/playGui.cs file in your favorite editor and at the end of the first function (function PlayGui::onWake(%this)) add this line:

schedule(100,0, updateDisplay);

This method is a type of timer. When the specified amount of time has passed, a call is made to the function.

	
schedule(waitTime , objID or 0, functionName, arg0, ... , argN)

	Use the function to schedule functionName to be executed with optional arguments at time waitTime (specified in milliseconds) in the future. This function may be associated with an object ID or not. If it is associated with an object ID and the object is deleted prior to this event occurring, the event is automatically canceled.

Syntax:

schedule(U32 waitTime, SimObject* objID, string functionName, arg0, ... , argN);

	Parameters

	
	waitTime – The time to wait (in milliseconds) before executing functionName.

	objID – An optional ID to associate this event with.

	functionName – An unadorned (flat) function name.

	arg0...argN – Any number of optional arguments to be passed to functionName.

	Returns

	S32 Returns a non-zero integer representing the event ID for the scheduled event.

Example:

// Call the updateDisplay function in 100 milliseconds
schedule(100,0, updateDisplay);

This is how the function should look with our new line of code at the end:

function PlayGui::onWake(%this)
{
 // Turn off any shell sounds...
 // sfxStop(...);

 $enableDirectInput = "1";
 activateDirectInput();

 // Message hud dialog
 if (isObject(MainChatHud))
 {
 Canvas.pushDialog(MainChatHud);
 chatHud.attach(HudMessageVector);
 }

 // just update the action map here
 moveMap.push();

 // hack city - these controls are floating around and need to be clamped
 if (isFunction("refreshCenterTextCtrl"))
 schedule(0, 0, "refreshCenterTextCtrl");
 if (isFunction("refreshBottomTextCtrl"))
 schedule(0, 0, "refreshBottomTextCtrl");

 schedule(100,0, updateDisplay); //our new schedule
}

STEP 2: At the end of the script page add the following new function:

function updateDisplay()
{
 lblTime.setValue((getRealTime()/1000));
 schedule(100,0, updateDisplay);
}

Here we have made another call to the schedule which will give us a loop timed at 100ms updating any statements in this function. The first line sets the GuiTextCtrl named lblTime text content to getRealTime() which is the current time in milliseconds.

STEP 3: Next we will set up the text to display the current fps and poly count of the scene. This is done by looking at the global variables $fps::real and $GFXDeviceStatistics::polyCount. Add the following lines of script after the time statement:

lblFps.setValue($fps::real);
lblPoly.setValue($GFXDeviceStatistics::polyCount);

Your function should now look like this:

function updateDisplay()
{
 lblTime.setValue((getRealTime()));
 lblFps.setValue($fps::real);
 lblPoly.setValue($GFXDeviceStatistics::polyCount);
 schedule(100,0, updateDisplay);
}

Save your script and run your project. All being well and you have no errors, your display should show the time in ms, fps and poly count. Next we need to count the mouse clicks. Close down your project so we can add some more script.

STEP 4: To count our mouse clicks we need a way to tell the system that our mouse button has been pressed. We do this in the same way as we did for checking for a pressed key, with the bind method. Open your data/FPSGameplay/scripts/default.keybinds.cs file for editing. At the end of this file add the following:

function mouseFire()
{
 // add the value of one to our “click” text control
 lblClicks.setValue(lblClicks.getValue()+1);
}

moveMap.bind(mouse, "button0", mouseFire);

We have set the mouse button0 to call mouseFire function every time its pressed by adding it to the bind method. Run the project and click the left mouse button. The mouseFire() function sets the text controls body text every time its called, this counts the mouse down and mouse up events.

To stop this and only count the mouse down even we need to modify the function slightly. Close your project and edit the file as follows:

function mouseFire(%val)
{
 if(%val)
 {
 //mouse down
 // add the value of one to our “click” text control
 lblClicks.setValue(lblClicks.getValue()+1);
 }else
 {
 //mouse up
 }
}

Now the mouseFire function only counts the mouse down event. Save your files, run the project and test the mouse down counting.

Conclusion

In this tutorial, you learned the following concepts:

	Display text on the Game screen

	Show how to detect a mouse click

	Simple use of the schedule timer

	Show game fps and poly count

	Locate and Edit the playGui

Advanced Dialogs

Introduction

[image: ../../_images/5_FinalGui.jpg]
This project will cover the list control, how to add, remove and insert items in to the list. We will make an interactive demo showing how and where to put the scripts for this project to function. Find out how to make selections, multi-selections and display the results.

Suggested Reading:

	GUI Editor Overview

	GUI Interface

	TorqueScript Reference

	GUI Tutorial 1 (Creating a New GUI)

	GUI Tutorial 2 (Adding Controls)

	GUI Tutorial 3 (Mini Console Tutorial)

	GUI Tutorial 4 (Simple HUD)

Covered in this tutorial:

	Introduce the List Control

	Single and multi-selection

	How to populate your list

	Adding an Item

	Removing an Item

	Inserting an Item

Setting Up

Open your tutorial project and start the GUI Editor. Create a new Gui called testList using the GUI Class type GuiControl. From the controls library add a GuiWindowCtrl to the editor work space. Resize so as to fit a few buttons and a list similar to the above image.

GuiWindow property text: My List

Now we are ready to add our controls to the new window.

Adding Controls

STEP 1: First we will add our buttons to the window. Select the GuiWindowCtrl control and add a GuiButtonCtrl from the library. Reduce its width a little, then copy / paste another 6 copies and move them so that you have something similar to the following image.

Hint: GuiButtonCtrl is located in the Library > Buttons category.

[image: ../../_images/5_InitialLayout.jpg]
Remember to use the toolbar align tools to help keep you GUI layout uniform and neat.

HINT: You may want to turn on Toggle Center Smart Snapping from the tool bar to help align the controls.

[image: ../../_images/5_SmartSnapping.jpg]
STEP 2: Next we need to set the button properties;

button 1 property text: **Populate*

button 2 property text: Show Selection

button 3 property text: Add

button 4 property text: Remove

button 5 property text: Insert

button 6 property text: Clear List

button 7 property text: Select Multi

Save your new GUI to game/art/gui as testList.gui

STEP 3: Next we need to add 2 GuiPanelCtrl controls and a few GuiTextCtrl controls. Set new controls’ properties as follows:

text 1 property text: Item Selected
text 2 property text: Item Text

text 3 property text: 00
text 3 property name: lblItemSelected

text 4 property text: 00
text 4 property name: lblItemText

text 5 property text: Multi Selected

How it looks so far:

[image: ../../_images/5_PrelimGui.jpg]
Remember to save often.

STEP 4: Now to add the last few controls. From the Library, create a GuiScrollCtrl and place it in the center space. Add another GuiTextCtrl, a GuiTextEditCtrl under the item Text section and a GuiMLTextCtrl under the Multi Selected text.

[image: gui/tutorials/5_MLTextCtrl.jpg]
Properties:

GuiTextCtrl property text: Enter

GuiTextEditCtrl property name: txtEnter

GuiMLTextCtrl property name: lblMLSelected

STEP 5: Select the GuiScrollCtrl so that it is highlighted and add a GuiListBoxCtrl to the scroll control, this scroll control must become the container for the List box.

GuiListBoxCtrl property name: lstTestList

That takes care of all our controls. Save your GUI and close down the project. Time to get into some script.

Adding Functionality

STEP 1: Create a new script file in game/scripts/gui and name it testList.cs and open it in your favorite script editor.

NOTE: The list control is indexed from 0 for the first entry.

The list control exposes a few methods for us to use in populating and controlling list content. We are going to use the following:

	GuiListBoxCtrl.addItem(itemContent)

	GuiListBoxCtrl.deleteItem(itemNumber)

	GuiListBoxCtrl.insertItem(itemContent, itemNumber)

	GuiListBoxCtrl.getItemText(itemNumber)

	GuiListBoxCtrl.clearItems()

	GuiListBoxCtrl.getSelCount()

	GuiListBoxCtrl.getSelectedItem()

	GuiListBoxCtrl.getSelectedItems()

Copy the following script to your new testList.cs:

function testList::addItem()
{
 lstTestList.addItem(txtEnter.getValue());
}

//Insert An Item at the selection
function testList::insertItem()
{
 lstTestList.insertItem(txtEnter.getValue(),lstTestList.getSelectedItem());
}

//Remove a selected Item
function testList::removeItem()
{
 lstTestList.deleteItem(lstTestList.getSelectedItem());
}

//Fill list with content
function testList::populate()
{
 for(%i = 0;%i < 10;%i++)
 {
 lstTestList.addItem("Option " @%i);
 }
}

//show selected content
function testList::getSelectedContent()
{
 %item = lstTestList.getSelectedItem();
 lblItemSelected.setValue(%item);
 lblItemText.setValue(lstTestList.getItemText(%item));
}

//Clear the list of items
function testList::clearList()
{
 lstTestList.clearItems();
}

//Display multiselected items
function testList::multiSelect()
{
 //number of selected items
 %count = lstTestList.getSelCount();

 //returns a space delimited list of all the selected items indexes in the list
 %options = lstTestList.getSelectedItems();

 // parse selected items list
 for(%item = 0;%item <%count;%item++)
 {
 %option = getWord(%options,%item);
 %t = lstTestList.getItemText(%option);
 %text =%text @%t @ "\n";
 lblMLSelected.setValue(%text);
 }
}

STEP 2: Next we need to add our new script to the engine, open the game/scripts/client/init.cs and add the following under the section named // Execute the GUI scripts and functions:

exec("scripts/gui/testList.cs");

We also need to add our gui to this file. Under // Load up the shell GUIs add the following:

exec("art/gui/testList.gui");

Save of your files and run your project. Open the testList GUI once again.

Scripting Hooks

For the final part of this tutorial we need to add the ability to call our new functions from the respective buttons. Set the buttons properties as follows:

button “Populate” property Command: testList.populate();

button “Show Selection” property Command: testList.getSelectedContent();

button “Add” property Command: testList.addItem();

button “Remove” property Command: testList.removeItem();

button “Insert” property Command: testList.insertItem();

button “Clear List” property Command: testList.clearList();

button “Select Multi” property Command: testList.multiSelect();

Remember to save your GUI. Preview your GUI and try out the buttons, enter some text into the text edit box and try add, insert etc. To multi-select hold down shift while selecting list items, then press the Select Multi button.

Conclusion

In this tutorial, you learned the following concepts:

	Introduce the List Control

	Single and multi-selection

	How to populate your list

	Adding an Item

	Removing an Item

	Inserting an Item

In the next tutorial we will create an advanced graphical representation of a GUI.

Simple Inventory GUI

Introduction

[image: ../../_images/6_FinalGui.jpg]
For the final tutorial in the series, we will make a simple inventory GUI. We will look at how to setup the graphics for your background and buttons. A small script will be written to change the contents of the list for each of the buttons pressed and set up the title text.

Suggested Reading:

	GUI Editor Overview

	GUI Interface

	TorqueScript Reference

	GUI Tutorial 1 (Creating a New GUI)

	GUI Tutorial 2 (Adding Controls)

	GUI Tutorial 3 (Mini Console Tutorial)

	GUI Tutorial 4 (Simple HUD)

	GUI Tutorial 5 (Advanced Dialogs)

Covered in this tutorial:

	Learn how to implement a background image

	Make an image into a button.

	Lists in use

Setting Up

To complete this tutorial you will need some image files. You can either create your own or use the images from this tutorial:

Get the Tutorial 6 Images here: (gui/tutorials/Tutorial6_images.zip)

If you have downloaded the Tutorial6_images.zip please place the new folder “images” into game/art/. Open your tutorial project and start the GUI Editor. Create a new GUI and call it InventoryGui of GUI class type GuiControl.

Bitmap Controls

STEP 1: From the Library > Images category and add a GuiBitmapCtrl to the editor work space. Drag the new control into the center of your editor. From with in the GuiBitmapCtrl section of the properties panel you will notice the square box to the right of the bitmap property.

[image: ../../_images/6_BitmapField.jpg]
When clicked, this box will open a file browser. Locate your game/art/images folder and load the file backgnd.png.

GuiBitmapCtrl Property bitmap: art/images/backgnd.png

While we are also in the property section, we will need to set this control as a container. By being a container this control can become a parent control for the buttons and text controls of our inventor gui:

[image: ../../_images/6_IsContainer.jpg]
STEP 2: You will need to resize the bitmap control by dragging on the sizing handles, do so until you have something looking similar to this:

[image: ../../_images/6_InitialWindow.jpg]
NOTE: The Close button is embedded into the background image.

Now would be a good time to make a save if you have not done so already. Save the GUI as inventoryGui.gui.

STEP 3: Making sure you have the GuiBitmapCtrl selected, add a GuiTextCtrl from the Library > Text category to act as our inventory title. Place this in the space at the top of our inventory, stretch it, and set its properties to the following:

GuiTextCtrl property name: lblInvTitle

GuiTextCtrl property text: Inventory

You will notice that the text is very hard to read. We are going to adjust its color with a control profile. Instead of choosing one from the many provided, this time we are going to make our own.

GUI Profile

Setting up your own profile is very easy. Head to the folder game/art/gui and open the file defaultGameProfiles.cs in Torsion or another text editor.

If defaultGameProfiles.cs does not exist in your project you can add the following code to the end of art/gui/gameProfiles.cs and then at the top of scripts/client.cs add the line:

exec("~/art/gui/gameProfiles.cs");

To make our Inventory look good we are going to create three new profiles. In the defaultGameProfiles.cs add the following script at the bottom of the file:

singleton GuiControlProfile (InvList)
{
 opaque = true;
 fontType = "Arial";
 fontSize = 16;
 fillColor = "150 150 158"; //selection color
 fontColor = "255 255 255";
 justify = "left";
};

singleton GuiControlProfile (InvScroll)
{
 // make transparent
 opaque = false;
};

singleton GuiControlProfile (InvGui)
{
 // make transparent
 opaque = false;

 //Font
 fontType = "Arial";
 fontSize = 18;

 //Set font color - R G B (range 0 -255)
 fontColor = "200 200 200";
 justify = "center";

 //Draw a border
 border = 1;
 border = false;
};

You will notice the new profile names that will be displayed in the GUI controls profile property:

singleton GuiControlProfile(profile name){ ... }

Hint: When naming variables, controls, profiles, etc., try to be descriptive of its purpose. You can only use the label once otherwise you will have errors due to conflicting naming. For example, calling our profile inventoryGui would have caused a conflict with the name of the GUI itself.

To give you an idea of which properties are available, here is a table with explanations:

Note: certain GuiControl classes use this bitmap [[#Parsing_the_Bitmap|parsed into multiple pieces. |

border | integer | 1 | For most controls, if border is greater than 0, a border will be drawn. |
Some controls use this member to draw different types of borders. |

borderThickness | integer | 1 | Thickness of the control’s border. |

borderColor | Color4I | 040 040 040 100 | The color to use for the border of the control. |

borderColorHL | Color4I | 128 128 128 255 | The color to use for the border of the control when the control is highlighted. |

borderColorNA | Color4I | 064 064 064 255 | The color to use for the border of the control when the control is not active. |

canKeyFocus | bool | false | Whether this control can become the focus for keyboard events (key presses). |

cursorColor | Color4I | 000 000 000 255 | The color of the insertion point (blinking I-beam) cursor in an EditText control. |

fillColor | Color4I | 211 211 211 255 | The color for the interior of the control. |

fillColorHL | Color4I | 244 244 244 255 | The color for the interior of the control when the control is highlighted. |

fillColorNA | Color4I | 244 244 244 255 | The color for the interior of the control when the control is not active. |

fontCharset | enum | ANSI | The output encoding of the font to use. One of ANSI,?? |

fontSize | integer | 14 | The size of the font in points. |

fontType | string | Arial | The name of the font, along with other modifiers, like “bold”. |

fontColor | Color4I | 000 000 000 255 | Color of the font. |

fontColors | Color4I | 000 000 000 255 | Unknown. |

fontColorHL | Color4I | 032 100 100 255 | Color of the font when the control is highlighted. |

fontColorSEL | Color4I | 200 200 200 255 | Color of the font when the control or the text field is selected. |

fontColorNA | Color4I | 000 000 000 255 | Color of the font when the control is not active. |

fontColorLink | Color4I | 000 000 000 000 | Font color for a hyperlink. |

fontColorLinkHL | Color4I | 000 000 000 000 | Font color for a highlighted hyperlink. |

fontColors_0..9 | Color4I | 000 000 000 255 | Different members of this array of font colors is devoted to particular GuiControl classes. |
GuiMLTextProfile, GuiConsoleProfile, and others. |

justify | left, center, right | right | Justification of the text of the control. |

textOffset | Vector2I | 0 0 | Offset, in points, of the text of the control. |

Modal | bool | false | Whether the control should make the UI modal (prevent the user from doing anything outside of the control). |

mouseOverSelected | bool | false | Whether the control should be “selected” when the mouse hovers over it. |

numbersOnly | bool | false | Whether the text of the control should be restricted to numerical characters only. |

opaque | bool | false | Whether the control should be opaque. |

tab | bool | false | Whether the user can switch focus to this object by using the tab key. |

returnTab | bool | false | Whether a tab-event should be simulated when the return key is pressed. (Used in the EditorTextEdit profile.) |

profileForChildren | object | none | When the control is used as a container for other controls, this field specifies the profile to use for those child controls. |
Profiles that specify this field: EditorListBoxProfile EditorPopupMenu EditorPopupMenuLarge |
EditorTabBook GuiFormProfile GuiPopUpMenuDefault GuiPopUpMenuEditProfile T2DDatablockDropDownProfile. |

soundButtonDown | AudioProfile | none | Sound profile to use for the sound to produce when the button (control) is pressed. |

soundButtonOver | AudioProfile | none | Sound profile to use for the sound to produce when the mouse hovers the control. |

More Visual Editing

Open your project up again and load the inventoryGui.gui file. Select the title control GuiTextCtrl set its profile property:

GuiTextCtrl Property profile: InvGui

The GuiTextCtrl now uses the profile we created in script. By changing the profile the title text can now be seen. Before we create our bitmap buttons we need to add scroll and list controls to display our items.

[image: ../../_images/6_InventoryText.jpg]
With the GuiBitmapCtrl selected, add a GuiScrollCtrl control to the large pane. With the GuiScrollCtrl selected, add a GuiListBoxCtrl. The control list should look like this:

[image: ../../_images/6_SelectListBox.jpg]
Hint: GuiScrollCtrl can be found in the Library > Containers category, GuiListBoxCtrl can be found in the Library > Lists category.

Next we need to change a few properties to get it all looking nice:

GuiScrollCtrl property profile: InvScroll

GuiListBoxCtrl property name: lstInventory

GuiListBoxCtrl property profile: InvList

GuiListBoxCtrl property fitParentWidth: checked

Now is a good time to save.

Bitmap Buttons

Before we add functionality via script we need to add one last set of controls: our bitmap buttons.

STEP 1: With the GuiBitmapCtrl control selected add a new GuiBitmapButtonCtrl and place it in the left hand panel of our GUI.

Hint: GuiBitmapButtonCtrl can be found in the Library > Buttons category.

Set the new controls property: (remember you can click the file box to access the browser)

GuiBitpmapButtonCtrl property Bitmap: game/art/images/aRaLogoIcon.png

Resize the control as in the image below:

[image: ../../_images/6_AddFirstButton.jpg]
Press F10 to preview your GUI and try the button.

STEP 2: The button does not work! This is because we have specified that the control has a single image for all of its states, thus no change when it is clicked. To remedy this ensure the property looks like the following:

GuiBitpmapButtonCtrl property Bitmap: game/art/images/aRaLogoIcon (notice there is no file extension)

Now a little note on the bitmap button control. You may have noticed that the image was entered as game/art/images/aRaLogoIcon with no extension (*.png). This is very important and not an error, but part of the button multi image system.

Each image needs to be named in the correct format for the button system to recognize the image as part of a multiple image set. Have a look at the images in the game/art/gui/images folder.

Normal - aRaLogoIcon.png

Hover - aRaLogoIcon_h.png

Down - aRaLogoIcon_d.png

If you want to have multiple images for normal / hover / down, you just add the file path and the file name excluding the file extension (*.png). The engine will look for the correct images. Save and preview (F10) your GUI to try out the button.

STEP 3: Next, select the new button and copy / paste three more. Arrange the buttons under each other.

HINT: If you select multiple controls you can then resize them all at the same time.

HINT: Remember you can use the icons in the tool bar to line up and distribute the controls evenly.

HINT: The tool bar icons will display a tool hint if you hover the mouse over them.

Set the properties of the new buttons:

Button 1 property name: btn1

Button 2 property name: btn2

Button 3 property name: btn3

Button 4 property name: btn4

[image: ../../_images/6_AddMoreButtons.jpg]
STEP 4: The last control we need is the close button at the bottom of the inventory. With the GuiBitmapCtrl selected add one more GuiBitmapButtonCtrl. Set its properties to the following:

Button close property name: btnClose

Button close property Bitmap: game/art/images/inventoryClose (again leave off the file extension)

Resize the control so that it fits neatly over the background image of the close button. Use F10 to preview your GUI to make sure all the button images change with the mouse events.

Adding Functionality

Now that all of the controls are in place, we need to make it all do something. Making sure you have saved your GUI, close down Torque 3D and open your favorite script editor. Create a new script file in scripts/gui/ called InventoryGui.cs.

The new script will add functionality to the buttons which, when pressed, will change the text in the title and place the contents of an array into the list box. Add the following code to your new script file:

//
//global arrays for initial content to be displayed
//

$FOOD = 0;
$SPELLS = 1;
$WEAPON = 2;
$ARMOUR = 3;

$aInv[$FOOD,0] = "Bread x 1";
$aInv[$FOOD,1] = "Apple x 1 ";
$aInv[$FOOD,2] = "Pie x 2";

$aInv[$SPELLS,0] = "Fall From Grace";
$aInv[$SPELLS,1] = "Ice Call";
$aInv[$SPELLS,2] = "Water Wish";
$aInv[$SPELLS,3] = "Fire Storm";
$aInv[$SPELLS,4] = "Healing Heart";

$aInv[$WEAPON,0] = "Sword of Truth";
$aInv[$WEAPON,1] = "Chain Axe";
$aInv[$WEAPON,2] = "Dagger";
$aInv[$WEAPON,3] = "Elf Staff";
$aInv[$WEAPON,4] = "Ork Hammer";

$aInv[$ARMOUR,0] = "Light Mail";
$aInv[$ARMOUR,1] = "Light Shield";
$aInv[$ARMOUR,2] = "Cursed Gloves";
$aInv[$ARMOUR,3] = "Invisiblity Cloak";

//
//Give each of our buttons a function to call
//

function inventoryGui::btn1()
{
 //set the title text
 lblInvTitle.setValue("FOOD");

 //clear the list box of previous content
 lstInventory.clearItems();

 //iterate through our array adding items to our list
 for(%i = 0;%i < 4;%i++)
 {
 lstInventory.addItem($aInv[$FOOD,%i]);
 }
}

function inventoryGui::btn2()
{
 lblInvTitle.setValue("SPELLS");
 lstInventory.clearItems();
 for(%i = 0;%i < 5;%i++)
 {
 lstInventory.addItem($aInv[$SPELLS,%i]);
 }
}

function inventoryGui::btn3()
{
 lblInvTitle.setValue("WEAPONS");
 lstInventory.clearItems();
 for(%i = 0;%i < 5;%i++)
 {
 lstInventory.addItem($aInv[$WEAPON,%i]);
 }
}

function inventoryGui::btn4()
{
 lblInvTitle.setValue("ARMOUR");
 lstInventory.clearItems();
 for(%i = 0;%i < 4;%i++)
 {
 lstInventory.addItem($aInv[$ARMOUR,%i]);
 }
}

Next, open the game/scripts/client/init.cs file and add the following under the section // Execute the GUI scripts and functions:

exec("scripts/gui/InventoryGui.cs");

Save your script files now.

Scripting Hooks

We are going to make our final edits in the editor. Run the GUI Editor and load your inventoryGui. Each button now needs to be linked to our new functions. Set the following properties to our buttons:

btn1 property command: inventoryGui.btn1();

btn2 property command: inventoryGui.btn2();

btn3 property command: inventoryGui.btn3();

btn4 property command: inventoryGui.btn4();

btnClose property command: Canvas.popDialog(inventoryGui);

Save your final edits and test out your new inventory system.

Conclusion

In this tutorial, you learned the following concepts:

	Learn how to implement a background image

	Make an image into a button.

	Lists in use

This brings the GUI Editor tutorial series to a close. You should now have enough information to begin constructing your own custom GUIs, specific to your game. You can download the images, GUIs, and scripts created for these tutorials by CLICKING HERE. (gui/tutorials/zip/GUITutorial_Series_One.zip)

Special thanks to Dave Young (aka NightHawk) of aRa Software Tutorials for writing the original guides.

File List

	
	game/art/

	
	HelloWorld.gui

	InventoryGui.gui

	miniConsole.gui

	newWindow.gui

	playGui.gui

	testList.gui

	testWindow.gui

	gameProfile.cs

	Torque-3D-logo.png

	
	game/art/images/

	
	araLogoIcon.png

	araLogoIcon_d.png

	araLogoIcon_h.png

	backgnd.png

	inventoryClose.png

	inventoryClose_d.png

	inventoryClose_h.png

	
	game/scripts/client/

	
	default.bind.cs

	init.cs

	
	game/scripts/gui

	
	InventoryGui.cs

	playGui.cs

	testList.cs

	testWindow.cs

Primer

	Torque Art Primer - TODO
	Introduction
	File Formats

	Coordinate System

	Normal/Bump Maps

	3-Space Features
	COLLADA and DTS

	Level-of-Detail (LOD)

	Bounds

	Collision Geometry

	Billboards

	Imposters

	Mounting

	Animation Concepts
	Threads

	Ground Transforms

	Triggers

	Blends

	Materials
	Material Mapping

	Material and Skin Swapping
	Skinning

	Animated Materials
	UV animation

	Image Sequence animation

	Conclusion

	Torque Character Primer
	Introduction
	Character Setup Pipeline

	Hitboxes and Damage Location specifications

	Conclusion

Torque Art Primer - TODO

Introduction

File Formats

Coordinate System

Normal/Bump Maps

3-Space Features

COLLADA and DTS

Level-of-Detail (LOD)

Bounds

Collision Geometry

Billboards

Imposters

Mounting

Animation Concepts

Threads

Ground Transforms

Triggers

Blends

Materials

Material Mapping

Material and Skin Swapping

Skinning

Animated Materials

UV animation

Image Sequence animation

Conclusion

Torque Character Primer

Introduction

Character Setup Pipeline

Characters in T3D can be setup to use different weapon animations and share those animations between different skinned meshes with the same skeleton hierarchy. So a standard T3D character would have COLLADA files for the character’s skinned mesh and skinned skeleton as well as for the character’s animations with just the skeleton for each weapon pose. The animations can be exported individually or combined in one .dae file that is split up through the shape editor.

Third Person Weapon Player Animation Names

	Back: (Loops)

	Run backward

	Crouch_Back: (Loops)

	Crouch walk backward

	Crouch_Forward: (Loops)

	Crouch walk forward

	Crouch_Root: (Loops)

	Crouch idle

	Crouch_Side: (Loops)

	Crouch move right

	Death#:

	Where ‘#’ is can be a number for multiple death sequences that will be picked randomly. So Death1, Death2, etc.

	Fall: (Loops)

	Character is falling

	Head: (Blend)

	Usually a 9 frame animation that only affects the neck and head and works in conjunction with the “Look” animation. Frame 1 is looking straight up, frame 5 is looking straight forward and 9 is looking down

	Jump:

	Character jumping

	Land:

	Character landing

	Look: (Blend)

	Usually a 9 frame animation that only affects the spine and works in conjunction with the “Head” animation. Frame 1 is looking straight up, frame 5 is looking straight forward and 9 is looking down

	Reload: (Blend)

	Reloading the weapon

	Root: (Loops)

	More commonly known as the idle animation in most parts of the industry. Just the character standing and breathing

	Run: (Loops)

	Character running

	Side: (Loops)

	Character side stepping to the right. This animation will be played in reverse when moving to the left

	Sitting: (Loops)

	Character sitting in a vehicle

	Swim_Back: (Loops)

	Swimming backward

	Swim_Forward: (Loops)

	Swimming forward

	Swim_Idle: (Loops)

	Treading water

	Swim_Left: (Loops)

	swimming left

	Swim_Right: (Loops)

	Swimming right

After that you add the animations through the shape editor by going to sequence tab (labeled “Seq”). Click on the new sequence icon and a file browsing dialog will open. Select the sequence COLLADA file you want. Now define the time range that you want by changing the numbers at the beginning and end of the timeline. Complete this process for each sequence that you wish to add.

Optionally you can define an object called “BOUNDS” that can be used to define the object’s origin (as opposed to your 3d content application’s origin) and is used to define the speed that the object is intended to be moving at. Such as during a run sequence, if you had a character running forward at 1 meter a second in your 3d application’s scene and had the “BOUNDS” object follow your character then when you bring it into Torque 3D and assigned to the player’s run animation then the playback speed of the animation can be adjusted depending on the speed that the player is moving through the game world. What this means is that animations don’t have any sliding issues caused by the character’s in game speed not matching with the designed animation speed.

Hitboxes and Damage Location specifications

Currently, the player’s hitbox defined by their bounding box. In order to get damage locations we have cut the player’s world box up into pieces as defined by the following sections in the Player’s datablock:

	boundingBox

	boxHeadPercentage

	boxTorsoPercentage

	boxHeadLeftPercentage

	boxHeadRightPercentage

	boxHeadBackPercentage

	boxHeadFrontPercentage

The player’s boundingBox determines the length in each dimension the bounding box should encompass. From the standard player datablock, its sections would look like the following:

[image: ../../_images/CharacterPrimerHitBoxOverview.png]
It may be easiest to come up with these numbers by taking a render of the player, and using an imaging program to determine what percentage of the player makes up their legs/head/torso.

In order to take advantage of these damage locations we use the function Player::getDamageLocation(). One of the best places to call this is from the Projectile:onCollision or Armor::Damage() as we’ll have the position of the projectile, the player to call getDamageLocation() and a good place to modify the damage if we wanted to do extra damage on a headshot or less damage to the legs.

GetDamageLocation() will return a string using the defined boundingbox percentages from the player datablock. In C++ it more or less transforms the projectile’s location form world space to object space, multiplies the player’s bounding box by its percentages, then checks to see if the hit location is greater than, or less than the bounding box dimension multiplied by the percentage. For example, if the bounding box’s dimension was 1, it will multiply 1 by 0.43, and check if the bullet’s location is less than or equal to this value. If it’s less than the torso, then it counts as a leg shot. The system then does the same test in the other dimensions to see if the front/back or left/right was hit.

The string returned will be one of the following:

Possible locations:

	legs

	torso

	head

Head modifiers:

	left_back

	middle_back

	right_back

	left_middle

	middle_middle

	right_middle

	left_front

	middle_front

	right_front

Legs/Torso modifiers:

	front_left

	front_right

	back_left

	back_right

For example, a perfect headshot would be “head_middle_front”, head_middle_back, or “head_middle_middle”. A shot to the front left leg would be “legs_left_front”.

As we can see in the picture, there are situations where we can register a hit from the headbox that actually wouldn’t “hit” the player. Such as shooting a bullet in the boxHeadRightPercentage area from the front of the player would fly over the player shoulder, but register a hit in the engine. It may be necessary to do some math to see if the bullet will actually pass through the center of the player’s head box to get realistic results.

[image: ../../_images/CharacterPrimerHitBoxRescale.png]

Conclusion

This article has described the basic animation setup for a custom character’s standard “third person” rig. With this information you will be able to animate a custom character so that it will interact with the standard Torque 3D character animation system. Additionally, we’ve covered the requisite information for reading basic hit locations from a Torque 3D player.

Formats

	COLLADA - TODO
	Introduction

	COLLADA for Torque 3D

	Troubleshooting

	Appendix 1: Material Settings

	Appendix 2: Supported Extensions

	Appendix 3: Supported COLLADA Elements

	DTS Format - TODO
	Introduction

	DTS Format

	Sequences

	Bitsets

	Data Buffers

	Meshes

	DSQ Format - TODO
	Introduction

	DSQ Format

	Sequences

	Bitsets

	Texture Compression - TODO
	Introduction

	The DDS Image Format

	Soldier Imperial Sample

	GarageGames Logo Sample

	DDS Compression Guidelines

	How to Convert to DDS

	References and Further Reading

	Conclusion

COLLADA - TODO

Introduction

COLLADA for Torque 3D

Troubleshooting

Appendix 1: Material Settings

Appendix 2: Supported Extensions

Appendix 3: Supported COLLADA Elements

DTS Format - TODO

Introduction

DTS Format

Sequences

Bitsets

Data Buffers

Meshes

DSQ Format - TODO

Introduction

DSQ Format

Sequences

Bitsets

Texture Compression - TODO

Introduction

The DDS Image Format

Soldier Imperial Sample

GarageGames Logo Sample

DDS Compression Guidelines

How to Convert to DDS

References and Further Reading

Conclusion

Exporters

	DAE to DTS
	Examples

	Materias

	Futher Reading

	Milkshape - TODO
	Introduction

	Main Dialog

	Meshes

	Materials

	Sequences

	Comment Strings

	Additional Information

	Change Log

DAE to DTS

The dae2dts tool is a command-line application used to convert COLLADA (DAE) models to Torque shape (DTS) or animation (DSQ) files. The tool is invoked from the windows command prompt as follows:

dae2dts [options] daeFilename

Where daeFilename is the path to the COLLADA (.dae) file to convert (the DAE file does not need to be in the same folder as the dae2dts tool). The tool exit code is zero on success or non-zero on failure, making it suitable for use within a larger batch conersion process. The following options are available:

	–config cfgFilename Set the conversion configuration filename. Reserved for future use; not currently supported.

	–output dtsFilename Set the output DTS filename. If not specified, the output will have the same base name as the input DAE file, but with DTS (or DSQ) extension.

	–dsq If set, all sequences in the shape will be saved to DSQ files (one for each sequence) instead of being embedded in the DTS file. The generated DTS file will not contain any animation sequences.

	–dsq-only Same as –dsq, but no DTS file will be saved (handy for animation only input files).

	–compat If set, the tool will attempt to write to DTS v24 for compatibility with non-T3D engines (TGE, TGEA, ShowToolPro etc). By default, the dae2dts tool outputs DTS v26 files which can only be loaded in T3D based products (T3D can also load DTS v24 files). DTS v24 supports only a single UV set, around 11000 maximum triangles per mesh, and does not support vertex colors. Also, COLLADA models that use autobillboards may not be saved correctly to DTS v24.

	–diffuse If set, the tool will use each material’s diffuse texture as the material name (instead of the COLLADA <material> name) for compatibility with simple TGE materials.

	–materials If set, the tool will generate a materials.cs script in the output folder to define Materials used in the shape.

	–verbose If set, the tool will output progress information

Examples

A COLLADA model, player.dae, contains 3 animation clips: root, run, shoot:

Convert to 'player.dts' (all animations are embedded in the DTS file)
dae2dts player.dae

Convert to 'orc.dts', and generate 'orc_root.dsq', 'orc_run.dsq' and
'orc_shoot.dsq' (all files compatible with TGE, TGEA and ShowToolPro)
dae2dts --compat --dsq --output orc.dts C:\shapes\player.dae

Extract animations only and store in 'player_root.dsq', 'player_run.dsq' and
'player_shoot.dsq'
dae2dts --dsq-only player.dae

Materias

A major difference between a COLLADA and a DTS model is in the naming of materials. DTS files only support a single material name, which historically (TGE) has been used to reference the diffuse texture. For example, a DTS material that uses the texture wood.jpg would be called wood. When Torque loads this model, if there are no script Materials defined that mapTo wood, the engine looks for a JPG, PNG, or BMP file with that name in the same directory as the model.

However, in a modelling application (and in Torque3D!), a material encompasses much more than just the diffuse texture. When a model is exported to the COLLADA file format, the name of the material in the modelling app is stored in the <material> tag in the COLLADA file.

The default behavior of the dae2dts tool is to use the COLLADA <material> element name as the material name in the DTS file, which means the model will not display correctly in Torque unless materials.cs has been setup correctly. There are two approaches to solve this issue for dae2dts converted models:

	Name the material in the 3D app the same as the diffuse texture file, or use the –diffuse option to do it automatically at conversion time. This is the recommended approach for engines that do not support scripted Materials (TGE, ShowToolPro).

	Create a materials.cs file in the same directory as the model (or have the tool create it for you), and define a script Material object that maps to each COLLADA material name. This is the recommended approach if your engine supports scripted Materials as it will give you greater flexibility in naming your materials.

Futher Reading

See the *Torque COLLADA Loader*(Artist Guide/Formats/COLLADA) documentation for more details about how Torque loads COLLADA files, and for which COLLADA features are supported.

TSShapeContructor allows you to modify the loaded COLLADA model in-memory before it is saved to DTS or DSQ. The TSShapeConstructor script can be created by hand, or by using the T3D Shape Editor tool (available in the T3D demo for non-T3D licensees). See TSShapeConstructor in the Torque 3D - Script Manual for more details.

Milkshape - TODO

Introduction

Main Dialog

Meshes

Materials

Sequences

Comment Strings

Additional Information

Change Log

Tutorials

	Adding Objects to level
	Introduction

	Adding A COLLADA Model

	Shape Properties

	Conclusion

	Adding A New Player - TODO
	Introduction

	Setup

	The Datablock Editor
	Player Datablock

	Player Properties
	Change the Character Model

	Spawning

	Customizing our Character
	Custom 3rd Person Camera

	Power up our Character

	Activate Weapons

	Conclusion

	Terrain - TODO
	Introduction

	Setup

	Heightmap, Opacity Layer, Terrain Textures

	Importing A Heightmap

	Conclusion

	Adding Wind effects
	Introduction

	Vertex Painting Your Model

	Exporting Your Mesh

	Setting Up A Mesh In Torque 3D

	Setting the View Distance of Wind Effects

	Conclusion

	Destructible Objects MAX - TODO
	Introduction to Destructible Objects

	Setting Up Collision

	Hierarchy For Meshes With Multiple LODs

	Aligning the Pivot Points

	Zero Transforms

	Setting up the physicsShape.cs file

	Building a destructible object with more than one damage states

	Null LODs

	Conclusion

	Destructible Objects XSI - TODO
	Introduction to Destructible Objects

	Setting Up Collision

	Exporting from Softimage

	Hierarchy For Meshes With Multiple LODs

	Aligning the Pivot Points

	Freeze Transforms

	Setting up the physicsShape.cs file

	Building a destructible object with more than one damage states

	Null LODs

	Conclusion

	PostFX Color Correction - TODO
	Required Knowledge

	Color Correction

	Workflow

Adding Objects to level

Introduction

3D models, referred to as shapes in these tutorials, make up most of the objects in your game. This includes players, items, weapons, vehicles, props, buildings, and so on. Currently Torque 3D supports three model formats: COLLADA, DTS, and DIF.

COLLADA: Short for **COLLA**borative **D**esign **A**ctivity. COLLADA is emerging as the format for interchanging models between DCC(digital-content-creation) applications. The file format is .dae (**d**igital **a**sset **e**xchange). The data is stored in an open standard XML schema, which means it can be read and tweaked manually if need be.

DTS: Short for **D**ynamics **F**ree **S**pace, is the native, binary file format used by Torque to store shape (geometry, LOD, bone, and animation) data. DTS exporters exist for several 3D modeling packages such as 3ds Max, Maya, XSI, Blender, and Milkshape3D.

DIF: Short for **D**ynamix **I**nterior **F**ile, this is another proprietary format developed during the Tribes days and has survived through Torque. DIFs (also called Interiors) are primarily used for buildings or other enclosing structures. While the binary space partition (BSP) functionality is useful, using DTS or COLLADA files with Polysoup collision enabled is the preferred method and will save you time on asset generation.

Adding A COLLADA Model

The ability to load and render COLLADA models (.dae) is a new Torque 3D feature. The process of adding a COLLADA shape is identical to adding a DTS. You will first need to know where your .dae file is located.

Again, you will open the Library->Meshes tab. Navigate to the directory containing your COLLADA model (.dae). If you hover over the item, you will get a brief file description.

[image: ../../_images/AddCollada.jpg]
Go ahead and double-click on the object. The file should load extremely fast, but you may not be able to see it right away. Pull your camera up and away from its current location to see the giant shape which has been added.

[image: ../../_images/MBAdded.jpg]
All of the geometry and texture information is readily available in this single format. What’s more, nearly every major 3D modeling application is able to export directly to the COLLADA format so you can import similarly complex objects as you see here.

Shape Properties

Now that we have added an object to the Scene, lets look at properties that the object has. Click on the Scene tab, then select the TSStatic object.

[image: ../../_images/sceneTree.jpg]
Object properties are displayed in the pane below:

[image: ../../_images/inspectorTree.jpg]

Conclusion

While asset creation is the first step, importing 3D models into your level is a major milestone. The flow goes both ways, however. Once you have added a model to your scene, it can dynamically reflect any changes made to the actual file containing the data. If you re-export an existing COLLADA model from an application, your game object will automatically update to show the changes.

The rest is simply level design. How, where, and why you place objects is up to you.

Adding A New Player - TODO

Introduction

One of the first things you will want to do after you have become familiar with T3D is to change the player character model. This can simply be achieved by using Torque 3D’s powerful World Editor and its provided game editing tool set.

[image: ../../_images/30.jpg]
In this Tutorial we are going to take a step by step look at how to change the default player character from the Gideon model to the BoomBot model. These steps can then be easily applied to your own rigged character model for use in your T3D project. We will explore how to change the players characteristics through the use of the datablock properties and how to spawn this new player into the game , and all this can be done without touching any scripting thanks to T3D’s great game editing WYSIWYG tool set.

Topics we will look at in this tutorial:

	Create a new Player Datablock

	Changing the player model

	Changing Player properties

	Spawning a new player

Setup

We will start off by opening the Deathball Desert Torque 3D project from the provided toolbox, but first I would advise you to back up this example project.

	The example project is located in the Torque 3D Pro 1.1 Examples folder. Make a backup copy of the FPS Example folder by copying it to a backup folder.

	Launch the T3D tool box.

The Datablock Editor

Player Datablock

Player Properties

Change the Character Model

Spawning

Customizing our Character

Custom 3rd Person Camera

Power up our Character

Activate Weapons

Conclusion

Terrain - TODO

Introduction

In this tutorial, we are going to create a lush valley using sample assets provided by Sickhead Games. For this guide, the terrain will be created by importing a heightmap, opacity maps, and creating new materials.

Setup

Heightmap, Opacity Layer, Terrain Textures

Importing A Heightmap

Conclusion

Adding Wind effects

Introduction

The color of a vertex in a model allows the artist to specify how a plant model will behave once it is brought into Torque 3D. This also covers how a plant will respond to a wind emitter. Here is a breakdown of how the colors affect a model:

	Bending of branches: controlled by the amount of red on a vertex. Normally the ends of branches are fully red, and the spot where they reach the trunk would be fully black (or colorless, depending on how you are painting…see my method below), with a smooth gradation between.

	Branch group instancing: So that groups of branches sway independently, they need to have varying amounts of green. Usually done by selecting a clump of branches/fronds and filling with a random shade of green (anywhere from pure green to black).

	Flutter of leaves: flutter is controlled by the amount of blue on a vertex. Normally, the ends of fronds are fully blue so they flutter fully, but I’ve found that in a lot of cases (in trees, mostly) I can just fill the entire frond with blue.

	Vertical bend: the vertical bend of a tree does not have to be painted… that is calculated automatically by its height

Vertex Painting Your Model

The following images represent the tree model with the separate vertex coloring steps:

The tree without any vertex coloring:

[image: ../../_images/Tree_novertexcolor.jpg]
The red coloring only, to designate the upward/downward bend of the branches. Notice how the base of the branches are black and the ends of the branches are red:

[image: ../../_images/Tree_redvertexcolor.jpg]
The blue coloring only, to designate leaf fluttering. Notice how only the edges of the blades are colored:

[image: ../../_images/Tree_bluevertexcolor.jpg]
The green coloring only, to designate individual instances of branch bend. Each branch has its own shade of green:

[image: ../../_images/Tree_greenvertexcolor.jpg]
Finally, all the colors mixed together with an additive blend. Notice that the trunk has no coloring, since it will neither flutter like a leaf nor wave like a branch. The bend along the tree’s height is done without the use of vertex coloring:

[image: ../../_images/Tree_allvertexcolors.jpg]
Here is a video of this in action:

https://www.youtube.com/watch?v=q8cjthzGcf0 (video/Forest Editor Wind Effects.mp4)

How you actually apply these color sets varies between modeling apps. The following is an example from 3D Studio Max:

	Stack three separate Vertex Paint modifiers on the tree model.

	Working from the bottom, one modifier at a time, fill the vertices with black, then paint one of the color sets listed above to each of the three modifiers. In the end, it doesn’t matter in what order the colors are created or stacked.

	After all three have been painted their own color set, set the blend mode of the top two Vertex Paint modifiers to “additive”.

	Export your model as COLLADA with these modifiers on and you should have the vertex coloring you need to get wind effects on your meshes. Do not collapse the stack.

[image: ../../_images/Tree_colladamodifiers.jpg]
If you need to go back and tweak individual color sets/modifiers in Max, you can put their blending modes back to “normal” and turn them on and off to isolate an individual color set. DO NOT eyeball the colors. Dial them in. Red means pure red, or R:100%, G:0%, B: 0%.

Exporting Your Mesh

The DTS format does not support vertex color data, which means you will need to export your models as COLLADA files. A commonly used plug-in is OpenCOLLADA, which is a free exporter for 3D Studio Max.

Note: At the time this article was written, 3DS Max’s built-in COLLADA(.dae) exporter was not exporting vertex coloring correctly. OpenCOLLADA exports both vertex coloring and User Properties correctly. Just be aware that it appends material names with “-material”.

Setting Up A Mesh In Torque 3D

[image: ../../_images/Tree_final.jpg]
Once a mesh is brought into the Forest Editor (and a global wind emitter is placed in the scene), the mesh parameters must be set properly for your plant to come alive correctly. Definitions for mesh parameters:

	shapeFile - Path to mesh

	collidable - Indicates whether or not the mesh uses collision

	breakable - (not implemented)

	radius - The canopy radius in meters. This keeps plants from being placed too close to one another and having overlapping canopies. This value may need to be adjusted on larger plants when placing smaller plants under their canopy (placing bushes under a tree, for instance). This has no in-game functionality and only matters when placing trees in your environment.

	mass - Mass will generally affect how springy a plant is in response to wind or an explosion. Think of it as a weight on the end of a stick. Most of my trees are set to around 5, smaller plants down to 0.5.

	rigidity - How much the plant resists the wind force. Most of my trees are within 10-20, but some small grasses go down to 1.

	tightnessCoefficient - How much the plant resists bending. Between 0 and 1.

	dampingCoefficient - Slows down the sway of the plant so it won’t whip back and forth forever. Between 0 and 1.

	windScale - Relative scale at which this plant is affected by wind. Between 0 and 1, but will almost always be set around 1.

	trunkBendScale - The amount that a plant will sway from top to bottom. This is very sensitive. I don’t have any vegetation set higher than 0.03, and most are under 0.01.

	branchAmp - Amount that a branch with sway up and down. Start well below 1.

	detailAmp - The amount of leaf flutter. Start well below 1, in the 0.05 range.

	detailFreq - The speed of leaf flutter. Start well below 1, in the 0.05 range.

It may seem like a lot of these appear to be doing the same thing, but there are subtle differences. The numbers shown in the example images are just starting places. Your plants may differ due to the way you’ve colored their vertices or set the global wind emitter.

Setting the View Distance of Wind Effects

Plants in the distance will not display wind effects. This can be changed by simply adjusting the variable assigned to this range: $pref::windEffectRadius = 30. That sets it to 30 meters around the camera. The default setting is 25 meters. Obviously this will affect performance, but you can cater it to your specs. Make sure to save your level after doing this.

Conclusion

This guide covered the basics of how Torque 3D utilizes vertex painted objects. Artists are given a lot of control over forest editing. Vertex painting is an extremely important step and should be considered when developing your forest assets. In addition to the global wind emitter, you can use a local wind emitter around anything that may create a localized wind situation

	waterfalls

	helicopter rotors

	big fans

	jet engine exhaust

	etc

Destructible Objects MAX - TODO

Introduction to Destructible Objects

Setting Up Collision

Hierarchy For Meshes With Multiple LODs

Aligning the Pivot Points

Zero Transforms

Setting up the physicsShape.cs file

Building a destructible object with more than one damage states

Null LODs

Conclusion

Destructible Objects XSI - TODO

Introduction to Destructible Objects

Setting Up Collision

Exporting from Softimage

Hierarchy For Meshes With Multiple LODs

Aligning the Pivot Points

Freeze Transforms

Setting up the physicsShape.cs file

Building a destructible object with more than one damage states

Null LODs

Conclusion

PostFX Color Correction - TODO

Required Knowledge

	You need to be familiar with Torque 3D. Specifically loading a level for game play, taking an in game screen shot and locating the screen shot file location for editing, saving, and loading.

	You need to have a basic understanding of Adobe Photoshop or another image editing software package.

Color Correction

Color Correction is a powerful new tool to help fine tune the overall color temperature in a Torque 3D scene. These adjustments are performed in an image editing program such as Photoshop that allows for individual channel (R, G, B) tuning. Interesting variants can easily be achieved for a scene with some simple steps.

Workflow

Importing Assets

Introduction

Test

Overview

	Introduction to TorqueScript
	What is TorqueScript?

	Basic Usage

	Scripting vs Engine Programming

	Getting Started

	TorqueScript Editors - TODO
	On Windows

	On OS X

	Cross-platform

	Torsion TorqueScript IDE - TODO

	Syntax Guide
	The Basics
	Main Rules

	Comments

	Variables
	Usage

	Variable Types

	Data Types
	Numbers

	Strings

	String Operators

	Booleans

	Arrays

	Vectors

	Operators
	Arithmetic Operators

	Relational Operators

	Bitwise Operators

	Assignment Operators

	Miscellaneous Operators

	Control Statements
	if, else

	switch and switch$

	Loops
	For Loop

	While Loop

	Functions

	Console Methods

	Console Functions

	Objects
	Syntax

	Handles vs Names

	Singletons

	Object Fields

	Methods

	Conclusion

	Quick Reference - TODO
	Language Features

	Variable Names

	Constants

	Operators
	break

	case

	continue

	datablock

	default

	else

	FALSE

	for

	function

	if

	new

	package

	parent

	return

	switch

	switch$

	TRUE

	while

Introduction to TorqueScript

What is TorqueScript?

TorqueScript (TS) is a proprietary scripting language developed specifically for Torque technology. The language itself is derived from the scripting used for Tribes 2, which was the base tech Torque evolved from. Scripts are written and stored in .cs files, which are compiled and executed by a binary compiled via the C++ engine (.exe for Windows or .app OS X). The CS extension should not be confused with C# files.

The CS extension stands for “C Script,” meaning the language resembles C programming. Though there is a connection, TorqueScript is a much higher level language and is easier to learn than standard C or C++.

Basic Usage

Like most other scripting languages, such as Python or Java Script, TorqueScript is a high-level programming language interpreted by Torque 3D at run time. Unlike C++, you can write your code in script and run it without recompiling your game.

All of your interfaces can be built using the GUI Editor, which saves the data out to TorqueScript. The same goes for data saved by the World Editor or Material Editor. Most of the editors themselves are C++ components exposed and constructed via TorqueScript.

More importantly, nearly all of your game play programming will be written in TorqueScript: inventory systems, win/lose scenarios, AI, weapon functionality, collision response, and game flow. All of these can be written in TorqueScript. The language will allow you to rapidly prototype your game without having to be a programming expert or perform lengthy engine recompilation.

Scripting vs Engine Programming

As mentioned above, TorqueScript is comprised of the core C++ objects needed to make your game. For example, you will use the PlayerData structure to create player objects for your game. This structure was written in C++:

struct PlayerData: public ShapeBaseData {
 typedef ShapeBaseData Parent;
 bool renderFirstPerson; ///< Render the player shape in first person

 mass = 9.0f; // from ShapeBase
 drag = 0.3f; // from ShapeBase
 density = 1.1f; // from ShapeBase

Instead of having to go into C++ and create new PlayerData objects or edit certain fields (such as mass), PlayerData was exposed to TorqueScript:

datablock PlayerData(DefaultPlayerData)
{
 renderFirstPerson = true;

 className = Armor;
 shapeFile = "art/shapes/actors/gideon/base.dts";

 mass = 100;
 drag = 1.3;
 maxdrag = 0.4;

 // Allowable Inventory Items
 maxInv[Pistol] = 1;
 maxInv[PistolAmmo] = 50;
};

If you want to change the name of the object, the mass, the inventory, or anything else, just open the script, make the change, and save the file. When you run your game, the changes will immediately take effect. Of course, for this example you could have used the in-game Datablock Editor, but you should get the point. TorqueScript is the first place you should go to write your game play code.

Getting Started

Like the rest of the documentation, the TorqueScript guides should be read in order (from top to bottom in the table of contents). This means you should start by reading the Syntax Guide. If you have never written TorqueScript before, DO NOT SKIP the Syntax Guide.

The docs in the Simple Tutorials will provide you with working code meant to show off syntax and basic TorqueScript structures. This is where you will create, edit, debug, and execute your first scripts.

Finally, the Advanced Tutorials section will walk you through complex functionality and algorithms. These tutorials make full use of Torque 3D’s editors, networking structure, input system, and TorqueScript. These examples will even get into game play mechanics.

If you simply need a quick reference while writing scripts, you can read through the TorqueScript Reference Guide.

TorqueScript Editors - TODO

TorqueScript files are essentially text files. This means you have several editors to choose from. Some users prefer to use the stock OS text editors: Notepad on Windows or Text Edit on OS X. Others will use their programming IDEs (Interactive Development Environments), such as Visual Studio for Windows or Xcode on OS X. Third party applications are the most popular choice:

On Windows

Torsion - Torsion is undeniably the best TorqueScript IDE was developed by Torque veterans Sickhead Games. If you are developing on Windows, this is the first thing you should purchase after Torque 3D.

Torsion is a powerful development environment for creating TorqueScript based games and mods.

No other editor offers this level of quality and functionality:

	Integrated “One Click” script debugging.

	Full control over script execution via step and break commands.

	Advanced editor features like code folding, line wrapping, auto-indent, column marker, automatic bracket matching, and visible display of tabs and spaces.

	Go to line and text searching.

	ScriptSense updated dynamically as you type.

	Customizable syntax highlighting for TorqueScript.

	Unlimited undo/redo buffer.

	Code browser window for exploring both engine exports and script symbols in your project.

Source Code: https://github.com/SickheadGames/Torsion/

Download: https://github.com/Torque3D-Resources/Torsion/releases/download/v1.1.392-noKey/Torsion.zip

Notepad++ - https://notepad-plus-plus.org/ - This is a free (as in “free speech” and also as in “free beer”) source code editor and Notepad replacement that supports several languages. Syntax Highlighting: http://greek2me.webs.com/Downloads/Random/Torquescript%20Syntax%20Highlighting.xml - Forum: https://forum.blockland.us/index.php?topic=152179.0

On OS X

Xcode - https://developer.apple.com/xcode/ - Xcode is Apple’s premier development environment for Mac OS X. If you plan on modifying Torque 3D’s source code, you will need this anyway. Most developers at GarageGames use Xcode to modify their scripts on a Mac.

Text Edit - This is the OS X default text editor. With no bells or whistles, this is not the best editor you can use on OS X, but it is free and ships with the OS.

Smultron - https://www.peterborgapps.com/smultron/ - Smultron is a text editor written in Cocoa for Mac OS X Leopard 10.5 which is designed to be both easy to use and powerful.

Cross-platform

TIDE - http://torqueide.sourceforge.net/ - Torque Integrated Development Environment (TIDE) is a free, cross-platform IDE for Torque Game Engine scripting by Paul Dana and Stefan Moises. It is implemented in Java as a plug-in suite for the jEdit text editor and contains plug-ins for syntax highlighting, function browsing, script debugging, etc.

Atom - https://atom.io - Is a text editor that’s modern, approachable, yet hackable to the core?a tool you can customize to do anything but also use productively without ever touching a config file.

UltraEdit - https://www.ultraedit.com/ - UltraEdit is a powerful disk-based text editor, programmer’s editor, and hex editor that is used to edit TorqueScript, HTML, PHP, JavaScript, Perl, C/C++, and a multitude of other coding/programming languages.

TODO - http://wiki.torque3d.org/introduction:scripting-ides

Torsion TorqueScript IDE - TODO

Introducing Torsion, a powerful development environment for creating TorqueScript based games and mods.

Created by dedicated Torque developers, Torsion will maximize your productivity when working on your project based on Torque game engines (like Torque 3D). Unlike other editors, Torsion solely targets TorqueScript development to ensure a focused tool without features for other engines getting in your way.

If you haven’t tried Torsion and have been using TorqueScript you’ve been missing out.

Users familiar with other modern development environments will feel right at home using Torsion. Torsion has everything one would expect in a modern IDE:

	Project centric MDI design with a familiar and intuitive user interface.

	Advanced editor features like code folding, line wrapping, auto-indent, column marker, automatic bracket matching, and visible display of tabs and spaces.

	Customizable syntax highlighting for TorqueScript.

	Unlimited undo/redo buffer.

	Goto line and text searching.

	ScriptSense updated dynamically as you type.

	Smart project tree view allows for file manipulation and automatically updates as new files are added.

	Code browser window for exploring both engine exports and script symbols in your project.

	Integrated “One Click” script debugging.

	Full control over script execution via step and break commands.

	Conditional breakpoints.

	Call stack and watch windows allow you to fully inspect and change the running game state.

	Remote console for executing commands in your running game.

	Complete editor state saved between project sessions including open files, breakpoints, and variable watches.

	Can be easily copied and run from a flash drive.

	Written entirely in C++ making it fast and efficient with a small memory footprint.

Source Code: https://github.com/SickheadGames/Torsion/

Download: https://github.com/Torque3D-Resources/Torsion/releases/download/v1.1.392-noKey/Torsion.zip

Syntax Guide

The Basics

Main Rules

Like other languages, TorqueScript has certain syntactical rules you need to follow. The language is very forgiving, easy to debug, and is not as strict as a low level language like C++. Observe the following line in a script:

// Create test variable with a temporary variable
%testVariable = 3;

The three most simple rules obeyed in the above code are:

	Ending a line with a semi-colon ;

	Proper use of white space.

	Commenting.

The engine will parse code line by line, stopping whenever it reaches a semi-colon. This is referred to as a statement terminator, common to other programming languages such as C++, JavaScript, etc. The following code will produce an error that may cause your entire script to fail:

%testVariable = 3
%anotherVariable = 4;

To the human eye, you are able to discern two separate lines of code with different actions. Here is how the script compiler will read it:

%testVariable = 3%anotherVariable = 4;

This is obviously not what the original code was meant to do. There are exemptions to this rule, but they come into play when multiple lines of code are supposed to work together for a single action:

if(%testVariable == 4)
 echo("Variable equals 4");

We have not covered conditional operators or echo commands yet, but you should notice that the first line does not have a semi-colon. The easiest explanation is that the code is telling the compiler: “Read the first line, do the second line if we meet the requirements.” In other words, perform operations between semi-colons. Complex operations require multiple lines of code working together.

The second rule, proper use of whitespace, is just as easy to remember. Whitespace refers to how your script code is separated between operations. Let’s look at the first example again:

%testVariable = 3;

The code is storing a value 3 in a local variable %testVariable. It is doing so by using a common mathematical operator, the equal sign. TorqueScript recognizes the equal sign and performs the action just as expected. It does not care if there are spaces in the operation:

%testVariable=3;

The above code works just as well, even without the spaces between the variable, the equal sign, and the 3. The whitespace rule makes a lot more sense when combined with the semi-colon rule and multiple lines of code working together. The following will compile and run without error:

if(%testVariable == 4) echo("Variable equals 4");

Comments

The last rule is optional, but should be used as often as possible if you want to create clean code. Whenever you write code, you should try to use comments. Comments are a way for you to leave notes in code which are not compiled into the game. The compiler will essentially skip over these lines.

There are two different comment syntax styles. The first one uses the two slashes, //. This is used for single line comments:

Example:

// This comment line will be ignored
// This second line will also be ignored
%testVariable = 3;
// This third line will also be ignored

In the last example, the only line of code that will be executed has to do with %testVariable. If you need to comment large chunks of code, or leave a very detailed message, you can use the /*comment*/ syntax. The /* starts the commenting, the */ ends the commenting, and anything in between will be considered a comment:

Example:

/*
While attending school, an instructor taught a mantra I still use:

"Read. Read Code. Code."

Applying this to Torque 3D development is easy:

READ the documentation first.

READ CODE written by other Torque developers.

CODE your own prototypes based on what you have learned.
*/

As you can see, the comment makes full use of whitespace and multiple lines. While it is important to comment what the code does, you can also use this to temporarily remove unwanted code until a better solution is found:

Example:

// Why are you using multiple if statements. Why not use a switch$?
/*
if(%testVariable == "Mich")
 echo("User name: ", %testVariable);

if(%testVariable == "Heather")
 echo("User Name: ", %testVariable);

if(%testVariable == "Nikki")
 echo("User Name: ", %testVariable);
*/

Variables

Usage

A variable is a letter, word, or phrase linked to a value stored in your game’s memory and used during operations. Creating a variable is a one line process. The following code creates a variable by naming it and assigning a value:

%localVariable = 3;

You can assign any type value to the variable you want. This is referred to as a language being type-insensitive. TorqueScript does not care (insensitive) what you put in a variable, even after you have created it. The following code is completely valid:

%localVariable = 27;
%localVariable = "Heather";
%localVariable = "7 7 7";

The main purpose of the code is to show that TorqueScript treats all data types the same way. It will interpret and convert the values internally, so you do not have to worry about typecasting. That may seem a little confusing. After all, when would you want a variable that can store a number, a string, or a vector?

You will rarely need to, which is why you want to start practicing good programming habits. An important practice is proper variable naming. The following code will make a lot more sense, considering how the variables are named:

%userName = "Heather";
%userAge = 27;
%userScores = "7 7 7";

TorqueScript is more forgiving than low level programming languages. While it expects you to obey the basic syntax rules, it will allow you to get away with small mistakes or inconsistency. The best example is variable case sensitivity. With variables, TorqueScript is not case sensitive. You can create a variable and refer to it during operations without adhering to case rules:

%userName = "Heather";
echo(%Username);

In the above code, %userName and %Username are the same variable, even though they are using different capitalization. You should still try to remain consistent in your variable naming and usage, but you will not be punished if you slip up occasionally.

Variable Types

There are two types of variables you can declare and use in TorqueScript: local and global. Both are created and referenced similarly:

%localVariable = 1;
$globalVariable = 2;

As you can see, local variable names are preceded by the percent sign %. Global variables are preceded by the dollar sign $. Both types can be used in the same manner: operations, functions, equations, etc. The main difference has to do with how they are scoped.

In programming, scoping refers to where in memory a variable exists during its life. A local variable is meant to only exist in specific blocks of code, and its value is discarded when you leave that block. Global variables are meant to exist and hold their value during your entire programs execution. Look at the following code to see an example of a local variable:

function test()
{
 %userName = "Heather";
 echo(%userName);
}

We will cover functions a little later, but you should know that functions are blocks of code that only execute when you call them by name. This means the variable, %userName, does not exist until the test() function is called. When the function has finished all of its logic, the %userName variable will no longer exist. If you were to try to access the %userName variable outside of the function, you will get nothing.

Most variables you will work with are local, but you will eventually want a variables that last for your entire game. These are extremely important values used throughout the project. This is when global variables become useful. For the most part, you can declare global variables whenever you want:

$PlayerName = "Heather";

function printPlayerName()
{
 echo($PlayerName);
}

function setPlayerName()
{
 $PlayerName = "Nikki";
}

The above code makes full use of a global variable that holds a player’s name. The first declaration of the variable happens outside of the functions, written anywhere in your script. Because it is global, you can reference it in other locations, including separate script files. Once declared, your game will hold on to the variable until shutdown.

Data Types

TorqueScript implicitly supports several variable data-types: numbers, strings, booleans, arrays and vectors. If you wish to test the various data types, you can use the echo(…) command. For example:

%meaningOfLife = 42;
echo(%meaningOfLife);

$name = "Heather";
echo($name);

The echo will post the results in the console, which can be accessed by pressing the tilde key (~) while in game.

Numbers

TorqueScript handles standard numeric types:

123 (Integer)
1.234 (floating point)
1234e-3 (scientific notation)
0xc001 (hexadecimal)

Strings

Text, such as names or phrases, are supported as strings. Numbers can also be stored in string format. Standard strings are stored in double-quotes:

"abcd" (string)

Example:

$UserName = "Heather";

Strings with single quotes are called “tagged strings”:

'abcd' (tagged string)

Tagged strings are special in that they contain string data, but also have a special numeric tag associated with them. Tagged strings are used for sending string data across a network. The value of a tagged string is only sent once, regardless of how many times you actually do the sending.

On subsequent sends, only the tag value is sent. Tagged values must be de-tagged when printing. You will not need to use a tagged string often unless you are in need of sending strings across a network often, like a chat system.

Example:

$a = 'This is a tagged string';
echo(" Tagged string: ", $a);
echo("Detagged string: ", detag($a));

The output will be similar to this:

Tagged string: 24
Detagged string:

The second echo will be blank unless the string has been passed to you over a network.

String Operators

There are special values you can use to concatenate strings and variables. Concatenation refers to the joining of multiple values into a single variable. The following is the basic syntax:

"string 1" operation "string 2"

You can use string operators similarly to how you use mathematical operators (=, +, -, *). You have four operators at your disposal:

	Operator

	Name

	Example

	Explanation

	@

	String

	$c @ $d

	Concatenates strings $c and $d
into a single string. Numeric
literals/variables convert to strings.

	NL

	New Line

	$c NL $d

	Concatenates strings $c and $d
into a single string separated by new-line.
Note: such a string can be decomposed with getRecord()

	TAB

	Tab

	$c TAB $d

	Concatenates strings $c and $d
into a single string separated by tab.
Note: such a string can be decomposed with getField()

	SPC

	Space

	$c SCP $d

	Concatenates strings $c and $d
into a single string separated by space.
Note: such a string can be decomposed with getWord()

The @ symbol will concatenate two strings together exactly how you specify, without adding any additional whitespace:

Note: Do not type in OUPUT: ___. This is placed in the sample code to show you what the console would display.

Example:

%newString = "Hello" @ "World";
echo(%newString);

OUPUT:
HelloWorld

Notice how the two strings are joined without any spaces. If you include whitespace, it will be concatenated along with the values:

Example:

%newString = "Hello " @ "World";
echo(%newString);

OUTPUT:
Hello World

Example:

%hello = "Hello ";
%world = "World";

echo(%hello @ %world);

OUTPUT:
Hello World

The rest of the operators will apply whitespace for you, so you do not have to include it in your values. Example:

echo("Hello" @ "World");
echo("Hello" TAB "World");
echo("Hello" SPC "World");
echo("Hello" NL "World");

OUTPUT:
HelloWorld
Hello World
Hello World
Hello
World

Booleans

Like most programming languages, TorqueScript also supports Booleans. Boolean numbers have only two values- true or false:

true (1)
false (0)

Again, as in many programming languages the constant “true” evaluates to the number 1 in TorqueScript, and the constant “false” evaluates to the number 0. However, non-zero values are also considered true. Think of booleans as “on/off” switches, often used in conditional statements. Example:

$lightsOn = true;

if($lightsOn)
 echo("Lights are turned on");

Arrays

Arrays are data structures used to store consecutive values of the same data type:

$TestArray[n] (Single-dimension)
$TestArray[m,n] (Multidimensional)
$TestArray[m_n] (Multidimensional)

If you have a list of similar variables you wish to store together, try using an array to save time and create cleaner code. The syntax displayed above uses the letters ‘n’ and ‘m’ to represent where you will input the number of elements in an array. The following example shows code that could benefit from an array. Example:

$firstUser = "Heather";
$secondUser = "Nikki";
$thirdUser = "Mich";

echo($firstUser);
echo($secondUser);
echo($thirdUser);

Instead of using a global variable for each user name, we can put those values into a single array. Example:

$userNames[0] = "Heather";
$userNames[1] = "Nikki";
$userNames[2] = "Mich";

echo($userNames[0]);
echo($userNames[1]);
echo($userNames[2]);

Now, let’s break the code down. Like any other variable declaration, you can create an array by giving it a name and value:

$userNames[0] = "Heather";

What separates an array declaration from a standard variable is the use of brackets []. The number you put between the brackets is called the index. The index will access a specific element in an array, allowing you to view or manipulate the data. All the array values are stored in consecutive order.

If you were able to see an array on paper, it would look something like this:

[0] [1] [2]

In our example, the data looks like this:

["Heather"] ["Nikki"] ["Mich"]

Like other programming languages, the index is always a numerical value and the starting index is always 0. Just remember, index 0 is always the first element in an array. As you can see in the above example, we create the array by assigning the first index (0) a string value (“Heather”).

The next two lines continue filling out the array, progressing through the index consecutively:

$userNames[1] = "Nikki";
$userNames[2] = "Mich";

The second array element (index 1) is assigned a different string value (“Nikki”), as is the third (index 2). At this point, we still have a single array structure, but it is holding three separate values we can access. Excellent for organization.

The last section of code shows how you can access the data that has been stored in the array. Again, you use a numerical index to point to an element in the array. If you want to access the first element, use 0:

echo($userNames[0]);

In a later section, you will learn about looping structures that make using arrays a lot simpler. Before moving on, you should know that an array does not have to be a single, ordered list. TorqueScript also support multidimensional arrays.

An single-dimensional array contains a single row of values. A multidimensional array is essentially an array of arrays, which introduces columns as well. The following is a visual of what a multidimensional looks like with three rows and three columns:

[x] [x] [x]
[x] [x] [x]
[x] [x] [x]

Defining this kind of array in TorqueScript is simple. The following creates an array with 3 rows and 3 columns:

$testArray[0,0] = "a";
$testArray[0,1] = "b";
$testArray[0,2] = "c";

$testArray[1,0] = "d";
$testArray[1,1] = "e";
$testArray[1,2] = "f";

$testArray[2,0] = "g";
$testArray[2,1] = "h";
$testArray[2,2] = "i";

Notice that we are are now using two indices, both starting at 0 and stopping at 2. We can use these as coordinates to determine which array element we are accessing:

[0,0] [0,1] [0,2]
[1,0] [1,1] [1,2]
[2,0] [2,1] [2,2]

In our example, which progresses through the alphabet, you can visualize the data in the same way:

[a] [b] [c]
[d] [e] [f]
[g] [h] [i]

The first element [0,0] points to the letter ‘a’. The last element [2,2] points to the letter ‘i’.

Vectors

“Vectors” are a helpful data-type which are used throughout Torque 3D. For example, many fields in the World Editor take numeric values in sets of 3 or 4. These are stored as strings and interpreted as “vectors”:

"1.0 1.0 1.0" (3 element vector)

The most common example of a vector would be a world position. Like most 3D coordinate systems, an object’s position is stored as (X Y Z). You can use a three element vector to hold this data:

%position = "25.0 32 42.5";

You can separate the values using spaces or tabs (both are acceptable whitespace). Another example is storing color data in a four element vector. The values that make up a color are “Red Blue Green Alpha,” which are all numbers. You can create a vector for color using hard numbers, or variables:

%firstColor = "100 100 100 255";
echo(%firstColor);

%red = 128;
%blue = 255;
%green = 64;
%alpha = 255;

%secondColor = %red SPC %blue SPC %green SPC %alpha;
echo(%secondColor);

Operators

Operators in TorqueScript behave very similarly to operators in real world math and other programming languages. You should recognize quite a few of these from math classes you took in school, but with small syntactical changes. The rest of this section will explain the syntax and show a brief example, but we will cover these in depth in later guides.

Arithmetic Operators

These are your basic math ops.

	Operator

	Name

	Example

	Explanation

	*

	multiplication

	$a * $b

	Multiply $a and $b.

	/

	division

	$a / $b

	Divide $a by $b.

	%

	modulo

	$a % $b

	Remainder of $a divided by $b.

	+

	addition

	$a + $b

	Add $a and $b.

	-

	subtraction

	$a - $b

	Subtract $b from $a.

	++

	auto-increment

(post-fix only)

	$a++

	Increment $a.

	--

	auto-decrement

(post-fix only)

	$b--

	Decrement $b.

Note

++$a is illegal. The value of $a++ is that of the incremented variable: auto-increment is post-fix in syntax, but pre-increment in sematics (the variable is incremented, before the return value is calculated). This behavior is unlike that of C and C++.

Note

--$b is illegal. The value of $a-- is that of the decremented variable: auto-decrement is post-fix in syntax, but pre-decrement in sematics (the variable is decremented, before the return value is calculated). This behavior is unlike that of C and C++.

Relational Operators

Used in comparing values and variables against each other.

Relations (Arithmetic, Logical, and String)

	Operator

	Name

	Example

	Explanation

	<

	Less than

	$a < $b

	1 if $a is less than $b

	>

	More than

	$a > $b

	1 if $a is greater than $b

	<=

	Less than or Equal to

	$a <= $b

	1 if $a is less than or equal to $b

	>=

	More than or Equal to

	$a >= $b

	1 if $a is greater than or equal to $b

	==

	Equal to

	$a == $b

	1 if $a is equal to $b

	!=

	Not equal to

	$a != $b

	1 if $a is not equal to $b

	!

	Logical NOT

	!$a

	1 if $a is 0

	&&

	Logical AND

	$a && $b

	1 if $a and $b are both non-zero

	||

	Logical OR

	$a || $b

	1 if either $a or $b is non-zero

	$=

	String equal to

	$c $= $d

	1 if $c equal to $d.

	!$=

	String not equal to

	$c !$= $d

	1 if $c not equal to $d.

Bitwise Operators

Used for comparing and shifting bits.

	Operator

	Name

	Example

	Explanation

	~

	Bitwise complement

	~$a

	flip bits 1 to 0 and 0 to 1

	&

	Bitwise AND

	$a & $b

	composite of elements where bits in same position are 1

	|

	Bitwise OR

	$a | $b

	composite of elements where bits 1 in either of the two elements

	^

	Bitwise XOR

	$a ^ $b

	composite of elements where bits in same position are opposite

	<<

	Left Shift

	$a << 3

	element shifted left by 3 and padded with zeros

	>>

	Right Shift

	$a >> 3

	element shifted right by 3 and padded with zeros

References: You might find these two guides useful for learning about bitwise operations:

	https://en.wikipedia.org/wiki/Bitwise_operation

	http://www.cprogramming.com/tutorial/bitwise_operators.html

Assignment Operators

Used for setting the value of variables.

Assignment and Assignment Operators

	Operator

	Name

	Example

	Explanation

	=

	Assignment

	$a = $b;

	Assign value of $b to $a
Note: the value of an assignment is the value being assigned, so $a = $b = $c is legal.

	op=

	Assignment Operators

	$a op= $b;

	Equivalent to $a = $a op $b, where op can be any of: * / % + - & | ^ << >>

Miscellaneous Operators

General programming operators.

	Operator

	Name

	Example

	Explanation

	? :

	Conditional

	x ? y : z

	Evaluates to y if x equal to 1, else evaluates to z

	[]

	Array element

	$a[5]

	Synonymous with $a5

	()

	Delimiting, Grouping

	t2dGetMin(%a, %b)

if ($a == $b)

($a+$b)*($c-$d)

	Argument list for function call

Used with if, for, while, switch keywords

Control associativity in expressions

	{}

	Compound statement

	if (1) {$a = 1; $b = 2;}

function foo() {$a = 1;}

	Delimit multiple statements, optional for if, else, for, while

Required for switch, datablock, new, function

	,

	Listing

	t2dGetMin(%a, %b)

%M[1,2]

	Delimiter for arguments.
Note: there is no “comma operator”, as defined in C/C++; $a = 1, $b = 2; is a parse error

	::

	Namespace

	Item::onCollision()

	This definition of the onCollision() function is in the Item namespace

	.

	Field/Method selection

	%obj.field

%obj.method()

	Select a console method or field

	//

	Single-line comment

	// This is a comment

	Used to comment out a single line of code

	/* */

	Multi-line comment

	/*This is a a

multi-line

comment*/

	Used to comment out multiple consecutive lines

/* opens the comment, and */ closes it

Control Statements

TorqueScript provides basic branching structures that will be familiar to programmers that have used other languages. If you are completely new to programming, you use branching structures to control your game’s flow and logic. This section builds on everything you have learned about TorqueScript so far.

if, else

This type of structure is used to test a condition, then perform certain actions if the condition passes or fails. You do not always have to use the full structure, but the following syntax shows the extent of the conditional:

if(<boolean expression>)
{
 pass logic
}
else
{
 alternative logic
}

Remember how boolean values work? Essentially, a bool can either be true (1) or false (0). The condition (boolean) is always typed into the parenthesis after the “if” syntax. Your logic will be typed within the brackets {}. The following example uses specific variable names and conditions to show how this can be used:

Example:

// Global variable that controls lighting
$lightsShouldBeOn = true;

// Check to see if lights should be on or off
if($lightsShouldBeOn)
{
 // True. Call turn on lights function
 turnOnLights();

 echo("Lights have been turned on");
}
else
{
 // False. Turn off the lights
 turnOffLights();

 echo("Lights have been turned off");
}

Brackets for single line statements are optional. If you are thinking about adding additional logic to the code, then you should use the brackets anyway. If you know you will only use one logic statement, you can use the following syntax:

Example:

// Global variable that controls lighting
$lightsShouldBeOn = true;

// Check to see if lights should be on or off
if($lightsShouldBeOn)
 turnOnLights(); // True. Call turn on lights function
else
 turnOffLights(); // False. Turn off the lights

switch and switch$

If your code is using several cascading if-then-else statements based on a single value, you might want to use a switch statement instead. Switch statements are easier to manage and read. There are two types of switch statements, based on data type: numeric (switch) and string (switch$).

Switch Syntax:

switch(<numeric expression>)
{
 case value0:
 statements;
 case value1:
 statements;
 case value3:
 statements;
 default:
 statements;
}

As the above code demonstrates, start by declaring the switch statement by passing in a value to the switch(…) line. Inside of the brackets {}, you will list out all the possible cases that will execute based on what value being tested. It is wise to always use the default case, anticipating rogue values being passed in.

Example:

switch($ammoCount)
{
 case 0:
 echo("Out of ammo, time to reload");
 reloadWeapon();
 case 1:
 echo("Almost out of ammo, warn user");
 lowAmmoWarning();
 case 100:
 echo("Full ammo count");
 playFullAmmoSound();
 default:
 doNothing();
}

switch only properly evaluates numerical values. If you need a switch statement to handle a string value, you will want to use switch$. The switch$ syntax is similar to what you just learned:

Switch$ Syntax:

switch$ (<string expression>)
{
 case "string value 0":
 statements;
 case "string value 1":
 statements;
...
 case "string value N":
 statements;
 default:
 statements;
 }

Appending the $ sign to switch will immediately cause the parameter passed in to be parsed as a string. The following code applies this logic:

Example:

// Print out specialties
switch($userName)
{
 case "Heather":
 echo("Sniper");
 case "Nikki":
 echo("Demolition");
 case Mich:
 echo("Meat shield");
 default:
 echo("Unknown user");
}

Loops

As the name implies, this structure type is used to repeat logic in a loop based on an expression. The expression is usually a set of variables that increase by count, or a constant variable changed once a loop has hit a specific point.

For Loop

for Loop Syntax:

for(expression0; expression1; expression2)
{
 statement(s);
}

One way to label the expressions in this syntax are (startExpression; testExpression; countExpression). Each expression is separated by a semi-colon.

Example:

for(%count = 0; %count < 3; %count++)
{
 echo(%count);
}

OUTPUT:
0
1
2

The first expression creates the local variable %count and initializing it to 0. In the second expression determines when to stop looping, which is when the %count is no longer less than 3. Finally, the third expression increases the count the loop relies on.

While Loop

A while loop is a much simpler looping structure compared to a for loop.

while Loop Syntax:

while(expression)
{
 statements;
}

As soon as the expression is met, the while loop will terminate:

Example:

%countLimit = 0;

while(%countLimit <= 5)
{
 echo("Still in loop");
 %count++;
}
echo("Loop was terminated");

Functions

Much of your TorqueScript experience will come down to calling existing functions and writing your own. Functions are a blocks of code that only execute when you call them by name. Basic functions in TorqueScript are defined as follows:

// function - Is a keyword telling TorqueScript we are defining a new function.
// function_name - Is the name of the function we are creating.
// ... - Is any number of additional arguments.
// statements - Your custom logic executed when function is called
// return val - The value the function will give back after it has completed. Optional.

function function_name([arg0],...,[argn])
{
 statements;
 [return val;]
}

The function keyword, like other TorqueScript keywords, is case sensitive. You must type it exactly as shown above. The following is an example of a custom function that takes in two parameters, then executes code based on those arguments.

TorqueScript can take any number of arguments, as long as they are comma separated. If you call a function and pass fewer parameters than the function’s definition specifies, the un-passed parameters will be given an empty string as their default value.

Example:

function echoRepeat (%echoString, %repeatCount)
{
 for (%count = 0; %count < %repeatCount; %count++)
 {
 echo(%echoString);
 }
}

You can cause this function to execute by calling it in the console, or in another function:

echoRepeat("hello!", 5);

OUTPUT:
"hello!"
"hello!"
"hello!"
"hello!"
"hello!"

If you define a function and give it the same name as a previously defined function, TorqueScript will completely override the old function. This still applies even if you change the number of parameters used; the older function will still be overridden.

Console Methods

Console Methods are C++ functions that have been exposed to TorqueScript, which are attached to specific objects.

Console Functions

Console Functions are written in C++, then exposed to TorqueScript. These are global functions you can call at any time, and are usually very helpful or important. Throughout this document, I have been using a ConsoleFunction: echo(…). The echo function definition exists in C++:

C++ echo:

ConsoleFunction(echo, void, 2, 0, "echo(text [, ...])")
{
 U32 len = 0;
 S32 i;
 for(i = 1; i < argc; i++)
 len += dStrlen(argv[i]);

 char *ret = Con::getReturnBuffer(len + 1);
 ret[0] = 0;
 for(i = 1; i < argc; i++)
 dStrcat(ret, argv[i]);

 Con::printf("%s", ret);
 ret[0] = 0;
}

Instead of having to write that out every time, or create a TorqueScript equivalent, the ConsoleFunction macro in C++ exposes the command for you. This is much cleaner, and more convenient. We will cover all the ConsoleFunctions later.

Objects

The most complex aspect of TorqueScript involves dealing with game objects. Much of your object creation will be performed in the World Editor, but you should still know how to manipulate objects at a script level. One thing to remember is that everything in TorqueScript is an object: players, vehicles, items, etc.

Every object added in the level is saved to a mission file, which is written entirely in TorqueScript. This also means every game object is accessible from script. First, we will study the syntax of object creation.

Syntax

Even though objects are originally created in C++, they are exposed to script in a way that allows them to be declared using the following syntax:

Object Definition:

// In TorqueScript
%objectID = new ObjectType(Name : CopySource, arg0, ..., argn)
{
 <datablock = DatablockIdentifier;>

 [existing_field0 = InitialValue0;]
 ...
 [existing_fieldN = InitialValueN;]

 [dynamic_field0 = InitialValue0;]
 ...
 [dynamic_fieldN = InitialValueN;]
};

Syntax Breakdown:

	%objectID - Is the variable where the object’s handle will be stored.

	new - Is a key word telling the engine to create an instance of the following ObjectType.

	ObjectType - Is any class declared in the engine or in script that has been derived from SimObject or a subclass of SimObject. SimObject-derived objects are what we were calling “game world objects” above.

	Name (optional) - Is any expression evaluating to a string, which will be used as the object’s name.

	CopySource (optional) - The name of an object which is previously defined somewhere in script. Existing field values will be copied from CopySource to the new object being created. Any dynamic fields defined in CopySource will also be defined in the new object, and their values will be copied. Note: If CopySource is of a different ObjectType than the object being created, only CopySource’s dynamic fields will be copied.

	arg0, …, argn (optional) - Is a comma separated list of arguments to the class constructor (if it takes any).

	datablock - Many objects (those derived from GameBase, or children of GameBase) require datablocks to initialize specific attributes of the new object. Datablocks are discussed below.

	existing_fieldN - In addition to initializing values with a datablock, you may also initialize existing class members (fields) here. Note: In order to modify a member of a C++-defined class, the member must be exposed to the Console. This concept is discussed in detail later.

	dynamic_fieldN - Lastly, you may create new fields (which will exist only in Script) for your new object. These will show up as dynamic fields in the World Editor Inspector.

The main object variants you can create are SimObjects without a datablock, and game objects which require a datablock. The most basic SimObject can be created in a single line of code:

Example:

// Create a SimObject without any name, argument, or fields.
$exampleSimObject = new SimObject();

The $exampleSimObject variable now has access to all the properties and functions of a basic SimObject. Usually, when you are creating a SimObject you will want custom fields to define features

Example:

// Create a SimObject with a custom field
$exampleSimObject = new SimObject()
{
 catchPhrase = "Hello world!";
};

As with the previous example, the above code creates a SimObject without a name which can be referenced by the global variable $exampleSimObject. This time, we have added a user defined field called “catchPhrase.” There is not a single stock Torque 3D object that has a field called “catchPhrase.” However, by adding this field to the SimObject it is now stored as long as that object exists.

The other game object variant mentioned previously involves the usage of datablocks. Datablocks contain static information used by a game object with a similar purpose. Datablocks are transmitted from a server to client, which means they cannot be modified while the game is running.

We will cover datablocks in more detail later, but the following syntax shows how to create a game object using a datablock.

Example:

// create a StaticShape using a datablock
datablock StaticShapeData(ceiling_fan)
{
 category = "Misc";
 shapeFile = "art/shapes/undercity/cfan.dts";
 isInvincible = true;
};

new StaticShape(CistFan)
{
 dataBlock = "ceiling_fan";
 position = "12.5693 35.5857 59.5747";
 rotation = "1 0 0 0";
 scale = "1 1 1";
};

Once you have learned about datablocks, the process is quite simple:

	Create a datablock in script, or using the datablock editor

	Add a shape to the scene from script or using the World Editor

	Assign the new object a datablock

Handles vs Names

Every game object added to a level can be accessed by two parameters:

	Handle - A unique numeric ID generated when the object is created

	Name - This is an optional parameter given to an object when it is created. You can assign a name to an object from the World Editor, or do so in TorqueScript using the following syntax:

Example:

// In this example, CistFan is the name of the object
new StaticShape(CistFan)
{
 dataBlock = "ceiling_fan";
 position = "12.5693 35.5857 59.5747";
 rotation = "1 0 0 0";
 scale = "1 1 1";
};

While in the World Editor, you will not be allowed to assign the same name to multiple, separate objects. The editor will ignore the attempt. If you manually name two objects the same thing in script, the game will only load the first object and ignore the second.

Singletons

If you need a global script object with only a single instance, you can use the singleton keyword. Singletons, in TorqueScript, are mostly used for unique shaders, materials, and other client-side only objects.

For example, SSAO (screen space ambient occlusion) is a post-processing effect. The game will only ever need a single instance of the shader, but it needs to be globally accessible on the client. The declaration of the SSAO shader in TorqueScript can be shown below:

singleton ShaderData(SSAOShader)
{
 DXVertexShaderFile = "shaders/common/postFx/postFxV.hlsl";
 DXPixelShaderFile = "shaders/common/postFx/ssao/SSAO_P.hlsl";
 pixVersion = 3.0;
};

Object Fields

Objects instantiated via script may have data members (referred to as Fields)

Methods

In addition to the creation of stand-alone functions, TorqueScript allows you to create and call methods attached to objects. Some of the more important ConsoleMethods are already written in C++, then exposed to script. You can call these methods by using the dot (.) notation.

Syntax:

objHandle.function_name();

objName.function_name();

Example:

new StaticShape(CistFan)
{
 dataBlock = "ceiling_fan";
 position = "12.5693 35.5857 59.5747";
 rotation = "1 0 0 0";
 scale = "1 1 1";
};

// Write all the objects methods to the console log
CistFan.dump();

// Get the ID of an object, using the object's name
$objID = CistFan.getID();

// Print the ID to the console
echo("Object ID: ", $objID);

// Get the object's position, using the object's handle
%position = $objID.getPosition();

// Print the position to the console
echo("Object Position: ", %position);

The above example shows how you can call an object’s method by using its name or a variable containing its handle (unique ID number). Additionally, TorqueScript supports the creation of methods that have no associated C++ counterpart.

Syntax:

// function - Is a keyword telling TorqueScript we are defining a new function.
// ClassName::- Is the class type this function is supposed to work with.
// function_name - Is the name of the function we are creating.
// ... - Is any number of additional arguments.
// statements - Your custom logic executed when function is called
// %this- Is a variable that will contain the handle of the 'calling object'.
// return val - The value the function will give back after it has completed. Optional.

function Classname::func_name(%this, [arg0],...,[argn])
{
 statements;
 [return val;]
}

At a minimum, Console Methods require that you pass them an object handle. You will often see the first argument named %this. People use this as a hint, but you can name it anything you want. As with Console functions any number of additional arguments can be specified separated by commas.

As a simple example, let’s say there is an object called Samurai, derived from the Player class. It is likely that a specific appearance and play style will be given to the samurai, so custom ConsoleMethods can be written. Here is a sample:

Example:

function Samurai::sheatheSword(%this)
{
 echo("Katana sheathed");
}

When you add a Samurai object to your level via the World Editor, it will be given an ID. Let’s pretend the handle (ID number) is 1042. We can call its ConsoleMethod once it is defined, using the period syntax:

Example:

1042.sheatheSword();

OUTPUT: "Katana sheathed"

Notice that no parameters were passed into the function. The %this parameter is inherent, and the original function did not require any other parameters.

Conclusion

This guide covered the basics of TorqueScript syntax. Compared to other languages, such as C++, it is easier to learn and work with. However, no one is expected to become a TorqueScript master over night, or even in a week. You will most likely need to refer back to this documentation several times for reminders.

Option 1: Take some time to read through the Torque 3D Script Manual. This manual contains the most valuable information you can find about TorqueScript and Torque 3D’s API. This will be your “go to” source for documentation on functions, variables, and classes that make up Torque 3D.

Option 2: Move on to the Simple Tutorials section, which will continue walking you through the basics of TorqueScript. These tutorials will provide you with sample code to read over. You will also get sample scripts at the end of each tutorial to test out.

Quick Reference - TODO

Language Features

TorqueScript is a typeless scripting language, with similarities in syntax to C/C++. In TorqueScript, you will find that most C/C++ operators work in the familiar way (with important exceptions, as noted here). Besides a subset of C/C++, TorqueScript provides:

	Case-insensitive symbols; keywords false and FALSE are identical.

	Auto creation and destruction of local/global variables and their storage.

	String concatenation, comparison, and auto-string-constant creation.

	Function packaging.

Variable Names

Constants

Operators

Arithmetic Operators
======== =============== =========== ===========
Operator Name Example Explanation
======== =============== =========== ===========
* multiplication $a * $b Multiply $a and $b.
/ division $a / $b Divide $a by $b.
% modulo $a % $b Remainder of $a divided by $b.
+ addition $a + $b Add $a and $b.
- subtraction $a - $b Subtract $b from $a.
++ auto-increment $a++ Increment $a.

(post-fix only)

-- auto-decrement $b-- Decrement $b.

(post-fix only)

Operator Name Example Explanation
======== ===================== ============= ===========
< Less than $a < $b 1 if $a is less than $b
> More than $a > $b 1 if $a is greater than $b
<= Less than or Equal to $a <= $b 1 if $a is less than or equal to $b
>= More than or Equal to $a >= $b 1 if $a is greater than or equal to $b
== Equal to $a == $b 1 if $a is equal to $b
!= Not equal to $a != $b 1 if $a is not equal to $b
! Logical NOT !$a 1 if $a is 0
&& Logical AND $a && $b 1 if $a and $b are both non-zero
|| Logical OR $a || $b 1 if either $a or $b is non-zero
$= String equal to $c $= $d 1 if $c equal to $d.
!$= String not equal to $c !$= $d 1 if $c not equal to $d.
======== ===================== ============= ===========

Bitwise Operators
======== ================== =========== ===========
Operator Name Example Explanation
======== ================== =========== ===========
~ Bitwise complement ~$a flip bits 1 to 0 and 0 to 1
& Bitwise AND $a & $b composite of elements where bits in same position are 1
| Bitwise OR $a | $b composite of elements where bits 1 in either of the two elements
^ Bitwise XOR $a ^ $b composite of elements where bits in same position are opposite
<< Left Shift $a << 3 element shifted left by 3 and padded with zeros
>> Right Shift $a >> 3 element shifted right by 3 and padded with zeros
======== ================== =========== ===========

Assignment and Assignment Operators
======== ==================== ============== ===========
Operator Name Example Explanation
======== ==================== ============== ===========
= Assignment $a = $b; Assign value of $b to $a

Note: the value of an assignment is the value being assigned, so $a = $b = $c is legal.

op= Assignment Operators $a op= $b; Equivalent to $a = $a op $b, where op can be any of: * / % + - & | ^ << >>
======== ==================== ============== ===========

String Operators
======== =============== ============= ===========
Operator Name Example Explanation
======== =============== ============= ===========
@ String $c @ $d Concatenates strings $c and $d

into a single string. Numeric
literals/variables convert to strings.

	NL New Line $c NL $d Concatenates strings $c and $d

	into a single string separated by new-line.
Note: such a string can be decomposed with getRecord()

	TAB Tab $c TAB $d Concatenates strings $c and $d

	into a single string separated by tab.
Note: such a string can be decomposed with getField()

	SPC Space $c SCP $d Concatenates strings $c and $d

	into a single string separated by space.
Note: such a string can be decomposed with getWord()

Operator Name Example Explanation
========= ====================== ============================ ===========
? : Conditional x ? y : z Evaluates to y if x equal to 1, else evaluates to z
[] Array element $a[5] Synonymous with $a5
() Delimiting, Grouping t2dGetMin(%a, %b) Argument list for function call

if ($a == $b) Used with if, for, while, switch keywords

($a+$b)*($c-$d) Control associativity in expressions

{} Compound statement if (1) {$a = 1; $b = 2;} Delimit multiple statements, optional for if, else, for, while

function foo() {$a = 1;} Required for switch, datablock, new, function

	, Listing t2dGetMin(%a, %b) Delimiter for arguments.

	
Note: there is no “comma operator”, as defined in C/C++; $a = 1, $b = 2; is a parse error

%M[1,2]

:: Namespace Item::onCollision() This definition of the onCollision() function is in the Item namespace
. Field/Method selection %obj.field Select a console method or field

%obj.method()

// Single-line comment // This is a comment Used to comment out a single line of code
/* */ Multi-line comment /*This is a a Used to comment out multiple consecutive lines

multi-line /* opens the comment, and */ closes it

comment*/

break

case

continue

datablock

default

else

FALSE

for

function

if

new

package

parent

return

switch

switch$

TRUE

while

Simple

	Echo Examples
	Syntax Review

	Example

	Creating the Script

	Testing the Script

	Conclusion

	Creating Functions
	Syntax Review

	Calling Functions

	Creating the Script

	Conclusion

	Math Examples
	Syntax Review
	Variable Types

	Operators

	Creating the Script

	Conclusion

	String Manipulation
	Syntax Review

	Creating the Script

	Conclusion

	Looping Structures
	Syntax Review

	Example

	Creating the Script

	Conclusion

	Array Manipulation
	Syntax Review

	Example

	Creating the Script

	Conclusion

	Switch Statements
	Syntax Review

	Creating the Script

	Conclusion

	Vectors - TODO

Echo Examples

Syntax Review

The echo(…) method syntax is syntax is easy to memorize and is a extremely valuable debugging command:

	
echo(string, all)

	Sends output to the console.

	Parameters

	
	string – Text sent to console

	all – Optional value, of any type, that will be appended to the text

	Returns

	No return value.

Examples:

// Print "Hello World" in the console
echo("Hello World");

Example

Start by running a Torque 3D project. Once the game is up, open the console by pressing the tilde (~) key. In the console, type the following:

Example 1:

echo("Hello World");

OUTPUT: Hello World

Now, let’s make use of the second parameter. Passing in a value for the second argument will append it to your text:

Example 2:

echo("Hello World", 3);

OUTPUT: Hello World3

Notice how there is no space between World and 3. The optional text is appended exactly how you type it. If you want, you can include your own white space to format the output:

Example 3:

echo("Hello World: ", 5);

OUTPUT: Hello World: 5

As you can see, the colon and space are included in the output. 5 is still appended, but does not ignore the whitespace. In addition to echo(…), there are two other output functions you will find useful. Their syntax and functionality are nearly identical to echo, but the output is different.

The two functions I’m referring to are warn(…) and error(…). You can post a message in the console and log the same way you echo:

Example 4:

warn("Be careful. Something bad might happen");

error("Something has gone horribly wrong");

OUTPUT:
Be careful. Something bad might happen (teal color)
Something has gone horribly wrong (red color)

You can use these functions to output multicolored text to the console, which will help you identify problems with your scripts.

Creating the Script

There is no real reason to have a script full of echo statements. You will want to use echo(…) while debugging your other functions. However, as an example, you can create a script consisting only of output statements.

First, we need to create a new script:

	Navigate to your project’s game/scripts/client directory.

	Create a new script file called “Output.cs”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs

	Open your new script using a text editor or Torsion.

Add the following code to the script:

Output.cs:

//---
// Torque 3D
// Copyright (C) GarageGames.com 2000 - 2009 All Rights Reserved
//---

// Create a nice border effect around these echos, makes it easier to find
echo("**");
echo("**");

// Standard use
echo("Hello");
echo("World");
echo("Hello World");

// With escape commands
echo("H\ne\nl\nl\no\nW\no\nr\nl\nd\n");

// Appending
echo("Hello World", 1);
echo("Hello World ", 2);
echo("Hello World: ", 3);

// Warning
warn("Warning! Watch for teal text");

// Error
error("Something has gone horribly wrong");
echo("**");
echo("**");

Save the script now.

Testing the Script

Open game/scripts/client/init.cs and locate the initClient() function. At the end of that function, execute your new script by typing the following:

exec("./Output.cs");

Run your game, then open the console by pressing tilde (~). Look for the long string of asterisks (*), and you will find your echo statements. Note: you may need to scroll up to find the echo statements.

Conclusion

Use echo(…), warn(…), and error(…) as often as you can. They can be very helpful when debugging your scripts. The rest of the TorqueScript documentation will use these functions to demonstrate functionality and give you cues on how things are being run.

Creating Functions

Syntax Review

Depending on the type of function you are writing or calling, the syntax will vary.

Stand Alone Function Declaration:

	
function function_name([arg0],...){...}

	Declaration of function

Syntax:

function function_name([arg0],...)
{
 statements;
 [return val;]
}

	Parameters

	
	function – Is a keyword telling TorqueScript we are defining a new function.

	function_name – Is the name of the function we are creating.

	[arg0] – Argument. Value passed into function for use.

	... – Any number of additional arguments.

	statements – Your custom logic executed when function is called.

	Returns

	return val Optional. The value the function will give back after it has completed.

Examples:

// Print 0 to value of %repeatCount in console
function echoRepeat (%echoString, %repeatCount)
{
 for (%count = 0; %count < %repeatCount; %count++)
 {
 echo(%echoString);
 }
}

Calling Functions

Once a function is written, you can call it from script or the console. You only need to know the name of the function and its parameters, if it has any. The echo function is the easiest method to start with. It is a stock ConsoleFunction which accepts up to 2 parameters:

Example:

// Print "Hello World" in the console
// Only passing in 1 argument
echo("Hello World");

The echo command can actually make use of 2 arguments, depending on your goal:

Example:

// Print "HelloWorld" in the console
// Passing in 2 arguments

%hello = "Hello";
%world = "World";

echo(%hello, %world);

If your function does not use arguments, you do not have to type anything in the parenthesis:

Example:

// Function declaration
function CreateLevels()
{
 echo("Levels Created");
}

// Calling the function
CreateLevels();

The last way to call a method is invoking a member function. You can call the member functions of an object, such as a Player, using a scoping symbol:

Example:

// Player function "doSomething"
// %this - The Player class/object
// %action - String to print out
function Player::doSomething(%this, %action)
{
 echo(%action);
}

// Create a player object
%myPlayer = new Player(){...};

// Call "doSomething" member function
%myPlayer.doSomething("Dance");

Creating the Script

Now that you know how to declare and call functions, we can create a few examples from scratch. First, we need to create a new script:

	Navigate to your project’s game/scripts/client directory.

	Create a new script file called “sampleFunctions”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs

	Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./sampleFunctions.cs");

Now, let’s write an extremely simple function that prints a message to the console. The echo(…) function already performs this, but we are going to create a more intuitively named method to work with. Type the following in the script:

// Print a message to the console
// Kind of repetitiously redundant
// %message - The message to print
function printMessage(%message)
{
 echo(%message);
}

To test your new script:

	Save

	Run your game

	Open the console by pressing the tilde (~) key

	Type the following, pressing enter after each line:

printMessage("Of melodies pure and true,");
printMessage("Sayin, this is my message to you-ou-ou");

Fairly straight forward. From here on, it will be assumed you know how to save your script, run the game, and call functions in the console. Next, let’s create a function that takes multiple parameters. Write the following code in your script:

// Print two separate strings to the console
// Equally redundant in equality
// %part1 - First part of message
// %part2 - Second part of message
function printAdvancedMessage(%part1, %part2)
{
 echo(%part1, %part2);
}

Run the game and type the following in the console:

printAdvancedMessage("Singin: dont worry about a thing,", "\ncause every little thing gonna be all right");

In a single function call, the above code will write out two separate lyrics on different lines. Every game always has at least one initialization function. Some even have multiple inits. We can write a function that creates and initializes a few game specific variables. Note, that the variables used here are completely new and not used by stock Torque 3D projects:

// Change global game variables to default values
function resetGameVariables()
{
 // Game's name
 $GameName = "Blank";

 // Player's name
 $PlayerName = "Player";

 // Game play type
 $GameType = "Default";
}

The above code simply declares three global variables and sets them to default values. Every time this function is called, the same logic will execute. If you were to call this in the console, you will not see anything for output. Let’s add a function to do this:

// Print our game's information to the console
function printGameInformation()
{
 echo("Game Name: ", $GameName);
 echo("Player's Name: ", $PlayerName);
 echo("Game Type: ", %gameType);
}

Save your new script and run the game. In the console, you will need to call the init function before the print function. Invoke the functions in this order:

resetGameVariables();
printGameInformation();

Instead of manually setting each variable in the console, we can write a “set” function for our game variables. Add the following to your script:

// Set the global game variables
// %gameName - Game's name
// %playerName - Player's name
// %gameType - Game play type
function setGameVariables(%gameName, %playerName, %gameType)
{
 $GameName = %gameName;
 $PlayerName = %playerName;
 $GameType = %gameType;
}

Now, you can set your game variables to whatever you wish through a single function call:

setGameVariables("Ars Moriendi", "Mich", "Survival Horror");

printGameInformation();

resetGameVariables();

printGameInformation();

We will get into creating member functions in a later section of the script documentation. For now, you should know enough about functions to move on.

Conclusion

A large portion of your Torque 3D development will occur in TorqueScript. 90% of that will be writing functions to handle your game play and other logic. With TorqueScript, it is easy to create and use functions without having to recompile the engine.

The information you learned in this doc will be used throughout the rest of the documentation, so make sure you are comfortable in your knowledge of functions. Continue reading to learn more advanced logic and math operators.

You can download the entire script from this lesson HERE. Save the script as you would any other text file from a website:

//---
// Torque 3D
// Copyright (C) GarageGames.com 2000 - 2009 All Rights Reserved
//---

// Print a message to the console
// Kind of repititiously redundant
// %message - The message to print
function printMessage(%message)
{
 echo(%message);
}

// Print two separate strings to the console
// Equally redundant in equality
// %part1 - First part of message
// %part2 - Second part of message
function printAdvancedMessage(%part1, %part2)
{
 echo(%part1, %part2);
}

// Change global game variables to default values
function resetGameVariables()
{
 // Game's name
 $GameName = "Blank";

 // Player's name
 $PlayerName = "Player";

 // Game play type
 $GameType = "Default";
}

// Set the global game variables
// %gameName - Game's name
// %playerName - Player's name
// %gameType - Game play type
function setGameVariables(%gameName, %playerName, %gameType)
{
 $GameName = %gameName;
 $PlayerName = %playerName;
 $GameType = %gameType;
}

// Print our game's information to the console
function printGameInformation()
{
 echo("Game Name: ", $GameName);
 echo("Player's Name: ", $PlayerName);
 echo("Game Type: ", $GameType);
}

Math Examples

Syntax Review

Variable Types

There are two types of variables you can declare and use in TorqueScript: local and global. Both are created and referenced similarly:

%localVariable = 1;
$globalVariable = 2;

As you can see, local variable names are preceded by the percent sign (%). Global variables are preceded by the dollar sign ($). Both types can be used in the same manner: operations, functions, equations, etc. The main difference has to do with how they are scoped.

In programming, scoping refers to where in memory a variable exists during its life. A local variable is meant to only exist in specific blocks of code, and its value is discarded when you leave that block. Global variables are meant to exist and hold their value during your entire programs execution.

Operators

Arithmetic Operators

	Operator

	Name

	Example

	Explanation

	*

	multiplication

	$a * $b

	Multiply $a and $b.

	/

	division

	$a / $b

	Divide $a by $b.

	%

	modulo

	$a % $b

	Remainder of $a divided by $b.

	+

	addition

	$a + $b

	Add $a and $b.

	-

	subtraction

	$a - $b

	Subtract $b from $a.

	++

	auto-increment

(post-fix only)

	$a++

	Increment $a.

	--

	auto-decrement

(post-fix only)

	$b--

	Decrement $b.

Note

++$a is illegal. The value of $a++ is that of the incremented variable: auto-increment is post-fix in syntax, but pre-increment in sematics (the variable is incremented, before the return value is calculated). This behavior is unlike that of C and C++.

Note

--$b is illegal. The value of $a-- is that of the decremented variable: auto-decrement is post-fix in syntax, but pre-decrement in sematics (the variable is decremented, before the return value is calculated). This behavior is unlike that of C and C++.

Relations (Arithmetic, Logical, and String)

	Operator

	Name

	Example

	Explanation

	<

	Less than

	$a < $b

	1 if $a is less than $b

	>

	More than

	$a > $b

	1 if $a is greater than $b

	<=

	Less than or Equal to

	$a <= $b

	1 if $a is less than or equal to $b

	>=

	More than or Equal to

	$a >= $b

	1 if $a is greater than or equal to $b

	==

	Equal to

	$a == $b

	1 if $a is equal to $b

	!=

	Not equal to

	$a != $b

	1 if $a is not equal to $b

	!

	Logical NOT

	!$a

	1 if $a is 0

	&&

	Logical AND

	$a && $b

	1 if $a and $b are both non-zero

	||

	Logical OR

	$a || $b

	1 if either $a or $b is non-zero

	$=

	String equal to

	$c $= $d

	1 if $c equal to $d.

	!$=

	String not equal to

	$c !$= $d

	1 if $c not equal to $d.

Assignment and Assignment Operators

	Operator

	Name

	Example

	Explanation

	=

	Assignment

	$a = $b;

	Assign value of $b to $a
Note: the value of an assignment is the value being assigned, so $a = $b = $c is legal.

	op=

	Assignment Operators

	$a op= $b;

	
	Equivalent to $a = $a op $b, where op can be any of: * / % + - & | ^ << >>

	For example: $a *= $b; is the same as $a = $a * $b;

Creating the Script

First, we need to create a new script:

	Navigate to your project’s game/scripts/client directory.

	Create a new script file called “maths”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

	Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./maths.cs");

Standard arithmetic operators are the easiest to script. Start by adding this function to your new script:

// Print the sum of %a and %b
function addValues(%a, %b)
{
 %sum = %a + %b;

 echo("Sum of " @ %a @ " + " @ %b @ ": ", %sum);
}

This simple function takes in two numerical arguments. A new variable, %sum, holds the result of adding the two arguments together. Finally, an echo(…) statement is formatted to print the original values (%a and %b) and the sum (%sum of the two).

To test your new script:

	Save the script

	Run your game

	Open the console by pressing the tilde (~) key

	Type the following, pressing enter after each line:

addValues(1,1);
addValues(2,3);
addValues(-3,2);

Your console output should look like this:

Sum of 1 + 1: 2
Sum of 2 + 3: 5
Sum of -3 + 2: -1

As you can see, you can use positive or negative numbers. You can also use floating point (decimal) values if you wish. Add the following script code to test the other basic arithmetic operations:

// Print the difference between %a and %b
function subtractValues(%a, %b)
{
 %difference = %a - %b;

 echo("Difference between " @ %a @ " - " @ %b @ ": ", %difference);
}

// Print the product of %a and %b
function multiplyValues(%a, %b)
{
 %product = %a * %b;

 echo("Product of " @ %a @ " * " @ %b @ ": ", %product);
}

// Print the quotient of %a and %b
function divideValues(%a, %b)
{
 %quotient = %a / %b;

 echo("Quotient of " @ %a @ " / " @ %b @ ": ", %quotient);
}

// Print remainder of %a divided by %b
function moduloValue(%a, %b)
{
 %remainder = %a % %b;

 echo("Remainder of " @ %a @ " % " @ %b @ ": ", %remainder);
}

You will use the same process of scripting, saving, running the game, and calling the functions via the console that has been previously discussed above. Another way of manipulating values involves more complex operators. Standard additions, subtraction, etc, use two operators: assignment (=) and arithmetic (+,-,*,etc).

You can increase or decrease the value of a variable by using the auto-increment and auto-decrement operators. As soon as the operation completes, the variable is permanently changed. You do not need to use an assignment operator in this case. Use the following script code to test it out:

// Print the increment of %a
function incrementValue(%a)
{
 %original = %a;
 %a++;

 echo("Single increment of " @ %original @ ": ", %a);
}

// Print the decrement of %a
function decrementValue(%a)
{
 %original = %a;
 %a--;

 echo("Single decrement of " @ %original @ ": ", %a);
}

As you can see, the original value of %a had to be stored before the increment/decrement operation was applied. The ++ and – automatically adjust the variable for you. Another non-basic manipulation involves combining the assignment operator with an arithmetic operator:

// Print the result of a+=b
function addToValue(%a, %b)
{
 %original = %a;
 %a += %b;

 echo("Sum of " @ %original @ " += " @ %b @ ": ", %a);
}

In the above example, the + and = are combined together for a single operation. In simple terms, %a += %b can be verbalized as “A equals itself plus B.” Unlike the addValue(…) function written earlier, a third variable is not used in this equation. This operation can be applied to the other arithmetic operators.

The last topic we will cover in this guide is comparison operators. As the name implies, these operators will compare two values together and produce a boolean (1 or 0) based on the results. Add the following function to see the first example:

// Compare %a to %b, then print the relation
function compareValues(%a, %b)
{
 if(%a > %b)
 echo("A is greater than B");
}

The above code is very straight forward. The values of %a and %b are compared to each other to see which is higher. Test the comparison code in the console using the following:

compareValues(2,1);
compareValues(3,2);
compareValues(1,2);
compareValues(0,0);

The output should be the following:

A is greater than B
A is greater than B
<no output>
<no output>

The first two calls will prove the comparison as “true”, and print out the message. The comparison results to false on the last two calls, so nothing will be printed. The rest of the function showing off the comparison operators can be copied over what you currently have:

// Compare %a to %b, then print the relation
function compareValues(%a, %b)
{
 // Printing symbols just as a decorator
 // Makes it easier to isolate the print out
 echo("\n====================================");

 // Print out the value of %a and %b
 echo("\nValue of A: ", %a);
 echo("Value of B: ", %b);

 if(!%a)
 echo("\nA is a zero value\n");
 else
 echo("\nA is a non-zero value\n");

 if(!%b)
 echo("B is a zero value\n");
 else
 echo("B is a non-zero value\n");

 if(%a && %b)
 echo("Both A and B are non-zero values\n");

 if(%a || %b)
 echo("Either A or B is a non-zero value\n");

 if(%a == %b)
 echo("A is exactly equal to B\n");

 if(%a != %b)
 echo("A is not equal to B\n");

 if(%a < %b)
 echo("A is less than B");
 else if(%a <= %b)
 echo("A is less than or equal to B");

 if(%a > %b)
 echo("A is greater than B");
 else if(%a >= %b)
 echo("A is greater than or equal to B");

 // Printing symbols just as a decorator
 // Makes it easier to isolate the print out
 echo("\n====================================");
}

I have added “decorator text” to help separate console output and make the output easier to read. Notice that each operation uses an if(…) statement to compare. Remember, the if(…) code is based on checking for a 1 (true) or 0 (false) value. This is all a comparison operation will return.

Conclusion

The guide covers the basic arithmetic operators you will use in TorqueScript. For now, read back over the script code you have been provided with. Study the comments and echo(…) commands, and feel free to test out new operators.

You can download the entire script from this lesson HERE. Save the script as you would any other text file from a website:

//---
// Torque 3D
// Copyright (C) GarageGames, LLC 2011 All Rights Reserved
//---

// Print the sum of %a and %b
function addValues(%a, %b)
{
 %sum = %a + %b;

 echo("Sum of " @ %a @ " + " @ %b @ ": ", %sum);
}

// Print the difference between %a and %b
function subtractValues(%a, %b)
{
 %difference = %a - %b;

 echo("Difference between " @ %a @ " - " @ %b @ ": ", %difference);
}

// Print the product of %a and %b
function multiplyValues(%a, %b)
{
 %product = %a * %b;

 echo("Product of " @ %a @ " * " @ %b @ ": ", %product);
}

// Print the quotient of %a and %b
function divideValues(%a, %b)
{
 %quotient = %a / %b;

 echo("Quotient of " @ %a @ " / " @ %b @ ": ", %quotient);
}

// Print remainder of %a divided by %b
function moduloValue(%a, %b)
{
 %remainder = %a % %b;

 echo("Remainder of " @ %a @ " % " @ %b @ ": ", %remainder);
}

// Print the increment of %a
function incrementValue(%a)
{
 %original = %a;
 %a++;

 echo("Single increment of " @ %original @ ": ", %a);
}

// Print the decrement of %a
function decrementValue(%a)
{
 %original = %a;
 %a--;

 echo("Single decrement of " @ %original @ ": ", %a);
}

// Print the result of a+=b
function addToValue(%a, %b)
{
 %original = %a;
 %a += %b;

 echo("Sum of " @ %original @ " += " @ %b @ ": ", %a);
}

// Compare %a to %b, then print the relation
function compareValues(%a, %b)
{
 // Printing symbols just as a decorator
 // Makes it easier to isolate the print out
 echo("\n====================================");

 // Print out the value of %a and %b
 echo("\nValue of A: ", %a);
 echo("Value of B: ", %b);

 if(!%a)
 echo("\nA is a zero value\n");
 else
 echo("\nA is a non-zero value\n");

 if(!%b)
 echo("B is a zero value\n");
 else
 echo("B is a non-zero value\n");

 if(%a && %b)
 echo("Both A and B are non-zero values\n");

 if(%a || %b)
 echo("Either A or B is a non-zero value\n");

 if(%a == %b)
 echo("A is exactly equal to B\n");

 if(%a != %b)
 echo("A is not equal to B\n");

 if(%a < %b)
 echo("A is less than B");
 else if(%a <= %b)
 echo("A is less than or equal to B");

 if(%a > %b)
 echo("A is greater than B");
 else if(%a >= %b)
 echo("A is greater than or equal to B");

 // Printing symbols just as a decorator
 // Makes it easier to isolate the print out
 echo("\n====================================");
}

function compareStrings(%string1, %string2)
{
 // Print out the values of %string1 and %string2
 echo("\nValue of String 1: ", %string1);
 echo("Value of String 2: ", %string2);

 if(%string1 $= %string2)
 {
 echo("\nString 1 and String 2 contain identical text");
 }

 if(%string1 !$= %string2)
 {
 echo("\nString 1 and String 2 contain different text");
 }
}

String Manipulation

Syntax Review

Text, such as names or phrases, are supported as strings. Numbers can also be stored in string format. Standard strings are stored in double-quotes:

"abcd" (string)

Example:

$UserName = "Heather";

Strings with single quotes are called “tagged strings.”:

'abcd' (tagged string)

Tagged strings are special in that they contain string data, but also have a special numeric tag associated with them. Tagged strings are used for sending string data across a network. The value of a tagged string is only sent once, regardless of how many times you actually do the sending.

On subsequent sends, only the tag value is sent. Tagged values must be de-tagged when printing. You will not need to use a tagged string often unless you are in need of sending strings across a network often, like a chat system.

There are special values you can use to concatenate strings and variables. Concatenation refers to the joining of multiple values into a single variable. The following is the basic syntax:

"string 1" operation "string 2"

You can use string operators similarly to how you use mathematical operators (=, +, -, *). You have four operators at your disposal:

@ (concatenates two strings)
TAB (concatenation with tab)
SPC (concatenation with space)
NL (newline)

Creating the Script

First, we need to create a new script:

	Navigate to your project’s game/scripts/client directory.

	Create a new script file called “stringManip”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

	Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./stringManip.cs");

In the new script, define three global variables at the very top as shown in the following code:

$PlayerName = "Player";
$GameName = "Default";
$BattleCry = "Hello World";

These are the strings that will be manipulated in this script. To test one of the variables, write the following function:

// Print player name string
function printPlayerName()
{
 echo($PlayerName);
}

The printPlayerName() function simply prints out the string value held by $PlayerName to the console. To test your new script:

	Save the script

	Run your game

	Open the console by pressing the tilde (~) key

	Type the following, and press enter:

printPlayerName();

The output is extremely basic. All you will see is the string held by the variable. We can perform some string manipulation to print out something more descriptive. Change the function code to the following:

// Print player name string
function printPlayerName()
{
 // Concatenate "Player's Name" with the variable
 // Containing the name
 echo("Player's Name: " @ $PlayerName);
}

Now, when you call the function you will see the following output:

Player's Name: Default

This kind of string formatting and manipulation will make debugging and management a lot easier. Add the following code to achieve the same affect for the $GameName variable:

// Print game name string
function printGameName()
{
 // Concatenate "Game Name" with the variable
 // Containing the name
 echo("Game Name: " @ $GameName);
}

We will do something slightly different with the battle cry. You can store the result of a string manipulation in a variable before you use it. This will come in handy for saving permanent changes for strings and numbers. Use the following code to create a new function:

// Print battle cry string
function printBattleCry()
{
 // Concatenate the string in $PlayerName
 // with the static string yelled: "
 %message = $PlayerName @ " yelled: \"";

 // Concatenate the value of %message with
 // the string in $BattleCry and the " symbol
 // Store the results in the %message variable
 %message = %message @ $BattleCry @ "\"";

 // Print the new string after it
 // has been manipulated
 echo(%message);
}

The printBattleCry() function starts by defining a new local variable (%message) and assigning it the value of the $PlayerName concatenated with a static string. The second line concatenates the new %message variable with the contents of $BattleCry, and wraps the quotation mark around the actual phrase. In the same line, the %message variable is replaced with itself + the concatenated string.

Let’s go ahead and create a function to print all of the variables out with a little decoration. Add the following to your script:

// Print all the game strings using a single function
function printGameStrings()
{
 echo("\n***********************************");
 echo("* GAME STATS *");
 echo("***********************************\n");

 echo("Game Name: " @ $GameName);
 echo("Player's Name: " @ $PlayerName);
 echo($PlayerName @ " battle cry: \"" @ $BattleCry @ "\"");
}

When you call this function in the console, you will get the following output:

* GAME STATS *

Game Name: Default
Player's Name: Player
Player battle cry: "Hello World"

So far we have been concatenating and printing out strings. You can also assign string values using the assignment operator (=), and compare string values using the string equality operator ($=).

The following function uses the operators to adjust the game string variables:

// Set game strings with other strings
// %playerName will be assigned to $PlayerName
// %gameName will be assigned to $GameName
// %battleCry will be assigned to $BattleCry
function setGameStrings(%playerName, %gameName, %battleCry)
{
 // Check to see if the two strings are identical
 // If so, do nothing and print a message.
 // Otherwise, assign the new string
 if($PlayerName $= %playerName)
 echo("New player name is identical. Doing nothing");
 else
 $PlayerName = %playerName;
}

The above function takes in three variables containing strings, one of which is used initially. The first if(…) check compares $PlayerName to %playerName. If the two are identical, the assignment of a new value will not occur. A message will be printed to console instead.

You can also apply the logical NOT (!) operator to a comparison to achieve the opposite test:

// Check to see if the two strings are different
// If so, assign the new string
// Otherwise, do nothing and print a message.
if($GameName !$= %gameName)
 $GameName = %gameName;
else
 echo("Game name is identical. Doing nothing");

In this check, if the two strings are NOT the same, then the new value assignment will occur. Otherwise, a message is printed to the console. You can go ahead and add the last portion of the code handling the %battleCry assignment:

// Check to see if the two strings are identical
 // If so, do nothing and print a message.
 // Otherwise, assign the new string
 if($BattleCry $= %battleCry)
 echo("Battle cry is identical. Doing nothing");
 else
 $BattleCry = %battleCry;

Conclusion

This guide covered the most popular operators used for string manipulation: concatenate (@), assignment (=), string equality ($=), and string inequality (!$=). Outside of simply printing to the console, during development you will be manipulating strings that directly affect game play, interface messages, and the saving of important data.

You can download the entire script from this lesson HERE. Save the script as you would any other text file from a website:

//---
// Torque 3D
// Copyright (C) GarageGames, LLC 2011 All Rights Reserved
//---

$PlayerName = "Player";
$GameName = "Default";
$BattleCry = "Hello World";

// Print player name string
function printPlayerName()
{
 // Concatenate "Player's Name" with the variable
 // Containing the name
 echo("Player's Name: " @ $PlayerName);
}

// Print game name string
function printGameName()
{
 // Concatenate "Game Name" with the variable
 // Containing the name
 echo("Game Name: " @ $GameName);
}

// Print battle cry string
function printBattleCry()
{
 // Concatenate the string in $PlayerName
 // with the static string yelled: "
 %message = $PlayerName @ " yelled: \"";

 // Concatenate the value of %message with
 // the string in $BattleCry and the " symbol
 // Store the results in the %message variable
 %message = %message @ $BattleCry @ "\"";

 // Print the new string after it
 // has been manipulated
 echo(%message);
}

// Print all the game strings using a single function
function printGameStrings()
{
 echo("\n***********************************");
 echo("* GAME STATS *");
 echo("***********************************\n");

 echo("Game Name: " @ $GameName);
 echo("Player's Name: " @ $PlayerName);
 echo($PlayerName @ " battle cry: \"" @ $BattleCry @ "\"");
}

// Set game strings with other strings
// %playerName will be assigned to $PlayerName
// %gameName will be assigned to $GameName
// %battleCry will be assigned to $BattleCry
function setGameStrings(%playerName, %gameName, %battleCry)
{
 // Check to see if the two strings are identical
 // If so, do nothing and print a message.
 // Otherwise, assign the new string
 if($PlayerName $= %playerName)
 echo("New player name is identical. Doing nothing");
 else
 $PlayerName = %playerName;

 // Check to see if the two strings are different
 // If so, assign the new string
 // Otherwise, do nothing and print a message.
 if($GameName !$= %gameName)
 $GameName = %gameName;
 else
 echo("Game name is identical. Doing nothing");

 // Check to see if the two strings are identical
 // If so, do nothing and print a message.
 // Otherwise, assign the new string
 if($BattleCry $= %battleCry)
 echo("Battle cry is identical. Doing nothing");
 else
 $BattleCry = %battleCry;
}

Looping Structures

Syntax Review

There are two types of used in TorqueScript: for and while loops. A for loop repeats a statement or block of code for a set number of iterations. A while loop on the other hand repeats a statement or block of code as long as an expression given to the while loop remains true.

for Loop Syntax:

for(expression0; expression1; expression2)
{
 statement(s);
}

One way to label the expressions in this syntax are (startExpression; testExpression; countExpression). Each expression is separated by a semi-colon.

while Loop Syntax:

while(expression)
{
 statements;
}

As soon as the expression is met, the while loop will terminate.

Example

For Loop:

for(%count = 0; %count < 3; %count++)
{
 echo(%count);
}

OUTPUT:
0
1
2

While Loop:

%countLimit = 0;

while(%countLimit <= 5)
{
 echo("Still in loop");
 %count++;
}
echo("Loop was terminated");

OUTPUT:
Still in loop
Still in loop
Still in loop
Still in loop
Still in loop
Loop was terminated

Creating the Script

First, we need to create a new script:

	Navigate to your project’s game/scripts/client directory.

	Create a new script file called “loops”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

	Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./loops.cs");

We will start with a very basic loop. Add the following to your script:

// Print 0 -> %count in the console
function printNumbers(%count)
{
 for(%i = 0; %i < %count; %i++)
 {
 echo(%i);
 }
}

The above function takes in a single argument (%count). The for(…) loop uses three expressions. The first is declaration expression. This is the setup for the loop. In this example, the iterator is defined. The iterator is the variable that will change each loop.

The second expression sets up the condition that will cause the loop to terminate. In the above code, when the iterator is no longer less than the %count variable, the loop will end. Finally, the third expression is the logic that occurs after each loop. In our example, we increment the count of our iterator.

The main logic is enclosed in brackets after the loop declaration. In above code, the iterator (%i) is printed to the console each loop. To test your new script:

	Save the script

	Run your game

	Open the console by pressing the tilde (~) key

	Type the following, and press enter:

printNumbers(10);

Your output should look like the following:

0
1
2
3
4
5
6
7
8
9

As expected, the iterator is printed to the console then incremented by 1. Notice that it stops when it gets to 9, even though 10 was passed in. Look at the second expression’s logic again:

%i < %count;

When %i reaches 10, then it is equal to the %count passed in which is also 10. 10 is not less than 10. As soon as that expression failed, the loop terminated. To get the full ten count, modify the function to use a different logic check:

function printNumbers(%count)
{
 for(%i = 0; %i <= %count; %i++)
 {
 echo(%i);
 }
}

Now, when you call the following code in the console:

printNumbers(10);

Your output should be:

0
1
2
3
4
5
6
7
8
9
10

You can apply different modifiers to your iterator. You do not always have to use an incremental counter. Add the following function to your script:

// Print %startCount -> 0 in the console
function countdown(%startCount)
{
 for(%i = %startCount; %i >= 0; %i--)
 {
 echo(%i);
 }
}

Save and run. Now you can see a countdown from a base number, as the following shows:

countdown(5);

Output:

5
4
3
2
1
0

An important keyword to remember when working with for(…) loops is continue. The continue keyword will cause a loop to immediately skip to the next iteration, similar to how the return keyword works in a function. Add the following function to see it work:

// Print 0 -> %count, except %skipNumber, in the console
function skipCount(%count, %skipNumber)
{
 for(%i = 0; %i <= %count; %i++)
 {
 if(%i == %skipNumber)
 continue;

 echo(%i);
 }
}

In the above code, when the iterator (%i) exactly matches the %skipNumber variable, the loop immediately goes to the next iteration. This ignores the echo(…) command on the next line. Try calling this in the console:

skipCount(5, 4);

The output should be:

0
1
2
3
5

Instead of terminating soon as the iterator reached 4, a continue keyword was used to skip to the next loop iteration. If a less complex loop is desired, the while(…) structure will be handy.

Add the following function to your script:

// Increase %count incrementally until it is no
// longer less than %breakNumber
function whileExample(%count, %breakNumber)
{
 // While the count is less than the breaknumber
 while(%count < %breakNumber)
 {
 // Print the count
 echo(%count);

 // Increase the count
 %count++;
 }
}

In this new function, the loop will check the expression in the parenthesis each time it completes an iteration. The body of the loop, contained in the brackets, simply prints the %count variable and then increases. You must be careful with loops, especially while(…) structures. The wrong use of variables can result in an infinite loop which will freeze your game.

Break is another keyword that affects looping structures. It will immediately terminate the loop. The following function shows proper use of a while loop avoiding infinite cycling:

// Increase %iterator until it is equal to
// %conditional. When it is, break out of
// the infinite loop
function breakOut(%iterator, %conditional)
{
 // If iterator is less than conditional
 // we will be stuck in an infinite loop
 // Error out and exit function.
 if(%iterator > %conditional)
 {
 error("Iterator is greater than conditional, try again");
 return;
 }

 // Loop infinitely until a condition is met
 while(true)
 {
 // Condition has been met, break out.
 if(%iterator == %conditional)
 break;

 echo(%iterator);

 %iterator++;
 }
}

Before the loop even starts, an if(…) check is made to make sure the variables used by the loop will insure a proper break. The goal of the loop is to continue iterating until the %iterator variable is equal to the %conditional.

The while(true) syntax creates the “infinite” loop. However, it will not loop infinitely since a break keyword is used. Once the %iterator is equal to the %conditional, a break is called. Otherwise, the %iterator is printed to the console and then increased.

To see the output, call the following in the console (pressing enter after each line):

breakOut(10,1);
breakOut(10,10);
breakOut(0, 10);

Output:

Iterator is greater than conditional, try again:

0
1
2
3
4
5
6
7
8
9

The first call gives you the error message. The second call immediately causes the loop to terminate since the two variables are already equal. The last call provides the proper output of the function.

The last concept we will cover is nested loops. These are loops within other loops. For the next example, the terminology should be addressed first. The first loop is identical to the structures you have created in the past.

The nested loop is declared inside the first loop. Remember, it is important to be smart about your variable names. You can name your iterators anything you want, such as using %iterator instead of %i. If you go with the longer name, then it would make sense to name your second iterator something like “%iteratorTwo”.

The naming convention for loop iterators is preferential. The use of %i typically stands for iterator. In quite a few programming primers (such as the ones this writer has read), the second iterator is often named %j. For these simple examples, you can get away with this. In more complex or critical loops, you might want to name your iterators based on what the loop does.

Add the following function:

// Run a nested loop
// Print messages, color based on level
function nestedLoops()
{
 // Max iteration for first loop
 %firstCount = 10;

 // Execute first loop %firstCount times
 for(%i = 0; %i < %firstCount; %i++)
 {
 // Print in teal
 warn("Running main loop: " @ %i);
 }
}

Run the function in the console, and you should see the following printed in a teal color:

Running main loop: 0
Running main loop: 1
Running main loop: 2
Running main loop: 3
Running main loop: 4
Running main loop: 5
Running main loop: 6
Running main loop: 7
Running main loop: 8
Running main loop: 9

For the nested loop, we will stick with a pattern. A second count variable should be declared, and the nested loop should perform a similar operation. Modify the function to use this pattern:

// Run a nested loop
// Print messages, color based on level
function nestedLoops()
{
 // Max iteration for first loop
 %firstCount = 10;

 // Max iteration for nested loop
 %secondCount = 2;

 // Execute first loop %firstCount times
 for(%i = 0; %i < %firstCount; %i++)
 {
 // Execute nested loop %secondCount times
 for(%j = 0; %j < %secondCount; %j++)
 {
 // Print in red
 error("Running nested loop: " @ %j);
 }
 // Print in teal
 warn("Running main loop: " @ %i);
 }
}

Run this function again to see the new output:

Running nested loop: 0
Running nested loop: 1
Running main loop: 0
Running nested loop: 0
Running nested loop: 1
Running main loop: 1
Running nested loop: 0
Running nested loop: 1
Running main loop: 2
Running nested loop: 0
Running nested loop: 1
Running main loop: 3
Running nested loop: 0
Running nested loop: 1
Running main loop: 4
Running nested loop: 0
Running nested loop: 1
Running main loop: 5
Running nested loop: 0
Running nested loop: 1
Running main loop: 6
Running nested loop: 0
Running nested loop: 1
Running main loop: 7
Running nested loop: 0
Running nested loop: 1
Running main loop: 8
Running nested loop: 0
Running nested loop: 1
Running main loop: 9

Your console output will be color-coded. The main loop output should still be teal, and the nested loop output should be red. Here is the breakdown of the full loop:

#. First loop starts
#. Main iterator (%i) starts at 0
#. Nested loop starts
#. Second iterator (%j) starts at 0
#. Print second iterator (0)
#. Increment second iterator
#. Print second iterator (1)
#. End nested loop
#. Print first iterator
#. Increment first loop
#. Go back to step 3, repeat until first loop ends

Based on the default values, the nested loop will execute 10 times. Its iterator will reset each time the first loop iterates. Try adjusting the %firstCount and %secondCount variables to see the varying outputs if you are still trying to understand the concept.

Conclusion

This guide covered the basics of looping structures. You will use these often when you need to accomplish repetitive tasks or iterate through lists. Remember the following:

	If you perform a task more than twice, you might want to use a loop

	Be smart when naming your iterators and other variables

	Always perform safety checks for infinite loops

You can download the entire script from this lesson HERE. Save the script as you would any other text file from a website:

//---
// Torque 3D
// Copyright (C) GarageGames, LLC 2011 All Rights Reserved
//---

// Print 0 -> %count in the console
function printNumbers(%count)
{
 for(%i = 0; %i <= %count; %i++)
 {
 echo(%i);
 }
}

// Print %startCount -> 0 in the console
function countdown(%startCount)
{
 for(%i = %startCount; %i >= 0; %i--)
 {
 echo(%i);
 }
}

// Print 0 -> %count, except %skipNumber, in the console
function skipCount(%count, %skipNumber)
{
 for(%i = 0; %i <= %count; %i++)
 {
 if(%i == %skipNumber)
 continue;

 echo(%i);
 }
}

// Increase %count incrementally until it is no
// longer less than %breakNumber
function whileExample(%count, %breakNumber)
{
 // While the count is less than the breaknumber
 while(%count < %breakNumber)
 {
 // Print the count
 echo(%count);

 // Increase the count
 %count++;
 }
}

// Increase %iterator until it is equal to
// %conditional. When it is, break out of
// the infinite loop
function breakOut(%iterator, %conditional)
{
 // If iterator is less than conditional
 // we will be stuck in an infinite loop
 // Error out and exit function.
 if(%iterator > %conditional)
 {
 error("Iterator is greater than conditional, try again");
 return;
 }

 // Loop infinitely until a condition is met
 while(true)
 {
 // Condition has been met, break out.
 if(%iterator == %conditional)
 break;

 echo(%iterator);

 %iterator++;
 }
}

// Run a nested loop
// Print messages, color based on level
function nestedLoops()
{
 // Max iteration for first loop
 %firstCount = 10;

 // Max iteration for nested loop
 %secondCount = 2;

 // Execute first loop %firstCount times
 for(%i = 0; %i < %firstCount; %i++)
 {
 // Execute nested loop %secondCount times
 for(%j = 0; %j < %secondCount; %j++)
 {
 // Print in red
 error("Running nested loop: " @ %j);
 }

 // Print in teal
 warn("Running main loop: " @ %i);
 }
}

Array Manipulation

Syntax Review

Arrays are data structures used to store consecutive values of the same data type. Arrays can be single-dimension or multidimensional:

$TestArray[n] (Single-dimension)
$TestArray[m,n] (Multidimensional)
$TestArray[m_n] (Multidimensional)

If you have a list of similar variables you wish to store together, try using an array to save time and create cleaner code. The syntax displayed above uses the letters ‘n’ and ‘m’ to represent where you will input the number of elements in an array. The following example shows code that could benefit from an array:

To learn more, read the full array syntax.

Example

Example:

$userNames[0] = "Heather";
$userNames[1] = "Nikki";
$userNames[2] = "Mich";

echo($userNames[0]);
echo($userNames[1]);
echo($userNames[2]);

Creating the Script

First, we need to create a new script:

	Navigate to your project’s game/scripts/client directory.

	Create a new script file called “arrays”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

	Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./arrays.cs");

This new script is going to work with two different arrays: $names and $board. $names is a single dimensional array containing strings. $board is a two dimensional array, also containing strings. The two are not related, but show off different uses of arrays. Let’s create the initialization function:

// Set up all of the arrays
// with default values
function initArrays()
{
 // Initialize single dimensional array
 // containing a list of names
 $names[0] = "Heather";
 $names[1] = "Nikki";
 $names[2] = "Mich";

 // Initialize two dimensional array
 // containing symbols for a
 // tic-tac-toe game

 // Row one values
 $board[0,0] = "_";
 $board[0,1] = "_";
 $board[0,2] = "_";

 // Row two values
 $board[1,0] = "_";
 $board[1,1] = "_";
 $board[1,2] = "_";

 // Row three values
 $board[2,0] = "_";
 $board[2,1] = "_";
 $board[2,2] = "_";
}

The above code defines the two arrays ($names and $board). $names is given three strings representing people’s names. $board is setup like a tic-tac-toe board. It will be making use of “X”s and “O”s, but for now the blank value is “_”.

Instead of manually calling this function every time the game is run, we can call the function on game initialization. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under this code:

exec("./arrays.cs");

Add the following:

initArrays();

Save the arrays.cs and init.cs scripts. Since there is nothing to see yet, create a function that will print out the values of $names:

// Print out all the values
// in the $names array
function printNames()
{
 // Print each name using
 // hard coded values (0,1,2)
 echo("0:" @ $names[0]);
 echo("1:" @ $names[1]);
 echo("2:" @ $names[2]);
}

To test your new script:

	Save the script

	Run your game

	Open the console by pressing the tilde (~) key

	Type the following, and press enter:

printNames();

The output is extremely basic. All you will see is the strings held by the array, by index:

0: Heather
1: Nikki
2: Mich

This is a good start, but what if the array has 1000 elements? An optimization for this function would be to make use of a looping structure. Modify the printNames() function to use the following code:

function printNames()
{
 // Iterate through the names
 // array and print the values
 for(%i = 0; %i < 3; %i++)
 echo(%i @ ": " @ $names[%i]);
}

Instead of having three (or 1000) echo statements, you only have to script two lines. The above code iterates through the elements of the $names array using a for(…) loop. To change an individual element, add the following function to your script:

// Change the value of an array item
// %id = index to change
// %name = the new value
function setNames(%id, %name)
{
 // Our array only contains three elements:
 // [0] [1] [2]
 // If anything other than 0, 1, or 2 is
 // passed in, inform the user of an error
 if(%id > 2 || %id < 0)
 {
 error("Index " @ %id @ " out of range");
 error("Please use 0 - 2 as the %id");
 }
 else
 $names[%id] = %name;
}

To use this function, run the game and open the console. The first variable determines which array index is changing, and the second variable is the new string (name) to use. Example usage:

setNames(0, "Brad");

If you try to pass in any other numbers besides 0, 1, or 2, you will get an error message letting you know you have tried to access outside of the array bounds. Moving on, the script needs functions for printing, manipulating, and testing the $board array.

To print out just the values in order, add the following function:

// Print out the the values
// in the $board array
function printBoardValues()
{
 // %i loops through rows
 for(%i = 0; %i < 3; %i++)
 {
 // %j loops through columns
 for(%j = 0; %j < 3; %j++)
 {
 // Print the value of the [%i,%j]
 echo("[" @ %i @ "," @ %j @ "]: " @ $board[%i, %j]);
 }
 }
}

The above code uses the concept of nested loops. Nested loops are simply loops within other loops. Notice there are two for(…) structures set up. This allows the iteration of each row and column, which is necessary with a two-dimensional array. Calling this function will result in the following output:

[0,0]: _
[0,1]: _
[0,2]: _
[1,0]: _
[1,1]: _
[1,2]: _
[2,0]: _
[2,1]: _
[2,2]: _

As you can see, the function prints the current index and the value it contains. Being a tic-tac-toe board, it might help to visualize the board based on value locations. The following function will print the values of $board in a relative format:

// Print tic-tac-toe board
// in a relative format
function printBoard()
{
 // Print out an entre row in 1 echo
 echo($board[0,0] @" "@ $board[0,1] @" "@ $board[0,2]);
 echo($board[1,0] @" "@ $board[1,1] @" "@ $board[1,2]);
 echo($board[2,0] @" "@ $board[2,1] @" "@ $board[2,2]);
}

The initial output without changing the values will look like this:

_ _ _
_ _ _
_ _ _

If you have never played tic-tac-toe, each player takes a turn putting an X or O in one of the board positions. When three X’s or O’s are lined up, a player wins. The alignment can be three in a row, three in a column, or three diagonally. We can simulate this game play, but we will only work with rows.

We are going to change this function a few times, but we will start with the shell:

// Set a specific value in the array
// to an X or O
function setBoardValue(%row, %column, %value)
{
 // Make sure "X" or "O" was passed in
 if(%value !$= "X" && %value !$= "O")
 {
 echo("Invalid entry:\nPlease use \'X\' or \'O\'");
 return;
 }
}

The user will input a row index (%row), a column index (%column), and a value (%value) represented by an “X” or “O” string. If anything other than a capital X or capital O are passed in, the function will throw an error message and exit. If the function gets past the check, the value is assigned:

// Set a specific value in the array
// to an X or O
function setBoardValue(%row, %column, %value)
{
 // Make sure "X" or "O" was passed in
 if(%value !$= "X" && %value !$= "O")
 {
 echo("Invalid entry:\nPlease use \'X\' or \'O\'");
 return;
 }

 // Set the board value
 $board[%row, %column] = %value;
}

Save the script and run. Call the following functions, in order, to see the results:

printBoard();
setBoardValue(0,0,"X");
setBoardValue(0,1,"O");
printBoard();

Your output should look like the following:

_ _ _
_ _ _
_ _ _

X O _
_ _ _
_ _ _

To reset back to the default values, you can create a function that iterates through the array:

// Set all values of $board
// array back to "nothing"
// In this case, nothing is _
function resetBoard()
{
 // %i loops through rows
 for(%i = 0; %i < 3; %i++)
 {
 // %j loops through columns
 for(%j = 0; %j < 3; %j++)
 {
 // Set value to _
 $board[%i, %j] = "_";
 }
 }
}

Now, any normal game will have a victory condition. Enable to win, a row must contain three of the same value. Creating a function for this is quite simple using array access and string comparisons:

// Compare the values of each array
// item in a row
// If row contains the same values
// Return true for a victory
// Return false if values are different
function checkForWin()
{
 // Make sure at least the first symbol is X or O
 // Then compare the three values of a row

 // Row 1
 if($board[0,0] !$= "_" && $board[0,0] $= $board[0,1] && $board[0,1] $= $board[0,2])
 return true;

 // Row 2
 if($board[1,0] !$= "_" && $board[1,0] $= $board[1,1] && $board[1,1] $= $board[1,2])
 return true;

 // Row 3
 if($board[2,0] !$= "_" && $board[2,0] $= $board[2,1] && $board[2,1] $= $board[2,2])
 return true;

 return false;
}

The checkForWin() function will return true if any of the three if(…) statements pass. If there is no win condition, the function will return false. In a previous guide, you learned about the $= operator. Alternatively, you can use a function to compare two strings: strcmp(…).

The strcmp(…) function takes in two string, compares the two, then return a 1 or 0 based on the comparison. If the two strings are the same, it will return a 0. If the two strings are different, it will return a 1.

Example:

%string1 = "Hello";
%string2 = "Hello";
%string3 = "World";

// Returns 0
strcmp(%string1, %string2);

// Returns 1
strcmp(%string1, %string3);

We can replace the $= operators in the checkForWin() function using a different set of operators. Comment out the first chunk of code, and replace it with the following:

function checkForWin()
{
 // Make sure at least the first symbol is X or O
 // Then compare the three values of a row
 //if($board[0,0] !$= "_" && $board[0,0] $= $board[0,1] && $board[0,1] $= $board[0,2])
 //return true;
 //
 //if($board[1,0] !$= "_" && $board[1,0] $= $board[1,1] && $board[1,1] $= $board[1,2])
 //return true;
 //
 //if($board[2,0] !$= "_" && $board[2,0] $= $board[2,1] && $board[2,1] $= $board[2,2])
 //return true;

 if($board[0,0] !$= "_" && !strcmp($board[0,0], $board[0,1]) && !strcmp($board[0,1], $board[0,2]))
 return true;

 if($board[0,0] !$= "_" && !strcmp($board[1,0], $board[1,1]) && !strcmp($board[1,1], $board[1,2]))
 return true;

 if($board[0,0] !$= "_" && !strcmp($board[2,0], $board[2,1]) && !strcmp($board[2,1], $board[2,2]))
 return true;

 return false;
}

Let’s break down the if(…) statements to see what is going on:

if($board[0,0] !$= "_" &&)

The first part checks to see if the row contains a blank entry (“_”). If this is true, then there is no point checking for anything else. The row does not have three similar values, so the function can move on to check the rest of the rows:

!strcmp($board[0,0], $board[0,1])

If the first check succeeds, the values of the row’s first and second column are compared. If they are the same, a 0 is returned. Instead of catching the return value in a variable and testing it, we can just use the logical NOT (!) operator.

If the first two columns are the same, we can just compare the third column to one of the others. There is no point in making three string comparisons:

&& !strcmp($board[0,1], $board[0,2])

There are most likely more optimized ways to check for this kind of situation, but the above code demonstrates multiple syntactical approaches and comparisons. We can now have a way to check for a victory condition. Go back into the setBoardValue(…) function and add the win check:

function setBoardValue(%row, %column, %value)
{
 // Make sure "X" or "O" was passed in
 if(%value !$= "X" && %value !$= "O")
 {
 echo("Invalid entry:\nPlease use \'X\' or \'O\'");
 return;
 }

 // Set the board value
 $board[%row, %column] = %value;

 // Check to see if we have the same
 // three values in a row
 if(checkForWin())
 {
 // Entire row matched
 // Print a victory message
 echo("\n**********************");
 echo("* Win Condition! *");
 echo("**********************\n");

 // Print the board
 printBoard();

 // Reset the game
 echo("\nResetting board");
 resetBoard();
 }
}

Remember, the checkForWin() functions returns a true if the game has been won. The first portion of the code prints a message about the victory. After that, the board is printed to show what row won, and then resets the game.

While this version of the game is very rudimentary, you should be able to expand it by checking for columns and diagonals. There is plenty of room for optimization and more functions to make the game easier. However, this is not necessary to learning a powerful game engine like Torque 3D.

Conclusion

This guide covered the concept of arrays, both single and multi-dimensional. Lessons from past guides were also used: string comparisons, logical operators, function declaration and calling, loop structures, etc.

You can download the entire script from this lesson HERE. Save the script as you would any other text file from a website:

//---
// Torque 3D
// Copyright (C) GarageGames, LLC 2011 All Rights Reserved
//---

// Set up all of the arrays
// with default values
function initArrays()
{
 // Initialize single dimensional array
 // containing a list of names
 $names[0] = "Heather";
 $names[1] = "Nikki";
 $names[2] = "Mich";

 // Initialize two dimensional array
 // containing symbols for a
 // tic-tac-toe game

 // Row one values
 $board[0,0] = "_";
 $board[0,1] = "_";
 $board[0,2] = "_";

 // Row two values
 $board[1,0] = "_";
 $board[1,1] = "_";
 $board[1,2] = "_";

 // Row three values
 $board[2,0] = "_";
 $board[2,1] = "_";
 $board[2,2] = "_";
}

// Print out all the values
// in the $names array
function printNames()
{
 // Iterate through the names
 // array and print the values
 for(%i = 0; %i < 3; %i++)
 echo(%i @ ": " @ $names[%i]);
}

// Change the value of an array item
// %id = index to change
// %name = the new value
function setNames(%id, %name)
{
 // Our array only contains three elements:
 // [0] [1] [2]
 // If anything other than 0, 1, or 2 is
 // passed in, inform the user of an error
 if(%id > 2 || %id < 0)
 {
 error("Index " @ %id @ " out of range");
 error("Please use 0 - 2 as the %id");
 }
 else
 $names[%id] = %name;
}

// Print out the the values
// in the $board array
function printBoardValues()
{
 // %i loops through rows
 for(%i = 0; %i < 3; %i++)
 {
 // %j loops through columns
 for(%j = 0; %j < 3; %j++)
 {
 // Print the value of the [%i,%j]
 echo("[" @ %i @ "," @ %j @ "]: " @ $board[%i, %j]);
 }
 }
}

// Print tic-tac-toe board
// in a relative format
function printBoard()
{
 // Print out an entre row in 1 echo
 echo($board[0,0] @" "@ $board[0,1] @" "@ $board[0,2]);
 echo($board[1,0] @" "@ $board[1,1] @" "@ $board[1,2]);
 echo($board[2,0] @" "@ $board[2,1] @" "@ $board[2,2]);
}

// Set a specific value in the array
// to an X or O
function setBoardValue(%row, %column, %value)
{
 // Make sure "X" or "O" was passed in
 if(%value !$= "X" && %value !$= "O")
 {
 echo("Invalid entry:\nPlease use \'X\' or \'O\'");
 return;
 }

 // Set the board value
 $board[%row, %column] = %value;

 // Check to see if we have the same
 // three values in a row
 if(checkForWin())
 {
 // Entire row matched
 // Print a victory message
 echo("\n**********************");
 echo("* Win Condition! *");
 echo("**********************\n");

 // Print the board
 printBoard();

 // Reset the game
 echo("\nResetting board");
 resetBoard();
 }
}

// Set all values of $board
// array back to "nothing"
// In this case, nothing is _
function resetBoard()
{
 // %i loops through rows
 for(%i = 0; %i < 3; %i++)
 {
 // %j loops through columns
 for(%j = 0; %j < 3; %j++)
 {
 // Set value to _
 $board[%i, %j] = "_";
 }
 }
}

// Compare the values of each array
// item in a row
// If row contains the same values
// Return true for a victory
// Return false if values are different
function checkForWin()
{
 // Make sure at least the first symbol is X or O
 // Then compare the three values of a row
 //if($board[0,0] !$= "_" && $board[0,0] $= $board[0,1] && $board[0,1] $= $board[0,2])
 //return true;
 //
 //if($board[1,0] !$= "_" && $board[1,0] $= $board[1,1] && $board[1,1] $= $board[1,2])
 //return true;
 //
 //if($board[2,0] !$= "_" && $board[2,0] $= $board[2,1] && $board[2,1] $= $board[2,2])
 //return true;

 if($board[0,0] !$= "_" && !strcmp($board[0,0], $board[0,1]) && !strcmp($board[0,1], $board[0,2]))
 return true;

 if($board[0,0] !$= "_" && !strcmp($board[1,0], $board[1,1]) && !strcmp($board[1,1], $board[1,2]))
 return true;

 if($board[0,0] !$= "_" && !strcmp($board[2,0], $board[2,1]) && !strcmp($board[2,1], $board[2,2]))
 return true;

 return false;
}

Switch Statements

Syntax Review

There are two types of switch statements used in TorqueScript. switch(…) is used to compare numerical values and switch$(…) is used to compare strings.

Standard switch statements use numerical values to determine which case to execute:

switch Syntax:

switch(<numeric expression>)
{
 case value0:
 statements;
 case value1:
 statements;
 case value3:
 statements;
 default:
 statements;
}

Switch statements requiring string comparison use the switch$ syntax.

switch$ Syntax:

switch$ (<string expression>)
{
 case "string value 0":
 statements;
 case "string value 1":
 statements;
...
 case "string value N":
 statements;
 default:
 statements;
}

Creating the Script

First, we need to create a new script:

	Navigate to your project’s game/scripts/client directory.

	Create a new script file called “switch”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.

	Open your new script using a text editor or Torsion.

Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./switch.cs");

The first function we are going to write will take in a numerical argument. This number will be checked for a specific value, and a message will be printed based on the value comparison. Create the following function in your script:

// Print a message to a console based on
// the amount of ammo a weapon has
// %ammoCount - Ammo count (obviously)
function checkAmmoCount(%ammoCount)
{
 // If the ammo is at 0, we are out of ammo
 // If the ammo is at 1, we are at the end of the clip
 // If the ammo is at 100, we have a full clip
 // If the ammo is anything else, we do not care
 if(%ammoCount == 0)
 echo("Out of ammo, time to reload");
 else if(%ammoCount == 1)
 echo("Almost out of ammo, warn user");
 else if(%ammoCount == 100)
 echo("Full ammo count");
 else
 echo("Doing nothing");
}

To test your new script:

	Save the script

	Run your game

	Open the console by pressing the tilde (~) key

	Type the following, press enter after each line:

checkAmmoCount(0);
checkAmmoCount(1);
checkAmmoCount(100);
checkAmmoCount(44);

Your console output should be the following:

Out of ammo, time to reload

Almost out of ammo, warn user

Full ammo count

Do nothing

Instead of using four separate if/else checks, we can use a single switch statement to handle all of the cases. Change the checkAmmoCount(…) function to use the following code:

// Print a message to a console based on
// the amount of ammo a weapon has
// %ammoCount - Ammo count (obviously)
function checkAmmoCount(%ammoCount)
{
 // If the ammo is at 0, we are out of ammo
 // If the ammo is at 1, we are at the end of the clip
 // If the ammo is at 100, we have a full clip
 // If the ammo is anything else, we do not care
 switch(%ammoCount)
 {
 case 0:
 echo("Out of ammo, time to reload");
 case 1:
 echo("Almost out of ammo, warn user");
 case 100:
 echo("Full ammo count");
 default:
 echo("Doing nothing");
 }
}

The switch is declared using the switch(%ammoCount){…} syntax. The test value is kept in the parenthesis, and the cases are defined in the brackets. Each case you wish to check for is defined by the keyword case, the value, and a colon (case: 0).

You can write as few or as many lines of TorqueScript code between cases as you need to handle each numerical value. The default keyword is used when you want to handle a value that does not have a defined case. Without the default case, any other value besides was is defined as a case will be ignored.

If you test the function as you did previously, you should get the same result:

checkAmmoCount(0);
checkAmmoCount(1);
checkAmmoCount(100);
checkAmmoCount(44);

Result:

Out of ammo, time to reload

Almost out of ammo, warn user

Full ammo count

Do nothing

Testing strings in switch statements requires a small syntactical change. There are multiple ways to perform a string comparison. Write the following function in your script:

// Check to see if a person's name is
// a known user
// %userName - String containing person's name
function matchNames(%userName)
{
 if(!strcmp(%userName, "Heather"))
 echo("User Found: " @ %userName);
 else if(%userName $= "Mich")
 echo("User Found: " @ %userName);
 else if(%userName $= "Nikki")
 echo("User Found: " @ %userName);
 else
 echo("User " @ %userName @ " not found");
}

The above code defines a function which takes in a string as an argument, then performs three separate string comparison to find a result. The first if(…) check uses the strcmp function to check the %userName variable against a static string (“Heather”).

The two other checks use the basic $= string equality operator. Finally, an else statement exists to inform the system that no user was found. Run the script and type the following to test the function:

matchNames("Heather");
matchNames("Mich");
matchNames("Nikki");
matchNames("Brad");

Output:

User Found: Heather
User Found: Mich
User Found: Nikki
User Brad not found

Instead of four separate if/else string comparison statements, a single switch can clean the code up greatly. Replace the matchNames(…) function with the following:

// Check to see if a person's name is
// a known user
// %userName - String containing person's name
function matchNames(%userName)
{
 switch$(%userName)
 {
 case "Heather":
 echo("User Found: " @ %userName);
 case "Mich":
 echo("User Found: " @ %userName);
 case "Nikki":
 echo("User Found: " @ %userName);
 default:
 echo("User: " @ %userName @ " not found");
 }
}

Just like the switch statement used in the checkAmmoCount(…) function, the above code starts with the switch$ keyword. This is followed by the string we are testing, held in the parenthesis. Instead of numerical values, the case keywords are followed by a strings.

In the above example, the case statements are comparing the test (%userName) against string literals. String literals are raw text displayed in code between quotations. If you have variables that contain a string value to test against, you can use those instead.

As with a numerical switch statement, you can write your logic in between the case statements.

Conclusion

This guide covered the basics of the switch and switch$ statement structures. When you need to perform one or two logical checks, you will use the basic control statements such as if(…), if else(…), and else. When you need a complex control statement handling multiple outcomes based on a value, try using a switch statement instead

You can download the entire script from this lesson HERE. Save the script as you would any other text file from a website:

//---
// Torque 3D
// Copyright (C) GarageGames, LLC 2011 All Rights Reserved
//---

// Print a message to a console based on
// the amount of ammo a weapon has
// %ammoCount - Ammo count (obviously)
function checkAmmoCount(%ammoCount)
{
 // If the ammo is at 0, we are out of ammo
 // If the ammo is at 1, we are at the end of the clip
 // If the ammo is at 100, we have a full clip
 // If the ammo is anything else, we do not care
 switch(%ammoCount)
 {
 case 0:
 echo("Out of ammo, time to reload");
 case 1:
 echo("Almost out of ammo, warn user");
 case 100:
 echo("Full ammo count");
 default:
 echo("Doing nothing");
 }
}

// Check to see if a person's name is
// a known user
// %userName - String containing person's name
function matchNames(%userName)
{
 switch$(%userName)
 {
 case "Heather":
 echo("User Found: " @ %userName);
 case "Mich":
 echo("User Found: " @ %userName);
 case "Nikki":
 echo("User Found: " @ %userName);
 default:
 echo("User " @ %userName @ " not found");
 }
}

Vectors - TODO

Advanced

	Player Class
	Detailed Description

	Movement
	Sprinting

	Jumping

	Jetting

	Falling and Landing

	Air Control

	Hard Impacts

	Dismounting

	Triggering a Mounted Object

	The Character Model
	Mounted Image Controlled 3rd Person Animation

	First Person Arms

	Example PlayerData Datablock

	Member Function Documentation

	Member Data Documentation

	Player Datablock
	Detailed Description

	Member Function Documentation

	Member Data Documentation

	Shapebase Class - TODO
	Detailed Description

	Control Object

	Energy/Damage

	Member Function Documentation

	Member Data Documentation

	Turrets - TODO
	Detailed Description

	Overview
	Scanning

	Gained Target

	Lost Target

	Destroyed

	Deployable Turret

	Example State Machine

	Shape File Nodes

	Ignore List

	Member Function Documentation

	AITurretShapeData and Member Data Documentation

	Triggers - TODO
	Introduction

	Creating Triggers

	Using Triggers to Cause Events

	Using Trigger Callbacks to Cause Events

	Conclusion

	Weapons - TODO
	Detailed Description

	Weapon Shape Nodes

	Weapon Muzzle Flash

	First Person Shape (optional)

	Animation Sequence Transitions

	Animation Sequence Selection

	eyeMount Node (optional)

	Special State Triggers

	Special States

	Member Function Documentation

	Member Data Documentation

	Proximity Mines
	Detailed Description

	Member Function Documentation

	Camara Modes - TODO
	Introduction

	Camera Modes

	Toggling Basic Camera Modes

	Toggling Special Camera Modes
	setOrbitObject(GameBase, Point3F, float, float, [float], [bool], [Point3F], [bool])

	setOrbitPoint(string, float, float, [float], [Point3F], [bool])

	setTrackObject(GameBase, [Point3F])

	setFlyMode(void)

	setNewtonFlyMode(void)

	Camera Options

	Conclusion

	RTS Prototype - TODO
	Introduction

	Create A New Project

	Camera Setup

	Mouse Setup
	Mouse Cursor Toggling

	Placing Structures Using The GUI

	Mouse-Driven Input
	Player Spawning

	Movement

	Spawning Enemy Targets

	Attacking

	Tweaking Attacks

	Destination Markers
	Creating a Material

	Creating a Decal

	Spawning the Marker

	Erasing the Marker

	Camera Modes
	Orbit Camera

	Overhead Camera

	Going More Real-Time Strategy

	Conclusion

	Adventure Prototype - TODO
	Introduction

	Building A Level

	Hooking Up The Triggers

	Conclusion

	Mission Triggers - TODO
	Introduction

	Setting Up

	Create the New Trigger Datablock

	The onEnterTrigger() Callback and Other Support Scripts

	Putting It All Together

	Conclusion

	TSShapeConstructor - TODO
	Introduction

	Terminology

	Example 1: Adding a Collision Mesh To an Existing Shape

	Example 2: Adding a Mesh From an Existing DTS File

	Example 3: Auto-loading animations

	Example 4: Splitting COLLADA animations

	Example 5: Rigid-body Player Character

	TSShapeConstructor Commands
	Miscellaneous
	dumpShape([string])

	saveShape(string)

	Nodes
	getNodeCount()

	getNodeIndex(string)

	getNodeName(S32)

	getNodeParentName(S32)

	getNodeChildCount(string)

	getNodeChildName(string, S32)

	getNodeObjectCount(string)

	getNodeObjectName(string, S32)

	getNodeTransform(string)

	setNodeTransform(string, string, [string])

	renameNode(string, string)

	addNode(string, string, [string])

	removeNode(string)

	Objects
	getObjectCount()

	getObjectName(S32)

	getObjectNode(string)

	setObjectNode(string, string)

	renameObject(string, string)

	removeObject(string)

	Meshes
	getMeshCount(string)

	getMeshname(string, S32)

	setMeshSize(string, S32)

	getMeshType(string)

	setMeshType(string, string)

	getMeshMaterial(string)

	setMeshMaterial(string, string)

	addMesh(string, string, string)

	removeMesh(string)

	AutoBillboards
	addAutoBillboard(S32, S32, S32, S32, S32, bool, F32)

	removeAutoBillboard(S32)

	Sequences
	getSequenceCount()

	getSequenceIndex(S32)

	getSequenceName(S32)

	getSequenceSource(S32)

	getSequenceFrameCount(string)

	getSequencePriority(string)

	setSequencePriority(string, F32)

	getSequenceCyclic(string)

	setSequenceCyclic(string, bool)

	getSequenceBlend(string)

	setSequenceBlend(string, bool, string, S32)

	getSequenceGroundSpeed(string)

	setSequenceGroundSpeed(string, string, [string])

	renameSequence(string, string)

	addSequence(string, string, [S32], [S32]

	removeSequence(string)

	getTriggerCount(string)

	getTrigger(string)

	addTrigger(string, S32, S32)

	removeTrigger(string, S32, S32)

	Conclusion

	Engine To Script
	Introduction

	Creating Call-in Points
	Global functions

	Class methods

	Notes

	Creating Call-out Points

	Creating Types
	Creating an Object Type

	Creating an Enumeration Type

	Creating a Bitfield Type

	Documentation
	Documenting an engine function/method

	Handling overloaded functions

	Handling variadic functions

	Documenting an engine callback

	Documenting an engine class

	Documenting a field

	Documenting a variable

	Documenting a constant

	Inserting an arbitrary piece of documentation

	Important Notes

	Conclusion

	Projectiles
	Introduction

	Projectiles

	Conclusion

	Networking
	Introduction

	The Client/Server Concept
	The Server

	The Client

	Datablocks in Networking

	Network Connection Classes ? Linking Client and Server
	NetConnection

	GameConnection

	ServerConnection

	LocalClientConnection

	Setting Up The Server

	Setting Up the Client

	Using the GameCore Package

	Sending Commands in Torque’s Client/Server Model
	Client to Server Commands

	Server to Client Commands

	Making Your Own Commands
	Client Setup

	Server Setup

	Execution Setup

	Mission Setup

	Further Reading

Player Class

Detailed Description

A client-controlled player character.

The Player object is the main client-controlled object in an FPS, or indeed, any game where the user is in control of a single character. This class (and the associated datablock, PlayerData) allows you to fine-tune the movement, collision detection, animation, and SFX properties of the character. Player derives from ShapeBase, so it is recommended to have a good understanding of that class (and it’s parent classes) as well.

Movement

The Player class supports the following modes of movement, known as poses:

	Standing

	Sprinting

	Crouching

	Prone

	Swimming

The acceleration, maximum speed, and bounding box for each mode can be set independently using the PlayerData datablock. The player will automatically switch between swimming and one of the other 4 ‘dry’ modes when entering/exiting the water, but transitions between the non-swimming modes are handled by controller input (such as holding down a key to begin crouching). $mvTriggerCount3 activates crouching, while $mvTriggerCount4 activates being prone.

It is important to set the bounding box correctly for each mode so that collisions with the player remain accurate:

[image: ../../_images/player_bbox.png]
When the player changes its pose a new PlayerData callback onPoseChange() is called. This is being used as Armor::onPoseChange() to modify an animation prefix used by ShapeBaseImageData to allow the 1st person arms to change their animation based on pose.

Example:

function Armor::onPoseChange(%this, %obj, %oldPose, %newPose)
{
 // Set the script anim prefix to be that of the current pose
 %obj.setImageScriptAnimPrefix($WeaponSlot, addTaggedString(%newPose));
}

Another feature is the ability to lock out poses for the Player at any time. This is done with allowCrouch(), allowSprinting() etc. There is even allowJumping() and allowJetJumping() which aren’t actually poses but states. So if for some game play reason the player should not be allowed to crouch right now, that can be disabled. All poses can be allowed with allowAllPoses() on the Player class.

The pose lock out mechanism is being used by the weapon script system – see Weapon::onUse(). With this system, weapons can prevent the player from going into certain poses. This is used by the deployable turret to lock out sprinting while the turret is the current weapon.

Example:

function Weapon::onUse(%data, %obj)
{
 // Default behavior for all weapons is to mount it into the object's weapon
 // slot, which is currently assumed to be slot 0
 if (%obj.getMountedImage($WeaponSlot) != %data.image.getId())
 {
 serverPlay3D(WeaponUseSound, %obj.getTransform(
 %obj.mountImage(%data.image, $WeaponSlot);
 if (%obj.client)
 {
 if (%data.description !$= "")
 messageClient(%obj.client, 'MsgWeaponUsed', '\c0%1 selected.',
 %data.description);
 else
 messageClient(%obj.client, 'MsgWeaponUsed', '\c0Weapon selected');
 }

 // If this is a Player class object then allow the weapon to modify allowed poses
 if (%obj.isInNamespaceHierarchy("Player"))
 {
 // Start by allowing everything
 %obj.allowAllPoses();

 // Now see what isn't allowed by the weapon

 %image = %data.image;

 if (%image.jumpingDisallowed)
 %obj.allowJumping(false);

 if (%image.jetJumpingDisallowed)
 %obj.allowJetJumping(false);

 if (%image.sprintDisallowed)
 %obj.allowSprinting(false);

 if (%image.crouchDisallowed)
 %obj.allowCrouching(false);

 if (%image.proneDisallowed)
 %obj.allowProne(false);

 if (%image.swimmingDisallowed)
 %obj.allowSwimming(false);
 }
 }
}

Sprinting

As mentioned above, sprinting is another pose for the Player class. It defines its own force and max speed in the three directions in PlayerData just like most poses, such as crouch. It is activated using $mvTriggerCount5 by default which is often connected to Left Shift. When used this way you could treat it just like a standard run – perhaps with the standard pose used for a walk in a RPG.

But sprinting is special in that you can control if a player’s movement while sprinting should be constrained. You can place scale factors on strafing, yaw and pitch. These force the player to move mostly in a straight line (or completely if you set them to 0) while sprinting by limiting their motion. You can also choose if the player can jump while sprinting. This is all set up in PlayerData.

Just like other poses, you can define which sequences should be played on the player while sprinting. These sequences are:

	sprint_root

	sprint_forward

	sprint_backward

	sprint_side

	sprint_right

However, if any of these sequences are not defined for the player, then the standard root, run, back, side and side_right sequences will be used. The idea here is that the ground transform for these sequences will force them to play faster to give the appearance of sprinting. But if you want the player to do something different than just look like they’re running faster – such as holding their weapon against their body – then you’ll want to make use of the sprint specific sequences.

Sprint also provides two PlayerData callbacks: onStartSprintMotion() and onStopSprintMotion(). The start callback is called when the player is in a sprint pose and starts to move (i.e. presses the W key). The stop callback is called when either the player stops moving, or they stop sprinting. These could be used for anything, but by default they are tied into the ShapeBaseImageData system. See Armor::onStartSprintMotion() and Armor::onStopSprintMotion(). With ShapeBaseImageData supporting four generic triggers that may be used by a weapon’s state machine to do something, the first one is triggered to allow weapons to enter a special sprint state that plays a sprint animation sequence and locks out firing. However, you may choose to do something different.

Jumping

The Player class supports jumping. While the player is in contact with a surface (and optionally has enough energy as defined by the PlayerData), $mvTriggerCount2 will cause the player to jump.

Jetting

The Player class includes a simple jetpack behaviour allowing characters to ‘jet’ upwards while jumping. The jetting behaviour can be linked to the player’s energy level using datablock properties as shown below:

Example:

datablock PlayerData(JetPlayer)
{
 ...

 jetJumpForce = 16.0 * 90;
 jetJumpEnergyDrain = 10;
 jetMinJumpEnergy = 25;
 jetMinJumpSpeed = 20;
 jetMaxJumpSpeed = 100;
 jetJumpSurfaceAngle = 78;
}

This player will not be able to jet if he has less than 25 units of energy, and 10 units will be subtracted each tick.

If PlayerData::jetJumpForce is greater than zero then $mvTriggerCount1 will activate jetting.

Falling and Landing

When the player is falling they transition into the “fall” sequence. This transition doesn’t occur until the player has reached a particular speed – you don’t want the fall sequence to kick in if they’ve just gone over a small bump. This speed threshold is set by the PlayerData fallingSpeedThreshold field. By default it is set to -10.0.

When the player lands there are two possible outcomes depending on how the player is set up. With the traditional method the “land” sequence has the player start from a standing position and animates into a crouch. The playback speed of this sequence is scaled based on how hard the player hits the ground. Once the land sequence finishes playing the player does a smooth transition back into the root pose (making them effectively stand up).

Starting with 1.2 there is a new method of handling landing. Here the “land” sequence starts with the player crouching on the ground and animates getting back up. This has a look of the player hitting the ground from a fall and slowly standing back up. This new method is used when the PlayerData landSequenceTime field is given a value greater than zero. This is the amount of time taken for the player to recover form the landing, and is also how long the land sequence will play for. As this has game play ramifications (the player may have movement constraints when landing) this timing is controlled by the datablock field rather than just the length of time of the land sequence.

Also when using the new land sequence the PlayerData transitionToLand flag indicates if the player should smoothly transition between the fall sequence and the land sequence. If set to false (the default) then there is no transition and the player appears to immediately go from falling to landing, which is usually the case when mirroring real life.

Air Control

The player may optionally move itself through the air while jumping or falling. This allows the player to adjust their trajectory while in the air, and is known as air control. The PlayerData::airControl property determines what fraction of the player’s normal speed they may move while in the air. By default, air control is disabled (set to 0).

Hard Impacts

When the player hits something hard it is possible to trigger an impact (such as handled by Armor::onImpact()). The PlayerData minImpactSpeed is the threshold at which falling damage will be considered an impact. Any speed over this parameter will trigger an onImpact() call on the datablock. This allows for small falls to not cause any damage.

The PlayerData minLateralImpactSpeed is the threshold at which non-falling damage impacts will trigger the callback. This is separate from falling as you may not want a sprinting player that hits a wall to get hurt, but being thrown into a wall by an explosion will.

Dismounting

It is possible to have the player mount another object, such as a vehicle, just like any other SceneObject. While mounted, $mvTriggerCount2 will cause the player to dismount.

Triggering a Mounted Object

A Player may have other objects mounted to it, with each mounted object assigned to a slot. These Player mounted objects are known as images. See ShapeBase::mountImage(). If there is an image mounted to slot 0, $mvTriggerCount0 will trigger it. If the player dies this trigger is automatically released.

If there is an image mounted to slot 1, $mvTriggerCount1 will trigger it. Otherwise $mvTriggerCount1 will be passed along to the image in slot 0 as an alternate fire state.

Below is a list of the system triggers and their default purposes:

	Trigger

	Default mapping

	$mvTriggerCount0

	fire

	$mvTriggerCount1

	jet, activate slot 1 mounted item or alt-fire slot 0 item

	$mvTriggerCount2

	jump, dismount

	$mvTriggerCount3

	crouch

	$mvTriggerCount4

	prone

	$mvTriggerCount5

	sprint

Additionally, there are now four generic triggers available for use in weapon state machines. To change trigger mapping, see the Member Data Documentation at the end of this article - specifically the Trigger data members (eg Player::imageTrigger0).

The Character Model

The following sequences are used by the Player object to animate the character. Not all of them are required, but a model should have at least the root, run, back and side animations. And please see the section on Sprinting above for how they are handled when not present.

	root

	Looping sequence played when player is standing but not moving.

	run

	Looping sequence played when player is running forward.

	back

	Looping sequence played when player is running backward.

	side

	Looping sequence played when player is running sideways (strafing). The sequence should depict the player moving left. If side_right is not present, this sequence will be played backwards in its place.

	side_right

	Looping sequence played when player is running sideways right.

	sprint_root

	Looping sequence played when the player is stationary but in a sprinting mode. If not present then the root sequence is used.

	sprint_forward

	Looping sequence played when the player is sprinting and moving forward. If not present then the run sequence is used.

	sprint_backward

	Looping sequence played when the player is sprinting and moving backward. If not present then the back sequence is used.

	sprint_side

	Looping sequence played when the player is sprinting and moving sideways. The sequence should depict the player moving left. If crouch_right is not present, this sequence will be played backwards in its place. If not present then the side sequence is used.

	sprint_right

	Looping sequence played when the player is sprinting and moving sideways. If not present then the side_right sequence is used.

	crouch_root

	Looping sequence played when player is crouched and not moving.

	crouch_forward

	Looping sequence played when player is crouched and moving forward.

	crouch_backward

	Looping sequence played when player is crouched and moving backward.

	crouch_side

	Looping sequence played when player is crouched and moving sideways. The sequence should depict the player moving left. If crouch_right is not present, this sequence will be played backwards in its place.

	crouch_right

	Looping sequence played when player is crouched and moving sideways.

	prone_root

	Looping sequence played when player is prone (lying down) and not moving.

	prone_forward

	Looping sequence played when player is prone (lying down) and moving forward.

	prone_backward

	Looping sequence played when player is prone (lying down) and moving backward.

	swim_root

	Looping sequence played when player is swimming and not moving.

	swim_forward

	Looping sequence played when player is swimming and moving forward.

	swim_backward

	Looping sequence played when player is swimming and moving backward.

	swim_left

	Looping sequence played when player is swimming and moving left. The sequence should depict the player moving left. If swim_right is not present, this sequence will be played backwards in its place.

	swim_right

	Looping sequence played when player is swimming and moving right.

	fall

	Sequence played when player is falling.

	jump

	Sequence played when player has jumped while moving.

	standjump

	Sequence played when player has jumped from a standing start.

	land

	Sequence played when player lands after falling.

	jet

	Looping sequence played when player is jetting.

	head

	Sequence to control vertical head movement (for looking) (start=full up, end=full down).

	headside

	Sequence to control horizontal head movement (for looking) (start=full left, end=full right).

	look

	Sequence to control vertical arm movement (for looking) (start=full up, end=full down).

	light_recoil

	Sequence played when the player is firing a light weapon. (Based on ShapeBaseImageData)

	medium_recoil

	Sequence played when player is firing a medium weapon. (Based on ShapeBaseImageData)

	heavy_recoil

	Sequence played when player is firing a heavy weapon (Based on ShapeBaseImageData).

	deathN

	Sequence played when player has been killed (a random one of these will play). N is an integer from 1 to 11.

Mounted Image Controlled 3rd Person Animation

A player’s 3rd person action animation sequence selection may be modified based on what images are mounted on the player. When mounting a ShapeBaseImageData, the image’s imageAnimPrefix field is used to control this. If this is left blank (the default) then nothing happens to the 3rd person player – all of the sequences play as defined. If it is filled with some text (best to keep it to letters and numbers, with no spaces) then that text is added to the action animation sequence name and looked up on the player shape. For example:

A rifle ShapeBaseImageData is mounted to the player in slot 0. The rifle’s datablock doesn’t have an imageAnimPrefix defined, so the 3rd person player will use the standard action animation sequence names. i.e. “root”, “run”, “back”, “crouch_root”, etc.

Now a pistol ShapeBaseImageData is mounted to the player in slot 0. The pistol’s datablock has imageAnimPrefix = “pistol”. Now the “pistol_” (underscore is added by the system) prefix is added to each of the action animation sequence names when looking up what to play on the player’s shape. So the Player class will look for “pistol_root”, “pistol_run”, “pistol_back”, “pistol_crouch_root”, etc. If any of these new prefixed names are not found on the player’s shape, then we fall back to the standard action animation sequence names, such as “root”, “run”, etc.

In all of our T3D examples the player only mounts a single image. But Torque allows up to four images to be mounted at a time. When more than one image is mounted then the engine adds all of the prefixes together when searching for the action animation sequence name. If that combined name is not found then the engine starts removing prefixes starting with the highest slot down to the lowest slot. For example, if a player is holding a sword (slot 0) and a shield (slot 1) in each hand that are mounted as separate images (and with imageAnimPrefix’s of “sword” and “shield” respectively), then the engine will search for the following names while the player is just standing there:

	shield_sword_root

	sword_root

	root

The first one that is found in the above order will be used.

Another example: If the player has a jet pack (slot 3 with a prefix of “jetpack”) and two pistols being used akimbo style (slots 1 and 0, both with a prefix of “laserpistol”) with slot 2 left open for a helmet (which is skipped as it doesn’t have a prefix), then the following search order would be used:

	jetpack_laserpistol_laserpistol_root

	laserpistol_laserpistol_root

	laserpistol_root

	root

Again, the first one that is found is used.

A player’s 3rd person animation may also be modified by the weapon being used. In T3D 1.1 there are the three recoil sequences that may be triggered on the 3rd person player by the weapon’s state. Starting with T3D 1.2 this becomes more generic (while still supporting the existing recoil sequence). When a ShapeBaseImageData state defines a stateShapeSequence, that sequence may be played on the player’s shape (the new PlayerData allowImageStateAnimation field must be set to “true” as well). The new ShapeBaseImageData state stateScaleShapeSequence flag may also be used to indicate if this player animation sequence should have its playback rate scaled to the length of the image’s state.

What exactly happens on the player depends on what else has been defined. First, there is the sequence name as passed in from the image. Then there is also the imageAnimPrefix as defined by the image. Finally, there is the generic script defined prefix that may be added with ShapeBase::setImageScriptAnimPrefix() – we’re using this to pass along the current pose, but it could be used for anything. Time for an example. We want to throw a grenade that we’re holding (mounted in slot 0). The weapon’s state that does this has stateShapeSequence set to “throw”. The grenade image itself has an imageAnimPrefix defined as “fraggrenade”. Finally, the player is crouching, so Armor::onPoseChange() sets the script prefix to “crouch”. The final search order goes like this:

	fraggrenade_crouch_throw

	fraggrenade_throw

	crouch_throw

	throw

The first of those sequences that is found is played as a new thread on the 3rd person player. As with recoil, only one of these 3rd person animation threads may be active at a time. If an image in another slot also asks to play a 3rd person sequence, the most recent request is what will play.

First Person Arms

Games that have the player hold a weapon in a 1st person view often let you see the player’s arms and hands holding that weapon. Rather than requiring you to build the art for all possible combinations of character arms and weapons, T3D allows you to mix and match shapes and animation sequences.

1st person arms are an optional client-side only effect and are not used on the server. The arms are a separate shape from the normal 3rd person player shape. You reference the arms using the PlayerData “shapeNameFP” array. It is an array as we support up to four mounted images therefore we support up to four arm shapes. However, for T3D 1.2 our examples only make use of a single set of arms for the first mounting slot as our example soldier holds a single weapon at a time.

As the arms are just regular DAE/DTS files they may get their animation sequences from anywhere. For the included 1.2 art path (see the soldier in the template projects) we decided that their sequences should come from the weapons themselves. This means that the weapons include all of the bones/nodes needed to animate the arms, but none of the arm geometry. If you take a look at art/shapes/actors/Soldier/FP/FP_SoldierArms.cs you’ll see the external animation sequence references for each of the possible weapons.

As each weapon may require its own set of animation sequences (i.e. a different idle sequence for a pistol vs. a rifle) starting with T3D 1.2 a new ShapeBaseImageData field now exists: imagePrefixFP. If this field is defined for the mounted image then it is added to the sequence name as given in the current weapon state in the form of “prefix_sequence” (the underscore is added by the system). For example, the Lurker rifle has an imagePrefixFP of “Rifle”. The Lurker’s Ready state calls the idle sequence, so the arms will attempt to play the “Rifle_idle” sequence and if not found, they will play the “idle” sequence.

The advantage of having the prefix defined within the datablock and not making it part of the sequence names referenced directly in the weapon state machine is that you can do something like this:

Example:

datablock ShapeBaseImageData(Pistol1Image)
{
 imageAnimPrefixFP = "Pistol1";
 ...other data here...
 ...weapon state machine here...
};

datablock ShapeBaseImageData(Pistol2Image : Pistol1Image)
{
 imageAnimPrefixFP = "Pistol2";
};

You could define a new pistol (Pistol2Image) that uses the exact same state machine as Pistol1Image, but could use a slightly different set of animation sequences with a prefix of “Pistol2”.

As was previously discussed with 3rd person animation above, a script-based modifier may also be added when looking up the sequence name for the arms. This is currently used to pass along the player’s pose so the arm’s idle sequence could have a swimming motion when in the swim pose, for example. And as with images, the arms sequence name look up uses the following order to find a sequence to play, with the first one found being used:

	ShapeBaseImageDataPrefix_ScriptPrefix_WeaponStateSequence

	ShapeBaseImageDataPrefix_WeaponStateSequence

	ScriptPrefix_WeaponStateSequence

	WeaponStateSequence

Finally, the arms support an “ambient” sequence that may be used for anything and will always play, if it is defined in the arm’s shape.

Example PlayerData Datablock

An example of a player datablock appears below:

Example:

datablock PlayerData(DefaultPlayerData)
{
 renderFirstPerson = false;

 computeCRC = false;

 // Third person shape
 shapeFile = "art/shapes/actors/Soldier/soldier_rigged.dae";
 cameraMaxDist = 3;
 allowImageStateAnimation = true;

 // First person arms
 imageAnimPrefixFP = "soldier";
 shapeNameFP[0] = "art/shapes/actors/Soldier/FP/FP_SoldierArms.DAE";

 canObserve = 1;
 cmdCategory = "Clients";

 cameraDefaultFov = 55.0;
 cameraMinFov = 5.0;
 cameraMaxFov = 65.0;

 debrisShapeName = "art/shapes/actors/common/debris_player.dts";
 debris = playerDebris;

 throwForce = 30;

 aiAvoidThis = 1;

 minLookAngle = "-1.2";
 maxLookAngle = "1.2";
 maxFreelookAngle = 3.0;

 mass = 120;
 drag = 1.3;
 maxdrag = 0.4;
 density = 1.1;
 maxDamage = 100;
 maxEnergy = 60;
 repairRate = 0.33;
 energyPerDamagePoint = 75;

 rechargeRate = 0.256;

 runForce = 4320;
 runEnergyDrain = 0;
 minRunEnergy = 0;
 maxForwardSpeed = 8;
 maxBackwardSpeed = 6;
 maxSideSpeed = 6;

 sprintForce = 4320;
 sprintEnergyDrain = 0;
 minSprintEnergy = 0;
 maxSprintForwardSpeed = 14;
 maxSprintBackwardSpeed = 8;
 maxSprintSideSpeed = 6;
 sprintStrafeScale = 0.25;
 sprintYawScale = 0.05;
 sprintPitchScale = 0.05;
 sprintCanJump = true;

 crouchForce = 405;
 maxCrouchForwardSpeed = 4.0;
 maxCrouchBackwardSpeed = 2.0;
 maxCrouchSideSpeed = 2.0;

 maxUnderwaterForwardSpeed = 8.4;
 maxUnderwaterBackwardSpeed = 7.8;
 maxUnderwaterSideSpeed = 7.8;

 jumpForce = "747";
 jumpEnergyDrain = 0;
 minJumpEnergy = 0;
 jumpDelay = "15";
 airControl = 0.3;

 fallingSpeedThreshold = -6.0;

 landSequenceTime = 0.33;
 transitionToLand = false;
 recoverDelay = 0;
 recoverRunForceScale = 0;

 minImpactSpeed = 10;
 minLateralImpactSpeed = 20;
 speedDamageScale = 0.4;

 boundingBox = "0.65 0.75 1.85";
 crouchBoundingBox = "0.65 0.75 1.3";
 swimBoundingBox = "1 2 2";
 pickupRadius = 1;

 // Damage location details
 boxHeadPercentage = 0.83;
 boxTorsoPercentage = 0.49;
 boxHeadLeftPercentage = 0.30;
 boxHeadRightPercentage = 0.60;
 boxHeadBackPercentage = 0.30;
 boxHeadFrontPercentage = 0.60;

 // Foot Prints
 decalOffset = 0.25;

 footPuffEmitter = "LightPuffEmitter";
 footPuffNumParts = 10;
 footPuffRadius = "0.25";

 dustEmitter = "LightPuffEmitter";

 splash = PlayerSplash;
 splashVelocity = 4.0;
 splashAngle = 67.0;
 splashFreqMod = 300.0;
 splashVelEpsilon = 0.60;
 bubbleEmitTime = 0.4;
 splashEmitter[0] = PlayerWakeEmitter;
 splashEmitter[1] = PlayerFoamEmitter;
 splashEmitter[2] = PlayerBubbleEmitter;
 mediumSplashSoundVelocity = 10.0;
 hardSplashSoundVelocity = 20.0;
 exitSplashSoundVelocity = 5.0;

 // Controls over slope of runnable/jumpable surfaces
 runSurfaceAngle = 38;
 jumpSurfaceAngle = 80;
 maxStepHeight = 0.35; //two meters
 minJumpSpeed = 20;
 maxJumpSpeed = 30;

 horizMaxSpeed = 68;
 horizResistSpeed = 33;
 horizResistFactor = 0.35;

 upMaxSpeed = 80;
 upResistSpeed = 25;
 upResistFactor = 0.3;

 footstepSplashHeight = 0.35;

 // Footstep Sounds
 FootSoftSound = FootLightSoftSound;
 FootHardSound = FootLightHardSound;
 FootMetalSound = FootLightMetalSound;
 FootSnowSound = FootLightSnowSound;
 FootShallowSound = FootLightShallowSplashSound;
 FootWadingSound = FootLightWadingSound;
 FootUnderwaterSound = FootLightUnderwaterSound;

 FootBubblesSound = FootLightBubblesSound;
 movingBubblesSound = ArmorMoveBubblesSound;
 waterBreathSound = WaterBreathMaleSound;

 impactSoftSound = ImpactLightSoftSound;
 impactHardSound = ImpactLightHardSound;
 impactMetalSound = ImpactLightMetalSound;
 impactSnowSound = ImpactLightSnowSound;

 impactWaterEasy = ImpactLightWaterEasySound;
 impactWaterMedium = ImpactLightWaterMediumSound;
 impactWaterHard = ImpactLightWaterHardSound;

 groundImpactMinSpeed = "45";
 groundImpactShakeFreq = "4.0 4.0 4.0";
 groundImpactShakeAmp = "1.0 1.0 1.0";
 groundImpactShakeDuration = 0.8;
 groundImpactShakeFalloff = 10.0;

 exitingWater = ExitingWaterLightSound;

 observeParameters = "0.5 4.5 4.5";
 class = "armor";

 cameraMinDist = "0";
 DecalData = "PlayerFootprint";

 // Allowable Inventory Items
 mainWeapon = Lurker;

 maxInv[Lurker] = 1;
 maxInv[LurkerClip] = 20;

 maxInv[LurkerGrenadeLauncher] = 1;
 maxInv[LurkerGrenadeAmmo] = 20;

 maxInv[Ryder] = 1;
 maxInv[RyderClip] = 10;

 maxInv[ProxMine] = 5;

 maxInv[DeployableTurret] = 5;

 // available skins (see materials.cs in model folder)
 availableSkins = "base DarkBlue DarkGreen LightGreen Orange Red Teal
 Violet Yellow";
};

Member Function Documentation

	
void Player::allowAllPoses()

	Allow all poses a chance to occur.

This method resets any poses that have manually been blocked from occuring. This includes the regular pose states such as sprinting, crouch, being prone and swimming. It also includes being able to jump and jet jump. While this is allowing these poses to occur it doesn’t mean that they all can due to other conditions. We’re just not manually blocking them from being allowed.

	
void Player::allowCrouching(bool state)

	Set if the Player is allowed to crouch.

The default is to allow crouching unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow crouching at any time.

	Parameters

	state – Set to true to allow crouching, false to disable it.

	
void Player::allowJetJumping(bool state)

	Set if the Player is allowed to jet jump.

The default is to allow jet jumping unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow jet jumping at any time.

	Parameters

	state – Set to true to allow jet jumping, false to disable it.

	
void Player::allowJumping(bool state)

	Set if the Player is allowed to jump.

The default is to allow jumping unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow jumping at any time.

	Parameters

	state – Set to true to allow jumping, false to disable it.

	
void Player::allowProne(bool state)

	Set if the Player is allowed to go prone.

The default is to allow being prone unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow going prone at any time.

	Parameters

	state – Set to true to allow being prone, false to disable it.

	
void Player::allowSprinting(bool state)

	Set if the Player is allowed to sprint.

The default is to allow sprinting unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow sprinting at any time.

	Parameters

	state – Set to true to allow sprinting, false to disable it.

	
void Player::allowSwimming(bool state)

	Set if the Player is allowed to swim.

The default is to allow swimming unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow swimming at any time.

	Parameters

	state – Set to true to allow swimming, false to disable it.

	
bool Player::checkDismountPoint(Point3F oldPos, Point3F pos)

	Check if it is safe to dismount at this position.

Internally this method casts a ray from oldPos to pos to determine if it hits the terrain, an interior object, a water object, another player, a static shape, a vehicle (exluding the one currently mounted), or physical zone. If this ray is in the clear, then the player’s bounding box is also checked for a collision at the pos position. If this displaced bounding box is also in the clear, then checkDismountPoint() returns true.

	Parameters

	
	oldPos – The player’s current position.

	pos – The dismount position to check.

	Returns

	True if the dismount position is clear, false if not

Note

The player must be already mounted for this method to not assert.

	
void Player::clearControlObject()

	Clears the player’s current control object.

	Returns

	Control to the player. This internally calls Player::setControlObject(0).

Example:

%player.clearControlObject();
echo(%player.getControlObject()); //<-- Returns 0, player assumes control
%player.setControlObject(%vehicle);
echo(%player.getControlObject()); //<-- Returns %vehicle, player controls vehicle now.

Note

If the player does not have a control object, the player will receive all moves from its GameConnection. If you’re looking to remove control from the player itself (i.e. stop sending moves to the player) use GameConnection::setControlObject() to transfer control to another object, such as a camera.

	
int Player::getControlObject()

	Get the current object we are controlling.

	Returns

	ID of the ShapeBase object we control, or 0 if not controlling an object.

	
string Player::getDamageLocation(Point3F pos)

	Get the named damage location and modifier for a given world position.

	Parameters

	pos – A world position for which to retrieve a body region on this player.

	Returns

	A string containing two words (space separated strings), where the first is a location and the second is a modifier.

Note

This method will not return an accurate location when the player is prone or swimming.

While you may pass in any world position and getDamageLocation() will provide a best-fit location, you should be aware that this can produce some interesting results. For example, any position that is above PlayerData::boxHeadPercentage will be considered a ‘head’ hit, even if the world position is high in the sky. Therefore it may be wise to keep the passed in point to somewhere on the surface of, or within, the Player’s bounding volume.

The Player object can simulate different hit locations based on a pre-defined set of PlayerData defined percentages. These hit percentages divide up the Player’s bounding box into different regions. The diagram below demonstrates how the various PlayerData properties split up the bounding volume:

[image: ../../_images/player_damageloc.png]

Posible locations:

	head

	torso

	legs

Head modifiers:

	left_back

	middle_back

	right_back

	left_middle

	middle_middle

	right_middle

	left_front

	middle_front

	right_front

Legs/Torso modifiers:

	front_left

	front_right

	back_left

	back_right

	
int Player::getNumDeathAnimations()

	Get the number of death animations available to this player.

Death animations are assumed to be named death1-N using consecutive indices.

	
string Player::getPose()

	Get the name of the player’s current pose.

The pose is one of the following:

	Stand - Standard movement pose.

	Sprint - Sprinting pose.

	Crouch - Crouch pose.

	Prone - Prone pose.

	Swim - Swimming pose.

	Returns

	The current pose; one of: “Stand”, “Sprint”, “Crouch”, “Prone”, “Swim”

	
string Player::getState()

	Get the name of the player’s current state.

The state is one of the following:

	Dead - The Player is dead.

	Mounted - The Player is mounted to an object such as a vehicle.

	Move - The Player is free to move. The usual state.

	Recover - The Player is recovering from a fall. See PlayerData::recoverDelay.

	Returns

	The current state; one of: “Dead”, “Mounted”, “Move”, “Recover”

	
bool Player::setActionThread(string name, bool hold = false, bool fsp = true)

	Set the main action sequence to play for this player.

	Parameters

	
	name – Name of the action sequence to set.

	hold – Set to false to get a callback on the datablock when the sequence ends (PlayerData::animationDone()). When set to true no callback is made.

	fsp – True if first person and none of the spine nodes in the shape should animate. False will allow the shape’s spine nodes to animate.

	Returns

	True if succesful, false if failed.

The spine nodes for the Player’s shape are named as follows:

	Bip01 Pelvis

	Bip01 Spine

	Bip01 Spine1

	Bip01 Spine2

	Bip01 Neck

	Bip01 Head

You cannot use setActionThread() to have the Player play one of the motion determined action animation sequences. These sequences are chosen based on how the Player moves and the Player’s current pose. The names of these sequences are:

	root

	run

	side

	side_right

	crouch_root

	crouch_forward

	crouch_backward

	crouch_side

	crouch_right

	prone_root

	prone_forward

	prone_backward

	swim_root

	swim_forward

	swim_backward

	swim_left

	swim_right

	fall

	jump

	standjump

	land

	jet

If the player moves in any direction then the animation sequence set using this method will be cancelled and the chosen mation-based sequence will take over. This makes great for times when the Player cannot move, such as when mounted, or when it doesn’t matter if the action sequence changes, such as waving and saluting.

Example:

// Place the player in a sitting position after being mounted
%player.setActionThread("sitting", true, true);

	
bool Player::setArmThread(string name)

	Set the sequence that controls the player’s arms (dynamically adjusted to match look direction).

	Parameters

	name – Name of the sequence to play on the player’s arms.

	Returns

	true if successful, false if failed.

Note

By default the ‘look’ sequence is used, if available.

	
bool Player::setControlObject(ShapeBase obj)

	Set the object to be controlled by this player.

It is possible to have the moves sent to the Player object from the GameConnection to be passed along to another object. This happens, for example when a player is mounted to a vehicle. The move commands pass through the Player and on to the vehicle (while the player remains stationary within the vehicle). With setControlObject() you can have the Player pass along its moves to any object. One possible use is for a player to move a remote controlled vehicle. In this case the player does not mount the vehicle directly, but still wants to be able to control it.

	Parameters

	obj – Object to control with this player.

	Returns

	True if the object is valid, false if not

Member Data Documentation

	
int Player::crouchTrigger [static]

	The move trigger index used for player crouching.

	
int Player::imageTrigger0 [static]

	The move trigger index used to trigger mounted image 0.

	
int Player::imageTrigger1 [static]

	The move trigger index used to trigger mounted image 1 or alternate fire on mounted image 0.

	
int Player::jumpJetTrigger [static]

	The move trigger index used for player jump jetting.

	
int Player::jumpTrigger [static]

	The move trigger index used for player jumping.

	
float Player::maxImpulseVelocity [static]

	The maximum velocity allowed due to a single impulse.

	
int Player::maxPredictionTicks [static]

	Maximum number of ticks to predict on the client from the last known move obtained from the server.

	
int Player::maxWarpTicks [static]

	When a warp needs to occur due to the client being too far off from the server, this is the maximum number of ticks we’ll allow the client to warp to catch up.

	
float Player::minWarpTicks [static]

	Fraction of tick at which instant warp occures on the client.

	
int Player::proneTrigger [static]

	The move trigger index used for player prone pose.

	
bool Player::renderCollision [static]

	Determines if the player’s collision mesh should be rendered.

This is mainly used for the tools and debugging.

	
bool Player::renderMyItems [static]

	Determines if mounted shapes are rendered or not.

Used on the client side to disable the rendering of all Player mounted objects. This is mainly used for the tools or debugging.

	
bool Player::renderMyPlayer [static]

	Determines if the player is rendered or not.

Used on the client side to disable the rendering of all Player objects. This is mainly for the tools or debugging.

	
int Player::sprintTrigger [static]

	The move trigger index used for player sprinting.

	
int Player::vehicleDismountTrigger [static]

	The move trigger index used to dismount player.

Player Datablock

Detailed Description

Defines properties for a Player object.

	See also:

	Player

Member Function Documentation

	
void PlayerData::animationDone (Player *obj*)

	Called on the server when a scripted animation completes.

	Parameters

	obj – The Player object

	See also:

	Player::setActionThread() for setting a scripted animation and its ‘hold’ parameter to determine if this callback is used.

	
void PlayerData::doDismount (Player *obj*)

	Called when attempting to dismount the player from a vehicle.

It is up to the doDismount() method to actually perform the dismount. Often there are some conditions that prevent this, such as the vehicle moving too fast.

	Parameters

	obj – The Player object

	
void PlayerData::onEnterLiquid(Player obj, float coverage, string type)

	Called when the player enters a liquid.

	Parameters

	
	obj – The Player object

	coverage – Percentage of the player’s bounding box covered by the liquid

	type – The type of liquid the player has entered

	
void PlayerData::onEnterMissionArea(Player obj)

	Called when the player enters the mission area.

	Parameters

	obj – The Player object

	See also:

	MissionArea

	
void PlayerData::onLeaveLiquid(Player obj, string type)

	Called when the player leaves a liquid.

	Parameters

	
	obj – The Player object

	type – The type of liquid the player has left

	
void PlayerData::onLeaveMissionArea(Player obj)

	Called when the player leaves the mission area.

:param obj The Player object

	See also:

	MissionArea

	
void PlayerData::onPoseChange(Player obj, string oldPose, string newPose)

	Called when the player changes poses.

	Parameters

	
	obj – The Player object

	oldPose – The pose the player is switching from.

	newPose – The pose the player is switching to.

	
void PlayerData::onStartSprintMotion(Player obj)

	Called when the player starts moving while in a Sprint pose.

	Parameters

	obj – The Player object

	
void PlayerData::onStartSwim(Player obj)

	Called when the player starts swimming.

	Parameters

	obj – The Player object

	
void PlayerData::onStopSprintMotion(Player obj)

	Called when the player stops moving while in a Sprint pose.

	Parameters

	obj – The Player object

	
void PlayerData::onStopSwim(Player obj)

	Called when the player stops swimming.

	Parameters

	obj – The Player object

Member Data Documentation

	
float PlayerData::airControl

	Amount of movement control the player has when in the air.

This is applied as a multiplier to the player’s x and y motion.

	
bool PlayerData::allowImageStateAnimation

	Allow mounted images to request a sequence be played on the Player.

When true a new thread is added to the player to allow for mounted images to request a sequence be played on the player through the image’s state machine. It is only optional so that we don’t create a TSThread on the player if we don’t need to.

	
Point3F PlayerData::boundingBox

	Size of the bounding box used by the player for collision.

Dimensions are given as “width depth height”.

	
float PlayerData::boxHeadBackPercentage

	Percentage of the player’s bounding box depth that represents the back side of the head.

Used when computing the damage location.

See also: Player::getDamageLocation

	
float PlayerData::boxHeadFrontPercentage

	Percentage of the player’s bounding box depth that represents the front side of the head.
Used when computing the damage location.

See also: Player::getDamageLocation

	
float PlayerData::boxHeadLeftPercentage

	Percentage of the player’s bounding box width that represents the left side of the head.
Used when computing the damage location.

See also: Player::getDamageLocation

	
float PlayerData::boxHeadPercentage

	Percentage of the player’s bounding box height that represents the head.
Used when computing the damage location.

See also: Player::getDamageLocation

	
float PlayerData::boxHeadRightPercentage

	Percentage of the player’s bounding box width that represents the right side of the head.
Used when computing the damage location.

See also: Player::getDamageLocation

	
float PlayerData::boxTorsoPercentage

	Percentage of the player’s bounding box height that represents the torso.
Used when computing the damage location.

See also: Player::getDamageLocation

	
float PlayerData::bubbleEmitTime

	Time in seconds to generate bubble particles after entering the water.

	
Point3F PlayerData::crouchBoundingBox

	Collision bounding box used when the player is crouching.

See also: boundingBox

	
float PlayerData::crouchForce

	Force used to accelerate the player when crouching.

	
DecalData PlayerData::DecalData

	Decal to place on the ground for player footsteps.

	
float PlayerData::decalOffset

	Distance from the center of the model to the right foot.

While this defines the distance to the right foot, it is also used to place the left foot decal as well. Just on the opposite side of the player.

	
ParticleEmitterData PlayerData::dustEmitter

	Emitter used to generate dust particles.

Note

Currently unused.

	
SFXTrack PlayerData::exitingWater

	Sound to play when exiting the water with velocity >= exitSplashSoundVelocity.

See also: exitSplashSoundVelocity

	
float PlayerData::exitSplashSoundVelocity

	Minimum velocity when leaving the water for the exitingWater sound to play.

See also: exitingWater

	
float PlayerData::fallingSpeedThreshold

	Downward speed at which we consider the player falling.

	
SFXTrack PlayerData::FootBubblesSound

	Sound to play when walking in water and coverage equals 1.0 (fully underwater).

	
SFXTrack PlayerData::FootHardSound

	Sound to play when walking on a surface with Material footstepSoundId 1.

	
SFXTrack PlayerData::FootMetalSound

	Sound to play when walking on a surface with Material footstepSoundId 2.

	
ParticleEmitterData PlayerData::footPuffEmitter

	Particle emitter used to generate footpuffs (particles created as the player walks along the ground).

Note

The generation of foot puffs requires the appropriate triggeres to be defined in the player’s animation sequences. Without these, no foot puffs will be generated.

	
int PlayerData::footPuffNumParts

	Number of footpuff particles to generate each step.

Each foot puff is randomly placed within the defined foot puff radius. This includes having footPuffNumParts set to one.

See also: footPuffRadius

	
float PlayerData::footPuffRadius

	Particle creation radius for footpuff particles.

This is applied to each foot puff particle, even if footPuffNumParts is set to one. So set this value to zero if you want a single foot puff placed at exactly the same location under the player each time.

	
SFXTrack PlayerData::FootShallowSound

	Sound to play when walking in water and coverage is less than footSplashHeight.

See also: footSplashHeight

	
SFXTrack PlayerData::FootSnowSound

	Sound to play when walking on a surface with Material footstepSoundId 3.

	
SFXTrack PlayerData::FootSoftSound

	Sound to play when walking on a surface with Material footstepSoundId 0.

	
float PlayerData::footstepSplashHeight

	Water coverage level to choose between FootShallowSound and FootWadingSound.

	See also:

	
	FootShallowSound

	FootWadingSound

	
SFXTrack PlayerData::FootUnderwaterSound

	Sound to play when walking in water and coverage equals 1.0 (fully underwater).

	
SFXTrack PlayerData::FootWadingSound

	Sound to play when walking in water and coverage is less than 1, but > footSplashHeight.

See also: footSplashHeight

	
float PlayerData::groundImpactMinSpeed

	Minimum falling impact speed to apply damage and initiate the camera shaking effect.

	
Point3F PlayerData::groundImpactShakeAmp

	Amplitude of the camera shake effect after falling.

This is how much to shake the camera.

	
float PlayerData::groundImpactShakeDuration

	Duration (in seconds) of the camera shake effect after falling.

This is how long to shake the camera.

	
float PlayerData::groundImpactShakeFalloff

	Falloff factor of the camera shake effect after falling.

This is how to fade the camera shake over the duration.

	
Point3F PlayerData::groundImpactShakeFreq

	Frequency of the camera shake effect after falling.

This is how fast to shake the camera.

	
float PlayerData::hardSplashSoundVelocity

	Minimum velocity when entering the water for choosing between the impactWaterMedium and impactWaterHard sound to play.

	See also:

	
	impactWaterMedium

	impactWaterHard

	
float PlayerData::horizMaxSpeed

	Maximum horizontal speed.

Note

This limit is only enforced if the player’s horizontal speed exceeds horizResistSpeed.

	See also:

	
	horizResistSpeed

	horizResistFactor

	
float PlayerData::horizResistFactor

	Factor of resistence once horizResistSpeed has been reached.

	See also:

	
	horizMaxSpeed

	horizResistSpeed

	
float PlayerData::horizResistSpeed

	Horizontal speed at which resistence will take place.

	See also:

	
	horizMaxSpeed

	horizResistFactor

	
caseString PlayerData::imageAnimPrefix

	Optional prefix to all mounted image animation sequences in third person.

This defines a prefix that will be added when looking up mounted image animation sequences while in third person. It allows for the customization of a third person image based on the type of player.

	
caseString PlayerData::imageAnimPrefixFP

	Optional prefix to all mounted image animation sequences in first person.

This defines a prefix that will be added when looking up mounted image animation sequences while in first person. It allows for the customization of a first person image based on the type of player.

	
SFXTrack PlayerData::impactHardSound

	Sound to play after falling on a surface with Material footstepSoundId 1.

	
SFXTrack PlayerData::impactMetalSound

	Sound to play after falling on a surface with Material footstepSoundId 2.

	
SFXTrack PlayerData::impactSnowSound

	Sound to play after falling on a surface with Material footstepSoundId 3.

	
SFXTrack PlayerData::impactSoftSound

	Sound to play after falling on a surface with Material footstepSoundId 0.

	
SFXTrack PlayerData::impactWaterEasy

	Sound to play when entering the water with velocity < mediumSplashSoundVelocity.

See also: mediumSplashSoundVelocity

	
SFXTrack PlayerData::impactWaterHard

	Sound to play when entering the water with velocity >= hardSplashSoundVelocity.

See also: hardSplashSoundVelocity

	
SFXTrack PlayerData::impactWaterMedium

	Sound to play when entering the water with velocity >= mediumSplashSoundVelocity and < hardSplashSoundVelocity.

	See also:

	
	mediumSplashSoundVelocity

	hardSplashSoundVelocity

	
float PlayerData::jetJumpEnergyDrain

	Energy level drained each time the player jet jumps.

See also: jetMinJumpEnergy

Note

Setting this to zero will disable any energy drain

	
float PlayerData::jetJumpForce

	Force used to accelerate the player when a jet jump is initiated.

	
float PlayerData::jetJumpSurfaceAngle

	Angle from vertical (in degrees) where the player can jet jump.

	
float PlayerData::jetMaxJumpSpeed

	Maximum vertical speed before the player can no longer jet jump.

	
float PlayerData::jetMinJumpEnergy

	Minimum energy level required to jet jump.

See also: jetJumpEnergyDrain

	
float PlayerData::jetMinJumpSpeed

	Minimum speed needed to jet jump.

If the player’s own z velocity is greater than this, then it is used to scale the jet jump speed, up to jetMaxJumpSpeed.

See also: jetMaxJumpSpeed

	
int PlayerData::jumpDelay

	Delay time in number of ticks ticks between jumps.

	
float PlayerData::jumpEnergyDrain

	Energy level drained each time the player jumps.

See also: minJumpEnergy

Note

Setting this to zero will disable any energy drain

	
float PlayerData::jumpForce

	Force used to accelerate the player when a jump is initiated.

	
float PlayerData::jumpSurfaceAngle

	Angle from vertical (in degrees) where the player can jump.

	
bool PlayerData::jumpTowardsNormal

	Controls the direction of the jump impulse.

When false, jumps are always in the vertical (+Z) direction. When true jumps are in the direction of the ground normal so long as the player is not directly facing the surface. If the player is directly facing the surface, then they will jump straight up.

	
float PlayerData::landSequenceTime

	Time of land sequence play back when using new recover system.

If greater than 0 then the legacy fall recovery system will be bypassed in favour of just playing the player’s land sequence. The time to recover from a fall then becomes this parameter’s time and the land sequence’s playback will be scaled to match.

See also: transitionToLand

	
float PlayerData::maxBackwardSpeed

	Maximum backward speed when running.

	
float PlayerData::maxCrouchBackwardSpeed

	Maximum backward speed when crouching.

	
float PlayerData::maxCrouchForwardSpeed

	Maximum forward speed when crouching.

	
float PlayerData::maxCrouchSideSpeed

	Maximum sideways speed when crouching.

	
float PlayerData::maxForwardSpeed

	Maximum forward speed when running.

	
float PlayerData::maxFreelookAngle

	Defines the maximum left and right angles (in radians) the player can look in freelook mode.

	
float PlayerData::maxJumpSpeed

	Maximum vertical speed before the player can no longer jump.

	
float PlayerData::maxLookAngle

	Highest angle (in radians) the player can look.

Note

An angle of zero is straight ahead, with positive up and negative down.

	
float PlayerData::maxProneBackwardSpeed

	Maximum backward speed when prone (laying down).

	
float PlayerData::maxProneForwardSpeed

	Maximum forward speed when prone (laying down).

	
float PlayerData::maxProneSideSpeed

	Maximum sideways speed when prone (laying down).

	
float PlayerData::maxSideSpeed

	Maximum sideways speed when running.

	
float PlayerData::maxSprintBackwardSpeed

	Maximum backward speed when sprinting.

	
float PlayerData::maxSprintForwardSpeed

	Maximum forward speed when sprinting.

	
float PlayerData::maxSprintSideSpeed

	Maximum sideways speed when sprinting.

	
float PlayerData::maxStepHeight

	Maximum height the player can step up.

The player will automatically step onto changes in ground height less than maxStepHeight. The player will collide with ground height changes greater than this.

	
float PlayerData::maxTimeScale

	Maximum time scale for action animations.

If an action animation has a defined ground frame, it is automatically scaled to match the player’s ground velocity. This field limits the maximum time scale used even if the player’s velocity exceeds it.

	
float PlayerData::maxUnderwaterBackwardSpeed

	Maximum backward speed when underwater.

	
float PlayerData::maxUnderwaterForwardSpeed

	Maximum forward speed when underwater.

	
float PlayerData::maxUnderwaterSideSpeed

	Maximum sideways speed when underwater.

	
float PlayerData::mediumSplashSoundVelocity

	Minimum velocity when entering the water for choosing between the impactWaterEasy and impactWaterMedium sounds to play.

	See also:

	
	impactWaterEasy

	impactWaterMedium

	
float PlayerData::minImpactSpeed

	Minimum impact speed to apply falling damage.

This field also sets the minimum speed for the onImpact callback to be invoked.

See also: ShapeBaseData::onImpact()

	
float PlayerData::minJumpEnergy

	Minimum energy level required to jump.

See also: jumpEnergyDrain

	
float PlayerData::minJumpSpeed

	Minimum speed needed to jump.

If the player’s own z velocity is greater than this, then it is used to scale the jump speed, up to maxJumpSpeed.

See also: maxJumpSpeed

	
float PlayerData::minLateralImpactSpeed

	Minimum impact speed to apply non-falling damage.

This field also sets the minimum speed for the onLateralImpact callback to be invoked.

See also: ShapeBaseData::onLateralImpact()

	
float PlayerData::minLookAngle

	Lowest angle (in radians) the player can look.

Note

An angle of zero is straight ahead, with positive up and negative down.

	
float PlayerData::minRunEnergy

	Minimum energy level required to run or swim.

See also: runEnergyDrain

	
float PlayerData::minSprintEnergy

	Minimum energy level required to sprint.

See also: sprintEnergyDrain

	
SFXTrack PlayerData::movingBubblesSound

	Sound to play when in water and coverage equals 1.0 (fully underwater).

Note that unlike FootUnderwaterSound, this sound plays even if the player is not moving around in the water.

	
string PlayerData::physicsPlayerType

	Specifies the type of physics used by the player.

This depends on the physics module used. An example is ‘Capsule’.

Note

Not current used.

	
float PlayerData::pickupRadius

	Radius around the player to collide with Items in the scene (on server).

Internally the pickupRadius is added to the larger side of the initial bounding box to determine the actual distance, to a maximum of 2 times the bounding box size. The initial bounding box is that used for the root pose, and therefore doesn’t take into account the change in pose.

	
Point3F PlayerData::proneBoundingBox

	Collision bounding box used when the player is prone (laying down).

See also: boundingBox

	
float PlayerData::proneForce

	Force used to accelerate the player when prone (laying down).

	
int PlayerData::recoverDelay

	Number of ticks for the player to recover from falling.

	
float PlayerData::recoverRunForceScale

	Scale factor applied to runForce while in the recover state.

This can be used to temporarily slow the player’s movement after a fall, or prevent the player from moving at all if set to zero.

	
bool PlayerData::renderFirstPerson

	Flag controlling whether to render the player shape in first person view.

	
float PlayerData::runEnergyDrain

	Energy value drained each tick that the player is moving.

The player will not be able to move when his energy falls below minRunEnergy.

See also: minRunEnergy

Note

Setting this to zero will disable any energy drain.

	
float PlayerData::runForce

	Force used to accelerate the player when running.

	
float PlayerData::runSurfaceAngle

	Maximum angle from vertical (in degrees) the player can run up.

	
filename PlayerData::shapeNameFP[4]

	File name of this player’s shape that will be used in conjunction with the corresponding mounted image.

These optional parameters correspond to each mounted image slot to indicate a shape that is rendered in addition to the mounted image shape. Typically these are a player’s arms (or arm) that is animated along with the mounted image’s state animation sequences.

	
SplashData PlayerData::Splash

	SplashData datablock used to create splashes when the player moves through water.

	
float PlayerData::splashAngle

	Maximum angle (in degrees) from pure vertical movement in water to generate splashes.

	
ParticleEmitterData PlayerData::splashEmitter[3]

	Particle emitters used to generate splash particles.

	
float PlayerData::splashFreqMod

	Multipled by speed to determine the number of splash particles to generate.

	
float PlayerData::splashVelEpsilon

	Minimum speed to generate splash particles.

	
float PlayerData::splashVelocity

	Minimum velocity when moving through water to generate splashes.

	
bool PlayerData::sprintCanJump

	Can the player jump while sprinting.

	
float PlayerData::sprintEnergyDrain

	Energy value drained each tick that the player is sprinting.

The player will not be able to move when his energy falls below sprintEnergyDrain.

See also: minSprintEnergy

Note

Setting this to zero will disable any energy drain.

	
float PlayerData::sprintForce

	Force used to accelerate the player when sprinting.

	
float PlayerData::sprintPitchScale

	Amount to scale pitch motion while sprinting.

	
float PlayerData::sprintStrafeScale

	Amount to scale strafing motion vector while sprinting.

	
float PlayerData::sprintYawScale

	Amount to scale yaw motion while sprinting.

	
Point3F PlayerData::swimBoundingBox

	Collision bounding box used when the player is swimming.

See also: boundingBox

	
float PlayerData::swimForce

	Force used to accelerate the player when swimming.

	
bool PlayerData::transitionToLand

	When going from a fall to a land, should we transition between the two.

See also: landSequenceTime

Note

Only takes affect when landSequenceTime is greater than 0.

	
float PlayerData::upMaxSpeed

	Maximum upwards speed.

	See also:

	
	upResistSpeed

	upResistFactor

Note

This limit is only enforced if the player’s upward speed exceeds upResistSpeed.

	
float PlayerData::upResistFactor

	Factor of resistence once upResistSpeed has been reached.

	See also:

	
	upMaxSpeed

	upResistSpeed

	
float PlayerData::upResistSpeed

	Upwards speed at which resistence will take place.

	See also:

	
	upMaxSpeed

	upResistFactor

	
SFXTrack PlayerData::waterBreathSound

	Sound to play when in water and coverage equals 1.0 (fully underwater).

Note that unlike FootUnderwaterSound, this sound plays even if the player is not moving around in the water.

Shapebase Class - TODO

Detailed Description

Control Object

Energy/Damage

Member Function Documentation

Member Data Documentation

Turrets - TODO

Detailed Description

Overview

Scanning

Gained Target

Lost Target

Destroyed

Deployable Turret

Example State Machine

Shape File Nodes

Ignore List

Member Function Documentation

AITurretShapeData and Member Data Documentation

Triggers - TODO

Introduction

Creating Triggers

Using Triggers to Cause Events

Using Trigger Callbacks to Cause Events

Conclusion

Weapons - TODO

Detailed Description

Weapon Shape Nodes

Weapon Muzzle Flash

First Person Shape (optional)

Animation Sequence Transitions

Animation Sequence Selection

eyeMount Node (optional)

Special State Triggers

Special States

Member Function Documentation

Member Data Documentation

Proximity Mines

Detailed Description

A simple proximity mine.

Proximity mines can be deployed using the world editor or thrown by an in-game object. Once armed, any Player or Vehicle object that moves within the mine’s trigger area will cause it to explode.

Internally, the ProximityMine object transitions through the following states:

	Thrown: Mine has been thrown, but has not yet attached to a surface

	Deployed: Mine has attached to a surface but is not yet armed. Start playing the armingSound and armed sequence.

	Armed: Mine is armed and will trigger if a Vehicle or Player object moves within the trigger area.

	Triggered: Mine has been triggered and will explode soon. Invoke the onTriggered callback, and start playing the triggerSound and triggered sequence.

	Exploded: Mine has exploded and will be deleted on the server shortly. Invoke the onExplode callback on the server and generate the explosion effects on the client.

Note

Proximity mines with the static field set to true will start in the Armed state. Use this for mines placed with the World Editor.

The shape used for the mine may optionally define the following sequences:

	armed

	Sequence to play when the mine is deployed, but before it becomes active and triggerable (armingDelay should be set appropriately).

	triggered

	Sequence to play when the mine is triggered, just before it explodes (triggerDelay should be set appropriately).

Example:

datablock ProximityMineData(SimpleMine)
{
 // ShapeBaseData fields
 category = "Weapon";
 shapeFile = "art/shapes/weapons/misc/proximityMine.dts";

 // ItemData fields
 sticky = true;

 // ProximityMineData fields
 armingDelay = 0.5;
 armingSound = MineArmedSound;

 autoTriggerDelay = 0;
 triggerOnOwner = true;
 triggerRadius = 5.0;
 triggerSpeed = 1.0;
 triggerDelay = 0.5;
 triggerSound = MineTriggeredSound;
 explosion = RocketLauncherExplosion;

 // dynamic fields
 pickUpName = "Proximity Mines";
 maxInventory = 20;

 damageType = "MineDamage"; // type of damage applied to objects in radius
 radiusDamage = 30; // amount of damage to apply to objects in radius
 damageRadius = 8; // search radius to damage objects when exploding
 areaImpulse = 2000; // magnitude of impulse to apply to objects in radius
};

function ProximityMineData::onTriggered(%this, %obj, %target)
{
 echo(%this.name SPC "triggered by " @ %target.getClassName());
}

function ProximityMineData::onExplode(%this, %obj, %position)
{
 // Damage objects within the mine's damage radius
 if (%this.damageRadius > 0)
 radiusDamage(%obj.sourceObject, %position, %this.damageRadius,
 %this.radiusDamage, %this.damageType, %this.areaImpulse);
}

function ProximityMineData::damage(%this, %obj, %position, %source, %amount, %damageType)
{
 // Explode if any damage is applied to the mine
 %obj.schedule(50 + getRandom(50), explode);
}

%obj = new ProximityMine()
{
 dataBlock = SimpleMine;
};

	See also:

	ProximityMineData

Member Function Documentation

	
void ProximityMine::explode()

	Manually cause the mine to explode.

Camara Modes - TODO

Introduction

Camera Modes

Toggling Basic Camera Modes

Toggling Special Camera Modes

setOrbitObject(GameBase, Point3F, float, float, [float], [bool], [Point3F], [bool])

setOrbitPoint(string, float, float, [float], [Point3F], [bool])

setTrackObject(GameBase, [Point3F])

setFlyMode(void)

setNewtonFlyMode(void)

Camera Options

Conclusion

RTS Prototype - TODO

Introduction

Create A New Project

Camera Setup

Mouse Setup

Mouse Cursor Toggling

Placing Structures Using The GUI

Mouse-Driven Input

Player Spawning

Movement

Spawning Enemy Targets

Attacking

Tweaking Attacks

Destination Markers

Creating a Material

Creating a Decal

Spawning the Marker

Erasing the Marker

Camera Modes

Orbit Camera

Overhead Camera

Going More Real-Time Strategy

Conclusion

Adventure Prototype - TODO

Introduction

Building A Level

Hooking Up The Triggers

Conclusion

Mission Triggers - TODO

Introduction

Setting Up

Create the New Trigger Datablock

The onEnterTrigger() Callback and Other Support Scripts

Putting It All Together

Conclusion

TSShapeConstructor - TODO

Introduction

Terminology

Example 1: Adding a Collision Mesh To an Existing Shape

Example 2: Adding a Mesh From an Existing DTS File

Example 3: Auto-loading animations

Example 4: Splitting COLLADA animations

Example 5: Rigid-body Player Character

TSShapeConstructor Commands

Miscellaneous

dumpShape([string])

saveShape(string)

Nodes

getNodeCount()

getNodeIndex(string)

getNodeName(S32)

getNodeParentName(S32)

getNodeChildCount(string)

getNodeChildName(string, S32)

getNodeObjectCount(string)

getNodeObjectName(string, S32)

getNodeTransform(string)

setNodeTransform(string, string, [string])

renameNode(string, string)

addNode(string, string, [string])

removeNode(string)

Objects

getObjectCount()

getObjectName(S32)

getObjectNode(string)

setObjectNode(string, string)

renameObject(string, string)

removeObject(string)

Meshes

getMeshCount(string)

getMeshname(string, S32)

setMeshSize(string, S32)

getMeshType(string)

setMeshType(string, string)

getMeshMaterial(string)

setMeshMaterial(string, string)

addMesh(string, string, string)

removeMesh(string)

AutoBillboards

addAutoBillboard(S32, S32, S32, S32, S32, bool, F32)

removeAutoBillboard(S32)

Sequences

getSequenceCount()

getSequenceIndex(S32)

getSequenceName(S32)

getSequenceSource(S32)

getSequenceFrameCount(string)

getSequencePriority(string)

setSequencePriority(string, F32)

getSequenceCyclic(string)

setSequenceCyclic(string, bool)

getSequenceBlend(string)

setSequenceBlend(string, bool, string, S32)

getSequenceGroundSpeed(string)

setSequenceGroundSpeed(string, string, [string])

renameSequence(string, string)

addSequence(string, string, [S32], [S32]

removeSequence(string)

getTriggerCount(string)

getTrigger(string)

addTrigger(string, S32, S32)

removeTrigger(string, S32, S32)

Conclusion

Engine To Script

Introduction

This document intends to give an overview and a set of rules for creating and documenting Torque control layer interfaces. There are specific functions used for communication between TorqueScript and the C++ engine. This system makes heavy use of macros and ties in closely with the Console system.

If you plan on extending the engine to support new classes or functionality, you will need to adhere to this guide so as to not break your build. Equally important is the practice of documenting your extensions, so make heavy use of the fields that exist for documentation.

Note

This document was primarily written for C++ programmers with access to Torque 3D’s source code. Without source code you will not be able to directly implement any of the following. However, someone without source access should still be able to harvest important documentation on Torque 3D’s control layer interface.

Creating Call-in Points

A call-in point is an entry point from the control layer into Torque. In simpler terms, these are functions called from TorqueScript. There are two types of call-in functions: global and class

Global functions

These are stand alone functions that can be called in TorqueScript without belonging to any class or object.

Example:

echo("Hello World");

You define a global function by using the following procedure:

Include engineAPI.h in your cpp implementation file:

#include "console/engineAPI.h"

Define the function:

DefineEngineFunction(myFunction, myReturnType, (S32 arg1, F32 arg2, const char* arg3),, "Documentation string")
{
 // Code goes here
}

Working Example in Torque 3D:

DefineEngineFunction(addBadWord, bool, (const char* badWord),,
 "Add a string to the bad word filter\n"
 "The bad word filter is a table containing words which will not be "
 "displayed in chat windows. Instead, a designated replacement string will be displayed.\n"
 "@param badWord Exact text of the word to restrict.\n"
 "@return True if word was successfully added, false if the word or a subset of it already exists in the table\n"
 "@see filterString\n\n"
 "@tsexample\n"
 "// In this game, \"Foobar\" is banned\n"
 "%badWord = \"Foobar\";\n\n"
 "// Returns true, word was successfully added\n"
 "addBadWord(%badWord);\n\n"
 "// Returns false, word has already been added\n"
 "addBadWord(\"Foobar\");"
 "@endtsexample\n"
 "@ingroup Game")
{
 TORQUE_UNUSED(badWord);
 return gBadWordFilter->addBadWord(badWord);
}

Class methods

These are functions called in TorqueScript from an object associated with a class, such as SFXSource.

Example:

%sfxSourceObject.stop()

You define a class method by using the following procedure:

Include engineAPI.h in your cpp implementation file:

#include "console/engineAPI.h"

Define the method:

DefineEngineMethod(MyClass, myMethod, myReturnType, (S32 arg1, F32 arg2, const char* arg3),, "Documentation string")
{
 // Code goes here
}

Working Example in Torque 3D:

DefineEngineMethod(GuiCanvas, reset, void, (),,
 "@brief Reset the update regions for the canvas.\n\n"

 "@tsexample\n"
 "Canvas.reset();\n"
 "@endtsexample\n\n")
{
 object->resetUpdateRegions();
}

Within the function bodies, you can access the given parameters and return a value just like with a normal C++ function. To assign default values to arguments (like in C++: S32 index=-1), you use the macro argument left empty above:

DefineEngineMethod(MyClass, myMethod, myReturnType, (S32 arg1, F32 arg2, const char* arg3), (-1.f, "foo"), "Documentation string")
{
 // Code goes here
}

Here, -1.f is the default argument for “arg2” and “foo” is the default argument for “arg3.” Be aware that the default argument list is matched starting from the end of the argument list (like it happens in C++).

Working Example in Torque 3D:

DefineEngineMethod(SFXSource, play, void, (F32 fadeInTime), (-1.f),
 "Start playback of the source.\n"
 "If the sound data for the source has not yet been fully loaded, there will be a delay after calling "
 "play and playback will start after the data has become available.\n\n"
 "@param fadeInTime Seconds for the sound to reach full volume. If -1, the SFXDescription::fadeInTime "
 "set in the source's associated description is used. Pass 0 to disable a fade-in effect that may "
 "be configured on the description.")
{
 object->play(fadeInTime);
}

Notes

	You cannot currently use references (&) as argument types. This is due to the default argument code here and might change in the future.

	All types used in an engine API function/method must have registered console types including an ImplementConsoleTypeCasters instance for the given native C++ type. If this is missing, you will see link-time errors or compile-time errors in the templates.

	
	There are two exceptions:

	
	U32 can be used and is treated internally like S32

	Pointers to SimObject-derived classes can be used freely

	Do not use String for string arguments. Use “const char*”. You may use Strings as return values, though (for TS: memory will be copied to evaluator stack).

	If you return “const char*”, the API assumes the lifetime of the string exceeds that of the call-in. If that is not the case, you need to use Con::getReturnBuffer.

	If you return String, the API assumes the String is temporary and will automatically copy it with Con::getReturnBuffer.

	Due to the template trickery involved in the engineAPI macro system, default argument values will be constructed once during global startup (except if the compiler is smart enough to optimize the non-side-effecting constructors away). This means that any default argument value must not use a feature of Torque that requires global ctors to have executed. Using String::EmptyString is an example of what would not work.

Creating Call-out Points

A call-out point is an exit point from the C++ engine to the control layer (TorqueScript). This is often referred to as a callback. The main purpose of a callback is to trigger a function in script from C++ after an important piece of code has been executed. The following procedure is used to creating a callback:

In your class definition, declare the callbacks for the class with DECLARE_CALLBACK:

Example:

protected:
 /// @name Callbacks
 /// @{

 DECLARE_CALLBACK(void, onAdd, (SimObjectId ID));

 /// @}

In your implementation file, include the engineAPI.h header:

#include "console/engineAPI.h"

Then, use the IMPLEMENT_CALLBACK macro for each of the callbacks:

IMPLEMENT_CALLBACK(ScriptObject, onAdd, void, (SimObjectId ID), (ID),
 "Called when this ScriptObject is added to the system.\n"
 "@param ID Unique object ID assigned when created (%this in script).\n"
);

The two list arguments to the macro represent the raw argument type list (type arg1, type arg2…) as well as the argument call list (arg1, arg2). This is needed by the macros to chain the call along. To trigger a callback in the code, invoke the given callback method by appending _callback to its name:

bool ScriptObject::onAdd()
{
 if (!Parent::onAdd())
 return false;

 // Call onAdd in script!
 onAdd_callback(getId());
 return true;
}

Creating Types

Before a native C++ type can be used in the engine API, it must be registered with the console system. How this is done depends on the kind of type. For all registered types, TYPEID<type>() returns the numeric type ID of the static type.

Creating an Object Type

To define a new object type for use in the control layer API, use the following procedure. For a class T, this allows to use pointers to T objects to be used in the API. Derive your class directly or indirectly from SimObject:

class SFXAmbience : public SimDataBlock
{

In the class interface, define a public typedef “Parent” as an alias for the parent class:

public:
 typedef SimDataBlock Parent;

Also, in the public interface, use DECLARE_CONOBJECT. Optionally, also supply a description and category:

DECLARE_CONOBJECT(SFXAmbience);
DECLARE_CATEGORY("SFX");
DECLARE_DESCRIPTION("An ambient sound environment.");

Then, in the implementation file, use IMPLEMENT_CONOBJECT or one of its variants (for datablocks and netobjects):

IMPLEMENT_CO_DATABLOCK_V1(SFXAmbience);

Creating an Enumeration Type

To define a new enumeration type for use in the control layer API, use the following procedure. In the file where your native enum type is defined, include the type header:

#include "console/dynamicTypes.h"

After the enum definition:

/// Rolloff curve used for distance volume attenuation of 3D sounds.
enum SFXDistanceModel
{
 SFXDistanceModelLinear, ///< Volume decreases linearly from min to max where it reaches zero.
 SFXDistanceModelLogarithmic, ///< Volume halves every min distance steps starting from min distance; attenuation stops at max distance.
};

Declare the public type bits:

DefineEnumType(SFXDistanceModel);

In the corresponding implementation file, add the corresponding implementation detail:

ImplementEnumType(SFXDistanceModel,
 "Type of volume distance attenuation curve.\n"
 "The distance model determines the falloff curve applied to the volume of 3D sounds over distance.\n\n"
 "@ref SFXSource_volume\n\n"
 "@ingroup SFX")
 { SFXDistanceModelLinear, "Linear",
 "Volume attenuates linearly from the references distance onwards to max distance where it reaches zero." },
 { SFXDistanceModelLogarithmic, "Logarithmic",
 "Volume attenuates logarithmically starting from the reference distance and halving every reference distance step from there on. "
 "Attenuation stops at max distance but volume won't reach zero." },
EndImplementEnumType;

Note you can declare fields of this type directly:

addField("soundDistanceModel", TYPEID< SFXDistanceModel >(), Offset(mSoundDistanceModel, LevelInfo), "The distance attenuation model to use.");

Be aware that the native C++ enum type used in the macros must be global (the resulting type name will be global). To use nested enum types, simply work around this with a typedef:

typedef SFXPlayList::ELoopMode SFXPlayListLoopMode;
DefineEnumType(SFXPlayListLoopMode);

Creating a Bitfield Type

To define a new bitfield type for use in the control layer API, follow the instructions for defining an enumeration type with the following macros substituted for their enumeration counterparts:

Declare the type:

DefineBitfieldType(MaterialAnimType);

Implement the type:

ImplementBitfieldType(MaterialAnimType,
 "The type of animation effect to apply to this material.\n"
 "@ingroup GFX\n\n")
 { Material::Scroll, "Scroll", "Scroll the material along the X/Y axis.\n" },
 { Material::Rotate, "Rotate" , "Rotate the material around a point.\n"},
 { Material::Wave, "Wave" , "Warps the material with an animation using Sin, Triangle or Square mathematics.\n"},
 { Material::Scale, "Scale", "Scales the material larger and smaller with a pulsing effect.\n" },
 { Material::Sequence, "Sequence", "Enables the material to have multiple frames of animation in its imagemap.\n" }

Immediately after you will end the implementation:

EndImplementBitfieldType;

Documentation

Torque 3D makes it very easy to document the code via strings written directly into the implementations. Documentation strings for engine API items use the JavaDoc tag syntax (@param, @ingroup, etc…).

Documenting an engine function/method

Place the documentation in the DefineEngineXXX macro. If not containing a @brief, the first line (i.e. up to n) will be taken as the function @brief and automatically split out from the doc string. This allows the coder to omit the @brief in almost all cases as the first line will generally be good enough. Write explicit @briefs where this is not the case. For functions, place them in a group by using @ingroup tag:

Example:

DefineEngineFunction(strIsMatchExpr, bool, (const char* pattern, const char* str, bool caseSensitive), (false),
 "Match a pattern against a string.\n"
 "@param pattern The wildcard pattern to match against. The pattern can include characters, '*' to match "
 "any number of characters and '?' to match a single character.\n"
 "@param str The string which should be matched against @a pattern.\n"
 "@param caseSensitive If true, characters in the pattern are matched in case-sensitive fashion against "
 "this string. If false, differences in casing are ignored.\n"
 "@return True if @a str matches the given @a pattern.\n\n"
 "@tsexample\n"
 "strIsMatchExpr(\"f?o*R\", \"foobar\") // Returns true.\n"
 "@endtsexample\n"
 "@see strIsMatchMultipleExpr\n"
 "@ingroup Strings")
{
 return FindMatch::isMatch(pattern, str, caseSensitive);
}

Handling overloaded functions

Overloading is not currently supported by engineAPI. TorqueScript functions that have varying argument lists thus cannot be implemented with engineAPI right now.

Example:

GuiControl::setExtent(Point2I p)
GuiControl::setExtent(S32 width, S32 height)

These functions must remain implemented with the old ConsoleXXX macros. For documentation, these functions must be split into multiple independent functions/methods for Doxygen. This is achieved using the following procedure:

Document the original function for in-game purposes but @hide it from Doxygen:

ConsoleMethod(GuiControl, setExtent, void, 3, 4,
 "(Point2I p | int x, int y) Set the width and height of the control.\n\n"
 "@hide")

Write an independent ConsoleDocFragment for each variant of the function method:

static ConsoleDocFragment _sGuiControlSetExtent1(
 "@brief Resize the control to the given dimensions.\n\n"
 "Child controls will resize according to their layout settings.\n"
 "@param width The new width of the control in pixels.\n"
 "@param height The new height of the control in pixels.",
 "GuiControl", // The class to place the method in; use NULL for functions.
 "void setExtent(S32 width, S32 height);"); // The definition string.

static ConsoleDocFragment _sGuiControlSetExtent2(
 "@brief Resize the control to the given dimensions.\n\n"
 "Child controls with resize according to their layout settings.\n"
 "@param p The new (width, height) extents of the control.",
 "GuiControl", // The class to place the method in; use NULL for functions.
 "void setExtent(Point2I p);"); // The definition string.

Handling variadic functions

Variadic functions are not currently supported by engineAPI. TorqueScript functions that takes a variable number of arguments cannot be implemented with engineAPI right now.

Example:

echo(string text...)

For now, these functions must remain implemented with the old ConsoleXXX macros. To document them, place the function argument prototype string first in the usage string and then include documentation for other types of functions.

Class Function:

ConsoleMethod(SimSet, add, void, 3, 0,
 "(SimObject objects...) Add the given objects to the set.\n"
 "@param objects The objects to add to the set.")

Global Function:

ConsoleFunction(getRandom, F32, 1, 3,
 "(int a=1, int b=0) "
 "Get a random number between @a a and @a b.\n"
 "@param a Lower bound on the random number. The random number will be >= @a a.\n"
 "@param b Upper bound on the random number. The random number will be <= @a b.\n"
 "@return A pseudo-random number between @a a and @a b.\n")

Documenting an engine callback

Place the documentation on the IMPLEMENT_CALLBACK macro. If not containing a @brief, the first line (i.e. up to n) will be taken as the function @brief and automatically split out from the doc string. This allows to omit the @brief in almost all cases as the first line will generally be good enough. Write explicit @briefs where this is not the case:

IMPLEMENT_CALLBACK(GuiControl, onActive, void, (bool state), (state),
 "Called when the control changes its activeness state, i.e. when going from active to inactive or vice versa.\n"
 "@param stat The new activeness state.\n"
 "@see isActive\n"
 "@see setActive\n"
 "@ref GuiControl_VisibleActive");

Documenting an engine class

Place the documentation either in a .txt file in Documentation/scriptDocs/docs or in the C++ implementation files using the ConsoleDocClass macro. Always use @ingroup and @brief:

ConsoleDocClass(SFXAmbience,
 "@brief A datablock that describes an ambient sound space.\n\n"

 "Each ambience datablocks captures the properties of a unique ambient sound space. A sound space is comprised of:\n"

 "- an ambient audio track that is played when the listener is inside the space,\n"
 "- a reverb environment that is active inside the space, and\n"
 "- a number of SFXStates that are activated when entering the space and deactivated when exiting it.\n"
 "\n"

 "Each of these properties is optional.\n\n"

 "An important characteristic of ambient audio spaces is that their unique nature is not determined by their location "
 "in space but rather by their SFXAmbience datablock. This means that the same SFXAmbience datablock assigned to "
 "multiple locations in a level represents the same unique audio space to the sound system.\n\n"

 "This is an important distinction for the ambient sound mixer which will activate a given ambient audio space only "
 "once at any one time regardless of how many intersecting audio spaces with the same SFXAmbience datablock assigned "
 "the listener may currently be in.\n\n"

 "Each SFXAmbience instance will automatically add itself to the global SFXAmbienceSet.\n\n"

 "At the moment, transitions between reverb environments are not blended and different reverb environments from multiple "
 "active SFXAmbiences will not be blended together. This will be added in a future version.\n\n"

 "@tsexample\n"
 "singleton SFXAmbience(Underwater)\n"
 "{\n"
 " environment = AudioEnvUnderwater;\n"
 " soundTrack = ScubaSoundList;\n"
 " states[0] = AudioLocationUnderwater;\n"
 "};\n"
 "@endtsexample\n"

 "@see SFXEnvironment\n"
 "@see SFXTrack\n"
 "@see SFXState\n"
 "@see LevelInfo::soundAmbience\n"
 "@see Zone::soundAmbience\n"
 "@ref Datablock_Networking\n"
 "@ingroup SFX\n"
 "@ingroup Datablocks\n"
);

Documenting a field

Place the documentation directly on the addField usage string. The first line (i.e. up to the first n) is taken as the @brief and showed in inspectors. The rest is only used for doc output:

addField("coneOutsideVolume", TypeF32, Offset(mConeOutsideVolume, SFXDescription),
 "Determines the volume scale factor applied the a source's base volume level outside of the outer cone.\n"
 "In the outer cone, starting from outside the inner cone, the scale factor smoothly interpolates from 1.0 (within the inner cone) "
 "to this value. At the moment, the allowed range is 0.0 (silence) to 1.0 (no attenuation) as amplification is only supported on "
 "XAudio2 but not on the other devices.\n\n"
 "Only for 3D sound.\n"
 "@ref SFXSource_cones");

Documenting a variable

Place the documentation on the Con::addVariable() call. Use @ingroup to properly associate the documentation with a group. The first line of the doc string will be taken as the @brief:

Con::addVariable("SFX::numSources", TypeS32, &mStatNumSources, NULL,
 "Number of SFXSources that are currently instantiated.\n"
 "@ingroup SFX");

Make sure the Con::addVariable() call is within the engine init phase and will be available after the engine has started up. Don’t put the call on conditional paths. If necessary, use the module system (core/module.h) for relevant initialization

Documenting a constant

Place the documentation on the Con::addConstant() call. Use @ingroup to properly associate the documentation with a group. The first line of the doc string will be taken as the @brief:

Con::addConstant("SFX::REVERB_FLAG_DECAYTIMESCALE", TypeS32, &sReverbFlagDecayTimeScale, NULL,
 "SFXEnvironment::envSize affects reverberation decay time.\n"
 "@see SFXEnvironment::flags\n\n"
 "@ingroup SFX");

Make sure the Con::addConstant() call is within the engine init phase and will be available after the engine has started up. Don’t put the call on conditional paths. If necessary, use the module system (core/module.h) for relevant initialization.

Inserting an arbitrary piece of documentation

Arbitrary code documentation can be inserted using the ConsoleDoc macro:

ConsoleDoc(
 "@defgroup MyGroup\n"
 "@brief Blabla\n\n"
 "My description.\n\n"
 "@ingroup Parent"
);

Be aware that only one ConsoleDoc instance can be in any given .cpp file. To work around this, either place the macro instances in different namespaces or use the ConsoleDocFragment class directly:

static ConsoleDocFragment _sGuiControlSetExtent1(
 "@fn void GuiControl::setExtent(int width, int height)\n"
 "@brief Resize the control to the given dimensions.\n\n"
 "Child controls will resize according to their layout settings.\n"
 "@param width The new width of the control in pixels.\n"
 "@param height The new height of the control in pixels.");

static ConsoleDocFragment _sGuiControlSetExtent2(
 "@fn void GuiControl::setExtent(Point2I p)\n"
 "@brief Resize the control to the given dimensions.\n\n"
 "Child controls with resize according to their layout settings.\n"
 "@param p The new (width, height) extents of the control.");

You can also place a fragment inside a class:

static ConsoleDocFragment _sFragment(
 "doc",
 "className", //NULL to place globally
 "definition"); //optional

Important Notes

Things to watch out for:

	Put two newlines after @brief, i.e. “@brief Textnn”

	Put two newlines at the end of a paragraph, i.e. “My paragraph.nn”

	Put two newlines before @tsexample.

	Put two newlines to separate a @see from a @ref. Otherwise Doxygen will put the @ref on the same line as the @see which is visually unpleasing.

	Put @ingroup at the end of doc strings.

	Put datablocks in two groups; first in the group that the non-datablock object is in (e.g. PlayerData should be in the same group with Player) and second in the “Datablocks” group

	Use @tsexample and @endtsexample instead of @code and @endcode

Conclusion

After reading through this document you should a solid understanding of how the C++ engine communicates with the script layer. This is how the Torque team extends the engine and generates its official documentation. You should adhere to these standards if you wish to maintain stability while extending the engine.

Projectiles

Introduction

This article will discuss the technical aspect of creating custom projectiles for use with custom weapons in your games.

Projectiles

Projectiles are what we use in T3D for most bullets, rockets, grenades, and all objects of the like. Typically a projectile is created in the WeaponImage::OnFire call like so:

// Create the projectile object
%p = new (%this.projectileType)
{
 dataBlock = %this.projectile;
 initialVelocity = %muzzleVelocity;
 initialPosition = %obj.getMuzzlePoint(%slot);
 sourceObject = %obj;
 sourceSlot = %slot;
 client = %obj.client;
};
MissionCleanup.add(%p); // MissionCleanup is a SimGroup.

Once created, a projectile will move from it’s initialPosition in the direction of it’s initial velocity. It will travel along this path until it comes in contact with a sceneObject. (This includes the terrain.) where it will either bounce, or explode depending on how the projectile’s datablock has been setup. Before the projectile actually explodes, it uses it’s onExplode callback in script before actualling the explode() code in C++. This gives scriptors a chance to affect the behavior of the projectile before the engine actually processes an explosion, or to do any last minute tricks, hacks, or checks before it explodes. It’s important to keep in mind that the onExplode callback will only be done server side.

While there are many fields and properties to a Projectile’s datablock, there are a couple to keep in mind, and have a firm understanding of. (Those closely related will be grouped together.)

	Important Projectile Datablock Fields

	

	projectileShapeName

	Path to the shape to be used for the projectile

	explosion

	Explosion effect to play at the point of the explosion

	decal

	Decal to leave on walls/terrain/objects when it explodes

	particleEmitter

	An effect for the trail as the projectile lies through the air

	armingDelay

	amount of time (In milliseconds) before a projectile is allowed to explode

	lifeTime

	amount of time (in milliseconds) before a projectile deletes itself from the scene

Note

One thing I’ve noticed is that somewhere down the line in projectiles, we’ve relied heavily on the use of dynamic fields to handle things in script that would be assumed to be taken care of by the engine. For example, directDamage is in our example datablock, but really is only a dynamic field used later for players hit directly with a rocket.

Most of the processing of a projectile is done from the script side of things. The engine side of things really only updates it’s position, calls it’s callbacks, networking, exploding when the time is right, etc. Things like damage and pushback must be handled from various callbacks in script.

From a script side of things, when a projectile has been created, the next thing you’ll have to do is deal with it’s script callback. Depending on the behavior of the projectile, you will be looking to work with onCollision (For ballistic-type weapons), or onExplode (For grenade-type weapons).

At the very least, we want to call some kind of damage() function that will decrement the player’s health and update their GUI. In the event of a grenade or rocket, we want to damage the player it hit and likely anything around it. The easiest way to do this is by using a ContainerRadiusSearch, passing in the position of the explosion, the radius of the explosion (usually set as a dynamic field on the projectile’s datablock), and $TypeMasks::ShapeBaseObjectType or $TypeMasks::PlayerObjectType. We can do some math on every object the container search returns to determine if we should just outright damage the player, or scale the damage and impulse effects based on their distance from the center of the explosion. (It doesn’t make much sense to take full damage when you are on the very edge of an explosion, does it?). You should also make use of calcExplosionCoverage during the container call to make sure that objects aren’t damaged if they are covered by walls, or other objects. Distance scale can be calculated as:

scale = (distanceFromExplosion < explosionRadius / 2)? 1.0 : 1.0
 - ((distanceFromExplosion � explosionRadius / 2) / explosionRadius / 2);

Conclusion

Having Torque 3D’s camera system exposed to script gives you a great deal of power and flexibility in your game. When you have tested the various modes, you can begin to see how this will affect game play

Networking

Introduction

Torque 3D was designed around networked games. This tutorial will give an overview of the high level Client-Server Networking concepts utilized by Torque and will show you how to make a network teleport command sequence you can use as a springboard for your own networked game play ideas

What is covered in this tutorial:

	The Client/Server Concept

	Datablocks in Networking

	Network Connection Classes ? Linking Client and Server

	Sending Commands in the Torque Client/Server Model

	Making Your Own Commands

The Client/Server Concept

This is a high level overview of the Client/Server Networking Model that Torque 3D uses for its networking model. A networked Torque game normally uses only a single Server instance, but multiple Client instances can connect to the Server at once. When a client joins a server and the mission begins downloading, there is a 3 phase process:

	Datablocks are sent to the client, such as vehicle and weapon data. Datablocks will be covered in more detail in the Datablocks in Networking section of this tutorial.

	In-Mission Objects are ghosted to the client, such as other players. Ghosting will be discussed in The Server section of this tutorial.

	Finally, the scene is lit on the client, and then game play can begin.

There are 3 types of networking setups an instance of Torque can be in:

	Dedicated Server ? The server has no local client; it only connects to external clients. Games like MMOs generally use dedicated servers.

	Hosted Server ? The server has a local client that connects directly to the server instance instead of over the network. This is used in both a Single-Player instance of Torque, and when the instance hosting the game also has a player. Many FPS games and LAN party games use this setup, where one player’s game is the host and other clients connect to the host.

	Client Only ? The game runs in client mode only and joins a game play session by connecting to a server either on a local network or over the internet.

The Server

The Server has multiple responsibilities, and is the central “care-taker” of a networked game. Even when running in a single-player instance, or when the server is not a dedicated server, Torque uses the Client-Server Networking model. In this case, the server connects to a “client” in the same game instance, and sends “short-circuited” commands to the local client.

The Server has the following responsibilities, and may have more, depending on how a specific game is structured:

	Authoritative ? Information transmitted from the Server overrides the local Client information in the case of a bad prediction on the part of the Client. This ensures that the local data of the Client does not “drift” from the data the other Clients have.

	Ghosting ? The server keeps track of all the “true” objects in play, and “Ghosts” or copies data for each of them to the Clients by using Scoping. What this means the server has a master list of objects, and sends updated information for them to a local copy of the object on the client.

	Scoping - Scoping helps sort out what each client is aware of so Torque does not have to send updates for objects that don’t need to be updated. In order to save bandwidth and minimize network delay, objects are initially ghosted to the client in the second phase of mission startup.

	Datablocks ? Datablocks are sent in the first phase of mission start-up. The Server has all of the datablocks for clients to download when they begin a mission. This means that the server only has to send datablocks as they are needed, and can send new datablocks for different missions. Datablocks are discussed further in the Datablocks in Networking section below.

	Collision & Physics ? The Server performs collision checks and important physics calculations like rigid-body dynamics that affect game objects.

	Security ? The Server can kick bad players and cheaters out of the game, and can be setup to detect hacks being performed by a bad client.

	Message Routing ? The server can route messages, such as in-game chats, between clients.

The Client

The Client also has several important responsibilities, so that it can work well with the server and provide a quality game play experience:

	Rendering ? the Client is responsible for rendering the game for the player, and may be responsible for non-important physical simulations, such as cloth simulations and particle effect physics.

	Sound ? The Client instance plays back sound effects and music tracks on the local machine and doesn’t involve the server with sound playback.

	Input ? The Client accepts player input and sends that information to the server.

	User Preferences ? Many games store user preferences on the local machine where the client instance runs.

	Prediction ? The Client can predict what will happen to game objects in the short term while it waits for the server to synchronize, in order to maintain correct-looking game behavior.

	Interpolation ? As part of the prediction process, the Client can determine where it needs to be between where it thought it needed to be and where the server tells it to go.

Datablocks in Networking

Datablocks are a useful way to have game objects share common data, such as which model to use, physics properties, ammo type, whatever is relevant to the class the datablock is associated with. This saves Memory and makes it easier to create new types of objects by deriving new datablocks from old datablocks and overriding only the data that is different. Datablocks are declared on the server when a mission is started, and wired over to clients when they begin downloading the mission data. Once downloaded, they cannot be changed:

// An Example Datablock
// From art/datablocks/weapons/rocketLauncher.cs for the rocket launcher ammo:

datablock ItemData(RocketLauncherAmmo)
{
 // Mission editor category
 category = "Ammo";

 // Add the Ammo namespace as a parent. The ammo namespace provides
 // common ammo related functions and hooks into the inventory system.
 className = "Ammo";

 // Basic Item properties
 shapeFile = "art/shapes/weapons/SwarmGun/rocket.dts";
 mass = 2;
 elasticity = 0.2;
 friction = 0.6;

 // Dynamic properties defined by the scripts
 pickUpName = "Rockets";
 maxInventory = 20;
};

Just like the benefit datablocks provide to memory, they also save bandwith as the common data they contain is only sent once. Datablocks also make it easier for a client to get mods from the server without updating scripts, as the modded behavior is acquired when the mod datablocks are downloaded.

When the server begins a mission with the client it sends relevant datablocks to the client as part of a multiphase loading process. Datablocks are sent in the first phase of the process, as all in-game objects will need the datablocks to be initialized with the correct settings. Once all datablocks have been downloaded, the server moves on to Phase 2 of the mission downloading process.

For more information on datablocks, you can read: Datablock Editor - TODO Internal Link - World Editor/Editors/DatablockEditor

Network Connection Classes ? Linking Client and Server

Torque uses several connection object classes to provide multiplayer networking facilities. The basic functionality is defined in the NetConnection and expanded upon with the other connection classes.

NetConnection

The Base multiplayer networking object class is the NetConnection class, which provides the functionality to create connections between two instances of torque (or the same instance if the client is also the server):

//an example of NetConnection in the wild?
%connect = new NetConnection(MyNetConnection);
RootGroup.add(MyNetConnection);

%connect.connect(%someAddress); //connect MyNetConnection to %someAddress

//if successful, you are now networked on a basic level

The important console method commands to note in the class are:

	NetConnection.connect(%address) ? attempts to connect this object to another NetConnection object in an instance of Torque running at the network %address.

	NetConnection.connectLocal() - attempts to connect this NetConnection object to the local server when running the client and server in the same instance of Torque. Returns an empty string “” when successful and an error message otherwise.

GameConnection

The primary subclass of NetConnection used by a Torque multiplayer game, utilizes everything that NetConnection does but adds game-specific networking functionality on top of that:

//making the GameConnection?
%gameCon = new GameConnection(MyGameConnection);
RootGroup.add(MyGameConnection);

MyGameConnection.connect(%someAddress); //connect MyNetConnection to %someAddress

The GameConnection class enables what is known as the Control Object, which can be anything derived from the ShapeBase engine class. The client instance of the game tracks control from this object, such as the Player or the Camera used in in editing, and sends it to the server. GameConnection has both client and server-side console methods:

//setting a control object, we do this on the server side
MyGameConnection.setControlObject(PlayerOne);

//change the view to third-person, on the server side
MyGameConnection.setFirstPerson(false);

//other fun stuff?

The GameConnection object applies changes to the client control object based on Player input to the game via the Move engine structure, which contains positional and rotational changes as well as trigger state changes. The Moves are collected based on time, applied to the client object, and then sent over to the server for processing.

ServerConnection

This is the named instance of a GameConnection object that represents the Client Connection to the Server. It is created on the scripting level:

//from core/scripts/server/server.cs
%conn = new GameConnection(ServerConnection);
RootGroup.add(ServerConnection);

%conn.setConnectArgs($pref::Player::Name);
%conn.setJoinPassword($Client::Password);

LocalClientConnection

This is the named instance of a NetConnection/GameConnection (depending on which class you use) object that is created when it is connectLocal() method is performed successfully:

//furthering the ServerConnection example from before
%conn = new GameConnection(ServerConnection);
RootGroup.add(ServerConnection);

%conn.setConnectArgs($pref::Player::Name);
%conn.setJoinPassword($Client::Password);

// LocalClientConnection is made right here, on the engine level
%result = %conn.connectLocal();

if(%result !$= "")
{
 %conn.delete();
 destroyServer();

 return false;
}

Setting Up The Server

	First, we need to set up the Port that Torque will be using for communication on the computer. A port is a communication channel a computer uses to filter network traffic. The Stock Example uses port# 28000 by default, set in core/prefs.cs. You can use the script helper function portInit(%port), which will try to find an open port with the console function setNetPort(%port). (Single-Player games can skip this step):

//an example of setting the port
%myPort = 12345;
//?
if(setNetPort(%myPort))
{
 //success!
 echo("successfully connected to port:" SPC %myPort);
}
else
{
 //failure
 error("error connecting to port:" SPC %myPort);

 //fallback behavior, maybe try a new port?
}

	Next, we need to enable the Torque instance to allow network Connections, we do this by the console function allowConnections(%enable). (Single-Player games can skip this step):

//activate connections on our selected port
allowConnections(true);

	Afterwards, we setup our ServerGroup, load up our datablocks, and begin loading the selected mission:

//an updated example from core/scripts/server/server.cs?

// Load the level
$ServerGroup = new SimGroup(ServerGroup);

// Load up any core datablocks
exec("core/art/datablocks/datablockExec.cs");

// Let the game initialize some things now that the
// the server has been created
onServerCreated();

loadMission(%level, true); //only true if loading first mission

	All of the above is can be performed with the createServer(%serverType, %level) script helper function:

//do all of the above in one call
if(createServer(%type, %myMission)
{
 //server for mission created properly
 echo(%type SPC "server created successfully for mission:" SPC %myMission);
}
else
{
 //fallback behavior
 error("error in" SPC %type SPC "server creation process!" SPC %myMission);
}

	At this point, if we’re running a client on the same instance as the server, we can create our ServerConnection object, and connect it to the local server instance:

// from server.cs again? with a few extra comments

//create our server connection object
%conn = new GameConnection(ServerConnection);

// RootGroup is the master SimGroup for the entire instance
RootGroup.add(ServerConnection);

%conn.setConnectArgs($pref::Player::Name);
%conn.setJoinPassword($Client::Password);

//if you've modified or subclassed GameConnection,
// your additional connection settings might //go here

%result = %conn.connectLocal(); //create the LocalServerConnection
if(%result !$= "")
{
 //uh-oh, get rid of the bad connection
 %conn.delete();
 destroyServer();

 return false;
}

	We can create the server AND connect locally with the createAndConnectToLocalServer(%serverType, %level) script helper function, which also calls the createServer() script helper function to make the server:

//do all of the above
if(createAndConnectToLocalServer(%type, %myMission))
{
 //local server & local client connection for mission created properly
 echo(%type SPC "server & client created successfully for mission:" SPC %myMission);
}
else
{
 //fallback behavior
 error("error in" SPC %type SPC "server & client creation process!" SPC %myMission);
}

Setting Up the Client

It is pretty straightforward, you can look at how the script helper function connect(%server) works to see this in action:

// Example from the connect(%server) script helper function in :
// core/scripts/client/missionDownload.cs?

function connect(%server)
{

 //First, Create ServerConnection object.

 %conn = new GameConnection(ServerConnection);
 RootGroup.add(ServerConnection);

 // Next, Setup our connection settings,
 // such as player name, password,
 // and any other game-specific extensions.
 %conn.setConnectArgs($pref::Player::Name);
 %conn.setJoinPassword($Client::Password);

 // Call the GameConnection.connect(%server) method to initiate the connection.

 %conn.connect(%server);
}

Using the GameCore Package

A Package is a set of modified scripts that can be loaded “over” preexisting functions, and unloaded to remove the alternate functionality. The GameCore package in a stock Torque project sets up the FPS Single and Multiplayer games. You can find the GameCore package functions in game/scripts/server/gameCore.cs.

The GameCore Package overrides the “blank” functionality associated with many GameConnection console callbacks with game-specific behavior, like informing the client it has joined a game with a welcome message, putting in a message when another player enters/leaves the game, how the player is spawned in the world, setting the active inventory, and so on and so forth:

//game core example, onConnect override, short verson?
function GameConnection::onConnect(%client, %name)
{
 // Send down the connection error info, the client is responsible for
 // displaying this message if a connection error occurs.
 messageClient(%client, 'MsgConnectionError',"",$Pref::Server::ConnectionError);

 // Send mission information to the client
 sendLoadInfoToClient(%client);

 //other stuff?

 // Save client preferences on the connection object for later use.
 %client.gender = "Male";
 %client.armor = "Light";
 %client.race = "Human";
 %client.skin = addTaggedString("base");
 %client.setPlayerName(%name);
 %client.score = 0;
 %client.kills = 0;
 %client.deaths = 0;

 // Inform the client of all the other clients
 %count = ClientGroup.getCount();
 for (%cl = 0; %cl < %count; %cl++)
 {
 //?
 }

 // Inform the client about joining
 //?

 // Inform all the other clients of the new guy
 //?

 // If the mission is running, go ahead download it to the client
 if ($missionRunning)
 {
 %client.loadMission();
 }
 else if ($Server::LoadFailMsg !$= "")
 {
 messageClient(%client, 'MsgLoadFailed', $Server::LoadFailMsg);
 }
 $Server::PlayerCount++;
}

To make your own game-specific functionality you could re-write the GameCore package or make a new package that overrides the functions that the GameCore Package defines.

Sending Commands in Torque’s Client/Server Model

Torque has a very simple setup for sending script commands between the client and server, allowing for a great deal of flexibility in setting up your own commands.

Client to Server Commands

The way to send a command from the client to the server is with the commandToServer(%cmdname, %arglist?) console function. The %arglist? is any number of optional arguments that the function needs to pass to the server command:

//commandToServer example, tell the server to start some giant laser mayhem
commandToServer('GiantLaserAttack', %laserPosition, 12, "1.0 0.0 0.75 0.9");

For the server to process the command, use the prefix serverCmd, followed by the command name. The first argument is the game object id of the client that send the command, followed by the optional arguments given it:

//serverCmd example, notice the args match up with our commandToServer() call
function serverCmdGiantLaserAttack(%client, %position, %powerLevel, %laserColor)
{
 if($GiantLaserActive == false)
 {
 echo("Received GLA from Client:" SPC %client);
 //perform some giant laser mayhem
 beginGiantLaserAttack(%position, %powerLevel, %laserColor);
 }
 //there can only be one giant laser attack at any given time!
}

Server to Client Commands

Sending commands from the server to the client is almost the mirror version of sending them from the client to the server. To send a command to the client, use the commandToClient(%client, %cmdName, arglist..) console function. You have to specify a client to send the command to. Unlike with commandToServer(), there could be multiple clients:

//commandToClient example, update our world damage state
commandToClient(%thatClient,'UpdateGiantLaserWorldDamage', %laserPosition, %radius);

//sending a command to all the clients
%count = ClientGroup.getCount();
for (%i = 0; %i < %count; %i++)
{
 %cl = ClientGroup.getObject(%i);
 commandToClient(%cl, 'UpdateGiantLaserWorldDamage' , %laserPosition, %radius);
}

And similar to the serverCmd prefix, we have the clientCmd prefix + commandName:

//clientCmd example, updating our GiantLaser world damage
function clientCmdUpdateGiantLaserWorldDamage(%position, %radius)
{
 destroyPlayersInArea(%position, %radius);
 destroyVehiclesInArea(%position, %radius);
 destroyPropsInArea(%position, %radius);
 applyWorldDamageDecal(%postion, %radius, "GiantLaser");
 breakAllWindowsInArea(%position, %radius);
}

Making Your Own Commands

As you learned with the previous section, making client/server commands in Torque is really easy. With this example, you’ll learn how to make your own client/server commands.

You’ll use a timed command on the client to send a command to the server saying “ready to teleport”. The server will teleport the player and send a command to the client to echo a message to the console; Armed with that, you can modify the example and play with making your own commands to make the server and client do whatever you want them to!

You’ll be modifying the Stock Torque Full Template for this example, so if you have that ready to go then you’re all set.

Client Setup

First, add a file on the client for our client side commands. Call this file myClientCommands.cs and make it in the game/scripts/client directory,. Once you’ve done that, add a few functions to that file:

//this will send the command that you're ready to start the teleport procedure
function sendTeleportSignal()
{
 %time = 5000; //a five second delay should be fine

 // call the serverCmdTeleportReady, with a time argument of 5 seconds
 commandToServer('TeleportReady', %time);
}

//this clientCmd will report the distance the server teleported the player
function clientCmdAcknowledgeTeleport(%distance)
{
 // tell the user how far up they were teleported
 echo("VOIP! You were teleported! Distance:" SPC %distance);
}

Server Setup

Next, add our server command functions. Make a file in the game/scripts/server directory called myServerScripts.cs, and fill it in with the following code:

//this will set us up to teleport the clients in a few seconds
function serverCmdTeleportReady(%client, %time)
{
 schedule(%time, 0, "beginTeleport"); //schedule our teleport
}

//this function will send all the clients the teleport command
function beginTeleport()
{
 %count = ClientGroup.getCount(); //get the count for all of our clients
 for (%i = 0; %i < %count; %i++)
 {
 %cl = ClientGroup.getObject(%i); //get each client
 %dist = 5 + (getRandom() * 5); //generate a random distance between 5 and 10
 %controlObject = %cl.getControlObject(); //nab our control object for this client
 teleportUp(%controlObject,%dist); //teleport our object
 commandToClient(%cl, 'AcknowledgeTeleport', %dist); //send the command to the client
 }
}

//teleport our control object up!
function teleportUp(%controlObject, %distance)
{
 %pos = %controlObject.position; //nab position

 %height = getWord(%pos,2); //get the current height

 %height += %distance; //add the distance

 %pos = setWord(%pos, 2, %height); //set the position

 %controlObject.position = %pos; //set the control the position of the object
}

Execution Setup

Now, go to game/scripts/main.cs, and add the following under where the normal init.cs scripts are executed, so we can execute our new scripts:

// Load the scripts that start it all...
exec("./client/init.cs");
exec("./server/init.cs");

//add our own command scripts
exec("./client/myClientCommands.cs"); //exec our client commands
exec("./server/myServerCommands.cs"); //exec our server commands

Mission Setup

Finally, go to game/core/scripts/client/mission.cs, and add the following line at the end of the clientStartMission() script function, after $Client::missionRunning = true;, this is so a client can trigger the teleport sequence whenever they enter the game:

//?

// Done.

$Client::missionRunning = true;

sendTeleportSignal(); //start our teleportation sequence

[image: ../../_images/Teleport.jpg]
And that is all there is to it! Every time a new client Joins the party, everyone gets teleported a random distance. Now that you know how to make your own client and server scripts, you can start working on your own networking ideas.

Further Reading

For further reading and a deeper understanding of Torque’s Netcode, check out:

	Older TGEA networking article [http://docs.garagegames.com/tgea/official/content/documentation/Engine%20Overview/Networking.html]

Audio

	Overview
	Introduction

	Two Playback Types
	Buffered

	Streamed

	3D Sound
	Distance Attenuation

	Playback Virtualization

	Supported Audio Formats
	WAV

	Ogg/Vorbis

	Supported Sound APIs
	DirectSound

	FMOD

	OpenAL

	XAudio

	Null

	Conclusion

	Interface
	Overview

	Channels

	Descriptions

	Configuring 3D Playback
	$pref::SFX::distanceModel

	$pref::SFX::dopplerFactor

	$pref::SFX::rolloffFactor

	Script Classes
	SFXDescription
	Description

	Properties

	SFXProfile
	Description

	Properties

	Methods

	SFXSource
	Description

	Properties

	Callbacks

	Methods

	SFXEmitter
	Description

	Properties

	Methods

	Script Functions
	Device Management

	Configuration

	Playback

	Misc

	Conclusion

	Internals
	SFXBuffer

	SFXVoice

	SFXStream

	SFXFileStream

	SFXResource

	SFXDevice

	SFXProvider

	SFXSystem

	Conclusion

	Conclusion
	How Do I…
	… convert to/from OGG?

	… see how the system is used. Is there an example I can look at?

	… create 5.1 or 7.1 surround sound?

	… play background music?

	… tune stream buffering?

	… stream custom audio data?

	… add support for a new audio format?

	… monitor the status of the SFX system?

	… play multiple sounds in random/sequential order on an SFXEmitter?

	Troubleshooting

	Best Practices

	Conclusion

Overview

Introduction

SFX is the new 2D and 3D audio system for Torque 3D. It was designed to provide the basic features for sound playback across multiple platforms, sound devices, and audio libraries. This guide is a high level overview of the SFX module and what systems it supports.

Recommendation: For the best cross-platform support as well as for the best compatibility with future additions to SFX, it is recommended to either use OpenAL or FMOD with SFX. A number of future additions will likely not be supported with other sound APIs.

Two Playback Types

Each individual sound can be played back in two ways. The type of playback used by the sound system for a particular sound is determined by the “isStreaming”property of its SFXDescription (SFXInterface.html#SFXDescription)

Note: With either form of playback, sound data is stored in uncompressed form on the device. For compressed formats, decompression occurs during sound loading. For streamed sounds, this is a continuous process. All sound loading happens on worker threads regardless of how it is played back so it does not tax the main thread.

Buffered

DEFINITION: Sample data completely offloaded to a sound device in one contiguous chunk. Ideal for small sounds, such as “place once” effects (e.g. gun fire, collision audio, etc).

Advantages

	Fast seeking

	No overhead after loading

	Sound data can be shared between simultaneous playbacks

Disadvantages

	May consume a lot of memory on the device (depending on sample data size)

	May take longer to load (depending on sample data size)

	May fail to load entirely depending on device (depending on sample data size)

	Needs entire sound stream to be available before playback can start

Streamed

DEFINITION: Small buffer allocated on a sound device and data is progressively loaded in the background as playback progresses. Ideal for large sounds (e.g. music) and continuous streams (e.g. voice chat). This feature is fully threaded; playback will continue normally even if Torque 3D is, for example, busy loading a level.

Advantages

	Small footprint on sound device

	Loads quickly

	Can play sound streams for which only part of the data is available

Disadvantages

	Incurs a certain continuous overhead

	Data for a sound cannot be shared between playbacks

	Seeking needs to reset stream feed and will generally incur a delay

	End-of-stream notifications may be imprecise (depends on actual sound device used)

3D Sound

Sounds can be positional (3D) or non-positional (2D). Positional sounds are located in Torque’s three-dimensional world. Whether a sound is 2D or 3D is determined by the “is3D” property of its SFXDescription. (SFXInterface.html#SFXDescription)

3D sounds will be mixed at varying volumes and distributed dynamically to the sound card’s output channels depending on the player’s position and velocity in relation to the sound’s own position and velocity. This is computed independently for each playing 3D sound.

Each 3D sound has a position, an orientation, and a velocity. To represent 3D sounds by real objects in Torque 3D, use SFXEmitters. (SFXInterface.html#SFXEmitter)

!! Important !!: 3D sounds must be single channel (mono). This is a requirement coming from the sound APIs. Currently, 3D sound is completely agnostic to the environment. This means that to the SFX system the entire world is one single empty space and sound will propagate uniformly and unencumbered in all directions.

Distance Attenuation

Just like sound in the real world, 3D sounds become less audible the farther away you are from their source. Distance attenuation then refers to the process of computing the level of volume that a given 3D sound has at a certain distance away from its origin.

The process of setting up distance attenuation is described in more detail in Configuring 3D Playback. (SFXInterface.html#Configuring_3D_Playback)

Sound Cones

Distance attenuation works uniformly in all direction regardless of the actual direction of the sound. Sound cones allow you to add directional volume attenuation to distance attenuation.

There are two cones defined on each 3D sound that affect volume attenuation. Both have a their upwards axis aligned with the sound’s direction and their tips at the sound’s origin. The width of each cone is defined by an angle. By default this angle is 360 degrees meaning that the sound spreads in all directions.

By narrowing the angle, the cone will get smaller and the sound will spread only across a certain range in its direction. Of the two cones, one is the inner cone and one is the outer cone.

Within the inner cone, the 3D sound will retain full volume as specified in its SFXDescription (attenuated only by the sound channel it is assigned to and, of course, the master volume of the system).

Outside of the outer cone, the 3D sound’s volume will be attenuated by the scale factor set by “coneOutsideVolume” property of its SFXDescription. Then, within the transitioning zone between the inner code to outside the outer cone, the volume will gradually shift from an attenuation of 1.0 (inside inner cone) to an attenuation of “coneOutsideVolume”.

Note: Cone settings from SFXDescriptions can be overridden for individual SFXSources using the setCone() method. (SFXInterface.html#SFXSource)

To gain a better understanding of how sound cones work, read through this MSDN article on sound cones. (https://msdn.microsoft.com/en-us/library/ee418803(v=VS.85).aspx)

Doppler Effect Also known as Doppler Shift, this effect is the change in frequency of a wave for an observer moving relative to the source of the waves, similar to how you perceive a loud motorcycle approaching and passing you. The following articles contain a more in depth description:

	Wikipedia Entry (https://en.wikipedia.org/wiki/Doppler_effect)

	Kettering Article (http://www.acs.psu.edu/drussell/Demos/doppler/doppler.html)

Playback Virtualization

In any given situation, a game may have more sounds playing concurrently than are actually supported by the underlying device. To cope with this, the SFX system uses what is called playback virtualization.

During SFX’s update routine, the system will compute effective volumes for all playing sounds. If there are more sounds playing than are supported by the underlying SFX device, the system will reassign voices from the least audible (usually the sounds farthest from the player) sounds to more audible sounds.

A sound source that is playing but loses its voice on the device will transition into virtualized playback mode. In this mode, the sound will continue to have its play cursor advance in real-time but there will not be actual audio output on the device.

Voice distribution is re-evaluated on each SFX update so a given sound that has been transitioned to virtualized playback mode may later regain a voice and transition back to normal playback.

Supported Audio Formats

SFX supports WAV and Vorbis across all devices. In addition, devices may implement their own file loading which will take precedence over the built-in loading code. See Supported APIs for more information.

Live Asset Updating is supported by SFX meaning that if a sound file changes on disk, it will automatically be reloaded by the SFX system. All sources playing the sound will temporarily transition to virtualized playback and then transition to normal playback when the file has been reloaded.

WAV

	Premise: Uncompressed format that is most useful for sound production

	Pro: Uncompromising sound quality

	Con: Consumes lots of disk space

Note: At the moment, none of the enhanced features of WAVs (loops, markers, etc.) are supported.

Ogg/Vorbis

	Premise: High-quality compressed format (usually outperforms rival lossy sound compression formats such as MP3 or WMA)

	Pro: Very good quality/size ratio

	Con: Compression is lossy (with proper settings, this should not be noticeable in most all game settings)

Supported Sound APIs

The SFX system supports several different sound APIs.

Note: Switching sound devices at runtime will preserve all SFXProfile and SFXSource states. SFXSources that are currently playing will temporarily transition to virtualized playback.

DirectSound

Platform: Windows Description: Standard DirectX audio API.

FMOD

Platforms: Windows, Mac, XBox, PS3 Description: High-quality, highly cross-platform sound API. Must be installed separately. For commercial releases, a license must be obtained.

With FMOD selected, all file loading and streaming will be taken over by the device. If for some reason you want to disabled this feature, set the following global variable in TorqueScript:

$pref::SFX::FMOD::noCustomFileLoading = 1)

The following formats are supported:

	.aiff

	.asf

	.asx

	.dls

	.flac

	.fsb

	.it

	.m3u

	.mid

	.mod

	.mp2

	.mp3

	.ogg

	.pls

	.s3m

	.vag

	.wav

	.wax

	.wma

	.xm

	.xma (on Xbox only)

Notes:

	To download FMOD, visit the FMOD homepage http://www.fmod.org/

	To purchase a very friendly priced indie license of FMOD for your game, visit the GarageGames store. http://www.garagegames.com/products/fmod

	At the moment, Live Asset Updating is not available with sounds that have been loaded directly through FMOD.

	Currently, using play list files with FMOD is the only way to use play lists with SFX.

OpenAL

Platforms: Windows, Mac Description: A cross-platform 3D audio API appropriate for use with gaming applications and many other types of audio applications.

Note: On Windows, OpenAL must be installed separately. Visit the OpenAL website for more details

	http://connect.creativelabs.com/openal/default.aspx

XAudio

Platforms: Windows, XBox Description: InterTrust’s fast and robust, multi-platform solution for digital playback. Targets MPEG Audio (MP1, MP2, and MP3) decoding. It is offered in the form of a developer’s kit (SDK), which includes the Xaudio decoding engine.

Null

Platforms: Windows, Mac Description: Stub device for dedicated servers. Simulates playback. No actual audio output.

Conclusion

This document is intended to provide you with the base knowledge of SFX’s capabilities.

Interface

Overview

SFXSources are the interface to sound playback. They are created through the SFXSystem and control all aspects of playback. The SFX system can be interfaced through a number of console methods.

Note: Do not create SFXSources directly through object declarations (i.e. new or singleton). This is inhibited by the SFX system.

SFXSources are either created from SFXProfiles or directly from SFXStreams. The latter method is only available internally from within the engine and not exposed to script.

SFXProfiles are created by the user. They combine sound files with SFXDescriptions that describe how to play back the particular file.

SFXDescriptions are datablocks with a series of properties that describe aspects of sound playback.

SFXSources create SFXVoices (playback controllers) and SFXBuffers (sample data buffers) on SFXDevices. This happens internally.

SFXStreams are used to load sample data into SFXBuffers. For streaming buffers, this is a continuous process. This happens internally.

An SFXListener instance is coupled to the SFXSystem and defines the location and velocity of the listener in 3D space. This is used for volume attenuation of 3D sounds. This happens internally. The listener is automatically updated from the game’s control object.

Channels

To allow volume level adjustment to a whole batch of sounds, sounds are grouped into logical volume channels. Music can thus be separated from sound effects or voices and have its volume adjusted independently.

Volume channels are numbered from 0 onwards. There is a maximum of 32 channels. The core scripts currently define and use three separate channels (defined in core/scripts/client/audio.cs):

	$GuiAudioType = 1;

	Use for sounds relating to the interface.

	$SimAudioType = 2;

	Use for in-game sound effect and environmental sounds.

	$MessageAudioType = 3;

	Use for notifications (such as from chat) and possibly voices.

	$MusicAudioType = 4;

	Use for background music.

Note: The master volume set on the SFX system simultaneously scales all of the volume channels.

A set of SFXDescriptions preset to this set of channels is made available through core/scripts/client/audio.cs. These should best be used as copy-sources for custom SFXDescriptions.

	AudioGui

	AudioSim

	AudioMessage

	AudioMusic

Descriptions

Playback setups are described in SFXDescriptions. These are defined in art/datablocks/audioProfiles.cs. Some useful examples are below:

*3D Sounds
 o Single-Shot Sounds
 + AudioDefault3D
 # is3D = true
 # referenceDistance = 20.0
 # maxDistance = 100.0
 # channel = $SimAudioType
 + AudioClose3D
 # is3D = true
 # referenceDistance = 10.0
 # maxDistance = 60.0
 # channel = $SimAudioType
 + AudioClosest3D
 # is3D = true
 # referenceDistance = 5.0
 # maxDistance = 30.0
 # channel = $SimAudioType
 o Looping Sounds
 + AudioDefaultLoop3D
 # is3D = true
 # isLooping = true
 # referenceDistance = 20.0
 # maxDistance = 100.0
 # channel = $SimAudioType
 + AudioCloseLoop3D
 # is3D = true
 # isLooping = true
 # referenceDistance = 10.0
 # maxDistance = 60.0
 # channel = $SimAudioType
 + AudioClosestLoop3D
 # is3D = true
 # isLooping = true
 # referenceDistance = 5.0
 # maxDistance = 30.0
 # channel = $SimAudioType
*2D Sounds
 o Audio2D
 + channel = $SimAudioType

 o AudioStream2D
 + isStreaming = true
 + channel = $SimAudioType

 o AudioLoop2D
 + isLooping = true
 + channel = $SimAudioType

 o AudioStreamLoop2D
 + isLooping = true
 + isStreaming = true
 + channel = $SimAudioType

*Music
 o AudioMusic2D
 + isStreaming = true
 + channel = $MusicAudioType

 o AudioMusicLoop2D
 + isStreaming = true
 + isLooping = true
 + channel = $MusicAudioType

 o AudioMusic3D
 + isStreaming = true
 + is3D = true
 + channel = $MusicAudioType

 o AudioMusicLoop3D
 + isStreaming = true
 + isLooping = true
 + is3D = true
 + channel = $MusicAudioType

Configuring 3D Playback

There are multiple options available for configuring volume attenuation of 3D sounds on the device. The settings are exposed as script variables and must be set in script (either from the console or add them to scripts/client/prefs.cs).

$pref::SFX::distanceModel

The distance model determines the rolloff function for 3D sounds, i.e. the way the volume attenuates as you move away from a 3D sound. The chosen model affects distance attenuation of all 3D sounds. Currently, there are two models available:

“linear”

Starting from a sound’s reference distance, the volume fades linearly towards its set maximum distance at which point it reaches zero.

Notes:

	Linear rolloff is not supported with DirectSound.

	Linear rolloff is unaffected by the rolloff factor set on the device.

“logarithmic”

Starting from a sound’s reference distance, the volume halves every reference distance steps. This is the more realistic behavior for distance attenuation. In this model, the maximum distance only determines at which distance volume no longer decreases.

Instead, attenuation simply stops at the set maximum distance. Attenuation can be scaled by the rolloff factor to be faster or slower.

$pref::SFX::dopplerFactor

The doppler shift to apply to 3D sounds based on the relative velocity to the listener. Higher values give more pronounced doppler effects. Default is 0.5.

$pref::SFX::rolloffFactor

The rolloff factor scales the reference distance of a sound to determine how fast attenuation decreases a sound’s volume. At 1.0, every reference distance steps will halve the volume of a sound. At 0.5, every reference distance steps will have the quarter of the previous step’s volume.

Note: The rolloff factor only affects logarithmic distance attenuation.

Script Classes

SFXDescription

Description

SFXDescriptions tell the sound system how to play back a sound, i.e. they provide the parameters when setting up playback for a sound on the device.

Properties

	volume [float]: Base volume level for the sound. This will be the starting point for volume attenuation on the sound. Must be between 0 (min) and 1 (max). Default is 1.

	pitch [float]: Pitch scale. This speeds up or slows down playback. Must be greater than 0. Default is 1.

	isLooping [bool]: If true, the sound will be played in an endless loop. Default is false.

	isStreaming [bool]: If true, the sound will be progressively streamed; if false, the sound will be buffered in whole. Default is false.

	is3D [bool]: If true, the sound is positional and mixed according to its spatial properties. Default is false.

	referenceDistance [float]: Distance at which volume attenuation begins. Up to this distance, the sound retains its base volume. Also, in the exponential distance model, the reference distance determine how fast the sound volume decreases with distance. Each referenceDistance steps (scaled by the rolloff factor), the volume halves. A rule of thumb is that for sounds that require you to be close to hear them in the real world, set the reference distance to small values whereas for sounds that are widely audible set it to larger values. Only for 3D sounds.

	maxDistance [float]: The distance at which attenuation stops. In the linear distance model, the attenuated volume will be zero at this distance. In the logarithmic model, attenuation will simply stop at this distance and the sound will keep its attenuated volume from there on out. Only for 3D sounds.

	coneInsideAngle [float]: Specifies the angle of the inside cone in degrees. Valid values are from 0 to 360. Must be less than coneOutsideAngle. Default is 360. Only for 3D sounds.

	coneOutsideAngle [float]: Specifies the angle of the outside cone in degrees. Valid values are from 0 to 360. Default is 360. Only for 3D sounds.

	coneOutsideVolume [float]: Determines the volume scale factor applied to a source’s base volume level outside of the outer cone. In the outer cone, starting from outside the inner cone, the scale factor smoothly interpolates from 1.0 (within the inner cone) to this value. At the moment, the allowed range is 0.0 (silence) to 1.0 (no attenuation) as amplification is only supported on XAudio2 but not on the other devices. Only for 3D sound.

	channel [int]: Volume channel that the sound will get assigned to. The base volume level of the sound will be scaled by the channel’s volume level. Default is 0.

	fadeInTime [float]: Number of seconds to gradually fade in volume from zero when playback starts.

	fadeOutTime [float]: Number of seconds to gradually fade out volume to zero before playback stops.

	streamPacketSize [int]: Number of seconds of sample data to read per streaming packet. Only for streamed sounds and only when SFX’s own streaming system is used.

	streamReadAhead [int]: Number of stream packets to keep buffered ahead of time. A number of packets (usually three) will generally be kept immediately on the SFX device for playback. This number controls how many more packets are read ahead of time in addition to this. Higher numbers allow to better cope with lagging stream sources but for good resource consumption, this should be kept reasonably low. Only for streamed sounds and only when SFX’s own streaming system is used.

SFXProfile

Description

An SFXProfile combines a sound file with an SFXDescription that tells how to play back the sound. SFXProfiles are datablocks, so when you define server-side SFXProfiles use the datablock keyword. For client-side only profiles, use new or singleton.

For non-streamed sounds, the SFXProfile will keep a reference to the SFXBuffer on the device once the sound has been loaded. This will allow simultaneous playbacks of the same profile to share a single SFXBuffer. A profile’s sound will automatically reload when its file on disk changes. This will also update all sources that are currently using the profile.

By default, the sound data contained in an SFXProfile will be loaded into the SFX device when the sound is first played. This will incur a short delay on the first use. To load the sound data ahead of time independent on the first use, set the “preload” property to true. This will cause sound data to be loaded when the profile object is added to the system.

Once loaded, the sound data will remain loaded on the device until either the device is destroyed or the SFXProfile is deleted. Be aware that only non-streamed sounds may be preloaded. Streamed sounds always incur a certain loading delay. To ready a streamed sound for playback, attach and ready an SFXSource before playing the sound.

Properties

	filename [string]: The name of the file to load. It is usually best to omit extensions with sound filenames. This allows you to easily switch formats without having to change scripts. The SFX system will scan through its list of supported file formats (including extended formats supported by specific devices) to find the full filename.

	description [object]: The SFXDescription to use when playing back the sound.

	preload [bool]: If true, the sound file will be loaded into the SFX system as soon as the profile object gets added to Torque’s object graph. This helps ensure that sounds are immediately ready for playback when the profile is used. Be aware, though, that this will also result in immediate resource consumption on the SFXDevice. Preloading will not cause disruptions in the loading process as sound loading happens in the background. Only non-streamed sounds can be preloaded. This flag is ignored for streamed sounds. To load a streamed sound into ready state before playing, create an SFXSource for it.

Methods

float getSoundDuration(): Return the duration (in seconds) of the sound referenced by the profile.

SFXSource

Description

Central controller for sound playback. SFXSources control the playback of a particular SFXProfile or SFXStream. SFXSources can only be created through sfxCreateSource or the various sfxPlay functions.

SFXSources are explicitly created by the user through SFX functions and are valid until they are deleted. However, to reduce bookkeeping required for single-shot sounds, the system keeps a list of so called “play-once sources.” An SFXSource that is created as a play-once source will only be valid for as long as it is playing. When it has finished playing, it will be automatically deleted during the next SFX update.

Note that while permanent references to play-once sources should not be stored in script, a reference will not become invalid in-midst of script execution.

Markers are used for notifications that are triggered when playback crosses over a certain playback position. Each marker has a name and an associated playback position expressed in seconds. When playback crosses over the position, the “onMarkerPassed(%source, %markerName)” callback will be called on the source.

This is useful for synchronizing logic to music and sound effects. Currently, using setPosition() on a source will not prevent markers being jumped over from triggering. Instead, these markers will immediately trigger on the next source update.

Properties

	statusCallback [string]: Name of function to call when the status of the SFXSource changes. Must take two parameters “(object %source, string %newStatus)”. Default is empty which deactivates the callback. If this field is set, the source’s onStatusChange callback will not trigger.

Callbacks

These methods may be defined on SFXSources by the user and are called by the system on specific events.

	onMarkerPassed(object this, string name): Called when a notification marker has been passed by the playback cursor. “name” is the name of the marker.

	onStatusChange(object this, string newStatus): Called when the playback status of the source changes. Set getStatus() for the possible values for “newStatus”

Methods

	bool isReady(): Returns true when the source has successfully loaded all its sound data and is ready for playback.

	bool isPaused(): Returns true when the source is currently in paused state.

	bool isPlaying(): Return true when the source is currently playing. Even though a given SFXSource is in playing state, it will not emit sound data on the device if it is in blocked state (awaiting data from its SFXStream) or is in virtualized playback mode.

	bool isStopped(): Returns true when the source is currently stopped. Sources will start out in stopped state and will transition back into stopped state when they have finished playing.

	string getStatus(): Return the current playback status of the source. Possible values are:

	“playing”: source is currently playing

	“stopped”: source is not playing

	“paused”: source has been paused

	int getChannel(): Return the volume channel this SFXSource is assigned to.

	float getDuration(): Return the total playback time of the SFXSource’s associated sound in seconds.

	setTransform(vector pos, [vector direction]): Set the 3D position and optionally the direction of the SFXSource.

	setCone(float innerAngle, float outerAngle, foat outsideVolume): Set the 3D sound cone of the SFXSource.

	setVolume(float volume): Set the (unattenuated) volume of the SFXSource. Must be between 0 (min) and 1 (max).

	setPitch(float pitch): The frequency shift factor. A pitch of 1 plays back at the default frequency. A pitch of 0.5 of half the default frequency. The default frequency is the frequency of the source SFXStream.

	float getPosition(): Returns the current position of the play cursor in seconds.

	setPosition(float pos): Set the position of the play cursor in seconds.

	play([float fadeInTime]): Start or resume playback. If “fadeInTime” is given and is greater than 0, then the source will do a volume fade to its assigned volume in “fadeInTime” seconds. “fadeInTime” overrides a setting given in the SFXSource’s SFXDescription. If the sound referred to by the source is not yet fully loaded, there may be a delay before playback actually starts. If there are more active voices than supported by the current SFX device, one SFXSource (this or another one depending on which is deemed least important) will go into virtualized playback mode as a result of calling play().

	stop([float fadeOutTime]): Stop playback. If “fadeOutTime” is given and is greater than 0, then the source will do a volume fade to zero in “fadeOutTime” seconds and then stop. “fadeOutTime” overrides a setting given in the SFXSource’s SFXDescription.

	pause([float fadeOutTime]): Pause playback. If “fadeOutTime” is given and is greater than 0, then the source will do a volume fade to zero in “fadeOutTime” seconds and then pause. “fadeOutTime” overrides a setting given in the SFXSource’s SFXDescription.

	addMarker(string name, float pos): Add a marker called “name” at “pos” seconds into playback. If playback passes the given position, the “onMarkerPassed” callback will trigger.

SFXEmitter

Description

An SFXEmitter is a 3D object that emits sound. It has no visible representation (except within the editor), but does have a true location and velocity in 3D world space. Even though an SFXEmitter is an object in 3D space, it need not necessarily emit a 3D sound. It can also emit non-positional 2D sounds.

This is useful for placing background music in a level. There are two ways to set up an SFXEmitter:

	
	through a predefined SFXProfile (“profile” property)

	
	plays the sound specified by the profile

	uses the profile’s SFXDescription

	some of the emitter’s properties override the settings in the profile’s SFXDescription (see documentation below)

	
	directly through a sound file (“fileName” property)

	
	uses the properties on the emitter to set up a custom SFXDescription

Setting a “profile” will take precedence over setting a “fileName”. Currently it is not possible to have an emitter go through a list of sounds (at least not without scripting).

Properties

	profile [SFXProfile]: The sound profile to play on this emitter. Either use this or “fileName” to set the sound to play. This field will take precedence over “fileName”.

	fileName [FileName]: The sound file to play on this emitter.

	playOnAdd [bool]: If true, playback will be immediately started when the emitter is added to the scene. Applies regardless of whether “profile” or “fileName” is used.

	isLooping [bool]: If true, the emitter’s sound will loop infinitely. Only applies when using “fileName”. For “profile”, the profile SFXDescription’s “isLooping” value is used.

	isStreaming [bool]: If true, the sound will use streamed playback. Only applies when using “fileName”. For “profile”, the profile SFXDescription’s “isStreaming” value is used.

	channel [int]: The volume channel to play the sound in. Only applies when using “fileName”. For “profile”, the profile SFXDescription’s “channel” value is used.

	volume [float]: The base (unattenuated) volume at which to play the sound. Applies to both “profile” and “fileName”. Must be between 0 (min) and 1 (max).

	pitch [float]: The frequency shift factor at which to play back the sound. Must be greater than 0. Applies to both “profile” and “fileName”.

	fadeInTime [float]: Time in seconds to fade volume from zero to full intensity when starting/resuming playback. Must be greater or equal to 0. Only applies when using “fileName”. For “profile”, the profile SFXDescription’s “fadeInTime” value is used.

	fadeOutTime [float]: Time in seconds to fade volume out to zero before stopping/pausing playback. Must be greater or equal to 0. Only applies when using “fileName”. For “profile”, the profile SFXDescription’s “fadeOutTime” value is used.

	is3D [bool]: If true, the sound will be positional. Only applies when using “fileName”. For “profile”, the profile SFXDescription’s “is3D” value is used.

	referenceDistance [float]: The distance at which to start distance-based volume attenuation. Only applies to 3D sounds. Applies to both “profile” and “fileName”.

	maxDistance [float]: The distance at which to stop distance-based volume attenuation. Only applies to 3D sounds. Applies to both “profile” and “fileName”.

	coneInsideAngle [int]: Inside 3D cone angle in degrees. Must be between 0 (min) and 360 (max). Only applies to 3D sounds. Applies to both “profile” and “fileName”.

	coneOutsideAngle [int]: Outside 3D cone angle in degrees. Must be between 0 (min) and 360 (max). Only applies to 3D sounds. Applies to both “profile” and “fileName”.

	coneOutsideVolume [float]: Volume scale factor outside 3D cone. Must be between (0) (min) and 1 (max). Only applies to 3D sounds. Applies to both “profile” and “fileName”.

Methods

	play(): Sends network event to start playback of the emitter (if not already playing). If called on the client (the ghost), will immediately trigger playback.

	stop(): Sends network event to stop playback of the emitter (if not already stopped). If called on the client (the ghost), will immediately stop playback.

	string getPlaybackStatus(): Returns the playback status of the emitter. See SFXSource.getStatus(). If called on a server-side SFXEmitter, the emitter’s client-side object (ghost) object on the local client connection will be queried.

	bool isInRange(): Returns true if the SFX listener (local connection’s control object) is currently within the max range of the emitter.

Script Functions

Device Management

Before sound playback functions can be used, a valid sound device must be created through one of the given sound providers. When using the standard game/core/ scripts, this is automatically taken care of during engine startup.

	vector sfxGetAvailableDevices(): Returns a vector that describes each of the available devices. Individual devices are separated by newlines and individual properties of devices are separated by tabs.

	bool sfxCreateDevice(string provider, string device, bool useHardware, int maxBuffers): Try to create a new sound device using the given properties. This function must be called before any of the sound playback functions can be used. If there currently is an active device, it will be deleted automatically. Returns true if the operation succeeded and the device has been created.

Each device entry has the following properties (in the order they appear in the vector):

	providerName [string]: The name of the sound provider (e.g. “FMOD”)

	deviceName [string]: The name of the device made available by the provider.

	hasHardware [bool]: If true, the device has support for mixing in hardware.

	maxBuffers [int]: Maximum number of concurrent buffers supported by the device, i.e. the maximum number of concurrently audible voices. If this is exceeded, playback virtualization will kick in and distribute the available voices across the playing sounds.

In the game/core scripts, sound is automatically set up during startup in the sfxStartup() function. Sounds that are playing while the sound device is being changed will be temporarily transitioned to virtualized playback and then resume normal playback once the new device has been created.

	sfxDeleteDevice(): Delete the currently active sound device and release all its resources. In the core scripts, this is done automatically for you during shutdown in the sfxShutdown() function. SFXSources that are still playing will be transitioned to virtualized playback mode. When creating a new device, they will automatically transition back to normal playback.

	vector sfxGetDeviceInfo(): Return information about the currently active sound device. The return value is a tab-delimited string containing the following properties (in the order they appear in the vector):

	providerName [string]: Name of the sound provider that supplies the device (e.g. “FMOD”).

	deviceName [string]: Name of the device on the provider.

	usesHardware [bool]: If true, device is set up to use hardware mixing.

	maxBuffers [int]: Maximum number of concurrent voices the device is configured to use.

Configuration

	float sfxGetMasterVolume(): Return the system master volume. This volume level scales the volume of all independent volume channels simultaneously. Default is 1.

	sfxSetMasterVolume(float volume): Set the system master volume. Must be between 0 (min) and 1 (max). This will affect all currently active sounds.

	float sfxGetChannelVolume(int channel): Return the volume level of the given channel. Will be between 0 and 1. Default is 1.

	sfxSetChannelVolume(int channel, float volume): Set the volume level of the given channel. Must be between 0 (min) and 1 (max). This will affect all sounds currently playing on that channel.

	string sfxGetDistanceModel(): Return the name of the distance model currently used for distance attenuation of 3D sounds. Currently, this is either “linear” or “logarithmic”. Default is set by “$pref::SFX::distanceModel”. If unset, the linear distance model is used.

	sfxSetDistanceModel(string model): Set the distance model to use for distance attenuation of 3D sounds. Must be either “linear” or “logarithmic”. This will affect the volume attenuation of all currently active 3D sounds.

	float sfxGetDopplerFactor(): Return the factor applied to doppler effects on 3D sounds. Default is set by “$pref::SFX::dopplerFactor”. If unset, default is 0.5.

	sfxSetDopplerFactor(float factor): Set the factor to apply to doppler effects on 3D sounds. Set to zero to turn off pitch shifting caused by the Doppler Effect. The higher the value, the more pronounced the Doppler Effect will be.

	float sfxGetRolloffFactor(): Get the scale factor applied to distance attenuation curves of 3D sounds in the logarithmic distance model. Default is taken from “$pref::SFX::rolloffFactor”. If unset, default is 1.0, i.e. no scaling.

	sfxSetRolloffFactor(float factor): Set the scale factor to apply to distance attenuation curves of 3D sounds in the logarithmic distance model. Values greater than 1 cause volume to decrease faster with distance where as values less than 1 cause volume to decrease slower. A value of 0 will disable distance attenuation. Factor must be greater or equal to 0.

Playback

	SFXSource sfxCreateSource(SFXProfile profile [, float x, float y, float z]): Create a new SFXSource that plays the given profile. If coordinates are given, the source will be placed at the given position (though only if the given profile contains a 3D sound). The source will initially be in “stopped” state. If the sound contained in the profile has not yet been loaded, this will be initiated in the process.

	SFXSource sfxCreateSource(SFXDescription description, string filename [, float x, float y, float z]): Create a temporary SFXProfile using the given description and filename and then create a new SFXSource that plays the profile. If coordinates are given, the source will be placed at the given position (though only if the description has is3D set to true). The source will initially be in “stopped” state. Loading of the given file will be initiated in the process.

	SFXSource sfxPlay(SFXSource source): Start playing the given SFXSource. This is the same as calling the play() method on the SFXSource directly. Returns source or null on failure.

	SFXSource sfxPlay(SFXProfile profile [, float x, float y, float z]): This is the same as calling sfxPlayOnce() with the given parameters.

	SFXSource sfxPlayOnce(SFXProfile profile [, float x, float y, float z]): Create a play-once SFXSource using the given profile and start playing it. The SFXSource will only be valid for as long as playback is running. If coordinates are given, the SFXSource will be placed at the specified position (only if the profile contains a 3D sound). The SFXSource will return in “playing” state. Returns a handle for the temporary SFXSource or null on failure.

	SFXSource sfxPlayOnce(SFXDescription description, string filename [, float x, float y, float z]): Creates a temporary SFXProfile with the given description and filename and then instantiates a new play-once SFXSource playing the profile. The SFXSource will be valid only for as long as playback is running. If coordinates are given, the SFXSource will be placed at the specified position (only if the given SFXDescription has is3D set to true). The SFXSource will return in “playing” state. Returns a handle for the temporary SFXSource or null on failure.

	sfxStop(SFXSource source): Stop playing the given SFXSource. This is the same as calling the stop() method directly on the SFXSource.

	sfxStopAll(): Call stop() on all SFXSources that are currently playing.

Misc

	sfxDumpSources(): Print a detailed rundown on all currently instantiated SFXSources to the console.

Conclusion

This interface guide covers everything you will need to know about using Torque 3D’s stock sound effect system (SFX).

Internals

SFXBuffer

Objects of this class hold sound data on the sound device. Buffers will be deleted when no longer used but will also be freed when the device is destroyed. Use StrongWeakRefPtrs to permanently refer to SFXBuffers so that references will null out when the buffer goes away.

Loading and updating of sound buffers happens on dedicated SFX update threads created by the individual devices. For devices that do not create such a thread, updating will happen on the main thread; this, however, is currently only used by the Null device.

Buffers hold raw, uncompressed PCM sample data loaded from SFXStreams. SFXBuffers for normal, buffered playback will be loaded once in entirety and may then be used by an arbitrary number of SFXVoices for concurrent playback.

SFXBuffers for streamed playback will be loaded progressively in the background and are tied to a single unique SFXVoice.

Important: Do not use delete directly on an SFXBuffer. Instead call destroySelf() on the buffer to delete it. Buffers may have pending asynchronous operations that need to flush out first before the buffer can actually be deleted.

SFXVoice

This is an abstract base class for objects on the sound device that the control playback of a particular SFXBuffer. Usually, a device will limit the number of concurrent sound playbacks it supports. SFXVoices follow the same lifecycle as SFXBuffers. An SFXVoice should never be directly deleted by clients. Leave lifetime management to reference-counting.

An SFXVoice promoted to playing state when its attached SFXBuffer has not yet fully loaded will temporarily transition into SFXStatusBlocked to indicate that playback can’t progress. This will also happen for streamed sounds when the playback cursor is outrunning the stream feed.

SFXStream

Abstract base class for reading raw PCM sample streams. Instances of subclasses will be used for all sound loading that goes through SFX’s own loading system (in contrast to sound loading happening directly through the sound API in use). Both buffered and streamed sounds are loaded through SFXStreams.

SFXStreams are used concurrently from multiple threads and are concurrently reference-counted to ensure proper and safe reclamation. For an SFXStream to support seeking in combination with streamed playback, it must implement cloning through the clone() method.

Streamed playback that also loops will require the attached SFXStream to properly reset().

SFXFileStream

This is the abstract base class for specific file format loaders.

SFXResource

Thin wrapper that represents as sound file on disk. Performs a header read on the file to detect SFXFormat characteristics. Does not keep actual sound data.

SFXDevice

Abstract base class for SFX implementations against particular sound APIs. Manages SFXVoices and SFXBuffers as the primary sound device resources. The lifetimes of all sound resources are bound to their respective SFXDevice. Only one SFXDevice will ever be instanced at any one point.

SFXProvider

Abstract base class for objects that manage device creation on particular sound APIs. There is one SFXProvider per supported sound API. SFXProviders have no responsibilities besides enumerating, querying, and creating SFXDevices

SFXSystem

Singleton class that defines the central hub for the sound system. Exposes the high-level interface of the system. Manages SFXSources and the current SFXDevice instance. Exposes global SFX parameters.

SFXSystem::_update() is called from the main game loop to periodically update the SFXSources in the system. Play-once source that have stopped playing will purged in the process. Sound loading, however, is usually handled on a dedicated thread rather than on the main thread.

Conclusion

You typically will not be working directly with the SFX internals, unless you are heavily extending the SFX system. This guide was meant to show you the major internal classes that drive the SFX system. Continue reading to learn about common tips, troubleshooting, and the conclusion of the SFX system documentation.

Conclusion

How Do I…

… convert to/from OGG?

For Windows, a neat little tool is oggdropXPd. It converts to and from OGG using various formats and has an interface as straightforward as it gets.

	http://www.rarewares.org/ogg-oggdropxpd.php

… see how the system is used. Is there an example I can look at?

A simple example of how to use the system can be found in the form of the GuiMusicPlayer control found in core/scripts/gui/guiMusicPlayer.cs.

… create 5.1 or 7.1 surround sound?

This is done by the mixer of the sound device you are using. This mixer will take all the active sound voice (2D and 3D) and mix their audio signals down into a number of output channels. In plain stereo playback, this will be two channels: a left one and a right one.

With surround systems, a corresponding number of output channels are fed by the mixer. Note, however, that in order to get surround effects in your game, you need to properly set up 3D sounds.

… play background music?

One way is to place an SFXEmitter in your level and let it stream a 2D looping music track.Another way is to manually trigger playback directly from script.

… tune stream buffering?

If you experience lag and interruptions with stream sources, set the streamPacketSize and streamReadAhead properties in SFXDescriptions such that more data is buffered in advanced. Be careful with streamPacketSize as it directly affects buffer metrics on the device as well as the time spend on each individual I/O operation.

To directly modify queue length on devices, adjust the following in the engine code:

SFXInternal::SFXAsyncQueue::DEFAULT_STREAM_QUEUE_LENGTH

This will not affect streaming happening directly on the device (FMOD currently).

… stream custom audio data?

One way is to derive a class from SFXStream to use it to write the sample data to the audio buffers. SFXSystem::createSourceFromStream() can be used here to create an SFXSource from just a plain SFXStream and an SFXDescription.

Another way is to create and feed an SFXPacketStream which consumes raw, uncompressed sample data in discrete packets and writes them to the consumer audio buffer as needed. Use the same SFXSystem::createSourceFromStream() method to create an SFXSource to control playback.

… add support for a new audio format?

Derive a class from SFXFileStream and register your extension(s) through SFXFileStream::registerExtension() in SFXSystem::init(). Look at SFXWavStream and SFXOggStream for examples.

… monitor the status of the SFX system?

se the “sfx” metrics, for example, by typing ‘metrics(“sfx”);’ in the console. This display various live statistics for the SFX system. To see a detailed listing of all current SFXSources, use “sfxDumpSources”.

… play multiple sounds in random/sequential order on an SFXEmitter?

Currently, this is not possible without custom scripting. The next revision of SFX will, however, include playlist support across all devices.

Troubleshooting

I am hearing 3D sounds outside of their set maximum range. How can I fix this?

You are probably using the logarithmic distance model. This is where sounds are not cut off at their maximum distance, but rather retain the attenuated volume that is greater than the specified max distance. To make sounds fade out in time, use proper settings for the min and max distance. Also, to speed up or slow down overall volume falloff with distance, increase or decrease the 3D rolloff factor.

My sounds start with a delay. What is wrong?

The delay is due to the sound taking a certain time to load. Generally, make sure that either sound data is available before starting playback or that a short delay is not relevant for a given sound.

I’m seeing an error in the console.log that says “SFXFMODProvider - Could not locate the <fmod.dll>”. What is wrong?

This only means that the FMOD sound provider cannot find the FMOD DLL. If you do not want to use FMOD, then simply ignore this message. Otherwise, make sure to copy the FMOD DLL (fmodex.dll on Windows; fmodex.dylib on Mac) to the same folder as your game executable. This message should then disappear the next time you start Torque.

To download FMOD, visit the FMOD homepage. To purchase a very friendly priced indie license of FMOD for your game, visit the Torque store.

	http://www.fmod.org/

	http://www.garagegames.com/products/fmod

I’m seeing crashes with XAudio. What can I do?
Head over to Torque 3D Private forum and post a bug report. Our SFX developer will be around to look into the issue.

	http://www.garagegames.com/community/forums/63

Best Practices

Preload or not?

Anything that is used often should be preloaded. Rarely used sounds for which it is okay to start with a short delay need not be preloaded. Streamed sounds cannot be preloaded (create an SFXSource if you want to ready them before playing).

Lifetimes of SFXProfiles

Scope the lifetimes of SFXProfiles to where they are actually used. Generally, don’t put all of the sounds of your game together as one batch of SFXProfiles. Once its sound data has been loaded, an SFXProfile for non-streamed sounds will consume resources on the SFX device.

Ambient sounds, for example, that are not used in a particular level need not have their SFXProfiles loaded. However, sounds that are used in any level in the game are better loaded once at startup. For server-side profiles, use the datablock keyword whereas for client-side profiles, use new or singleton.

Stream or not?

Stream music/ambient sounds, don’t stream effects. Generally WAVs over ~700kb and OGGs over 200k should be streamed.

Conclusion

This concludes the SFX documentation for Torque 3D. If you wish to learn more about the system, this is a good time to browse the demos provided with Torque 3D and see how they are used. Additionally, the system is very well commented in the engine code and will contain more detailed information on a per-line basis.

Lighting

	Lighting Overview
	Introduction

	Basic Light Manager

	Advanced Light Manager

	The LightInfo Class

	The LightInfoEx Class

	SceneLightingInterface

	AvailableSLInterfaces

	The ShadowManager Base Class

	The ShadowMapManager Class

	Lighting Source Code Tour
	Introduction

	The Lighting Core

	Basic Lighting

	Advanced Lighting

	Common Lighting Classes

	Shadow Maps

	Using the LightManager Class
	Introduction

	Example Uses

	Compatibility

	Activating and Deactivating the LightManager

	Using the Active LightManager

	AdvancedLightManager

	BasicLightManager

	LightManager

	BasicLightManager

	AdvancedLightManager

	ShadowManager

	ShadowMapManager

	LightInfo

Lighting Overview

Introduction

The lighting system in Torque3D is set up to support Shader Model 1.0 as a minimum. While the more advanced features will requires Shader Model 3.0, this will provide a balance between users with older and newer graphics cards. The lighting system provides for the use of shadow mapping techniques and deferred rendering.

This guide will give you a detailed analysis of the classes that create the functionality of Torque 3D’s lighting system while showing you how some of them are used. In addition to the Source Code Tour (Lighting Source Code Tour - TODO Internal Link) and Light Manager Usage (Using the LightManager Class - TODO Internal Link), there are detailed function definitions for the following classes.

Basic Light Manager

The Basic Light Manager (class BasicLightManager) requires that the graphics card have at least Shader Model 1.0. It is an override of the abstract class LightManager to provide a simple lighting solution to lower end graphics cards. Although it is targeted to lower end graphics cards, it does still support shadowing techniques.

Advanced Light Manager

The Advanced Light Manager (class AdvancedLightManager) requires that the graphics card support at least Shader Model 3.0. Much like the BasicLightManager, it is an override of the abstract class LightManager, however, it will provide a more sophisticated lighting solution for higher end graphics cards. The Advanced Light Manager supports multiple adaptations of shadow mapping techniques such as Dual Paraboloid and Cube Shadow maps.

The LightInfo Class

This is the base light information class that will be tracked by the engine. It basically contains a bounding volume and methods to interact with the rest of the system (for example, setting the GFX fixed function lights).

The LightInfoEx Class

This is the base class for extended lighting info that lies outside of the normal info stored in LightInfo. An example of where this class will be used is for creating LightMapParams and ShadowMapParams.

SceneLightingInterface

The SceneLightingInterface object is responsible for returning PersistChunk and ObjectProxy classes for the lighting system to use. The SceneLightingInterface is used by the AvailableSLInterfaces to register systems to itself, such as “class blInteriorSystem”.

AvailableSLInterfaces

AvailableSLInterfaces makes use of the SceneLightingInterface to register lighting interfaces. By default, the BasicLightManager will register an instance of the “blInteriorSystem” and “blTerrainSystem” in its constructor.

The ShadowManager Base Class

The ShadowManager is a base class to be extended later by a more sophisticated shadow manager, such as the class ShadowMapManager. While the ShadowManager does not currently contain any pure virtual functions, creating an instance of ShadowManager will not manage any shadows.

The ShadowMapManager Class

The ShadowMapManager is a full extension of the ShadowManager where the SceneManager will be notified to add the rendering function (“_onPreRender”) to its list. The rendering function will then call the render function from its currently set shadow map pass.

Lighting Source Code Tour

Introduction

This document will explain the source code folders and files that make up Torque 3D’s lighting system.

The Lighting Core

You can find the core Lighting files in engine/lighting. Most of the classes in these files will be derivatives of more sophisticated types. For example, the class LightManager from engine/lighting/lightManager.h is the derivative of AdvancedLightManager from engine/lighting/advanced/advancedLightManager.h.

Key Classes

	LightInfoEx : Located in engine/lighting/lightInfo.h

This is the base class for extended lighting info that lies outside of the normal info stored in LightInfo.
* LightInfo : Located in engine/lighting/lightInfo.h
This is the base light information class that will be tracked by the engine. Should basically contain a bounding volume and methods to interact with the rest of the system.
* ISceneLight : Located in engine/lighting/lightInfo.h
When the scene is queried for lights, the light manager will get this interface to trigger a register light call.
* AvailableSLInterfaces : Located in engine/lighting/lightingInterfaces.h
List of available “systems” that the lighting system can use.
* LightManager : Located in engine/lighting/lightManager.h
This is the base class for extending a lighting manager to support lighting features.
* ShadowManager : Located in engine/lighting/shadowManager.h
This is the base class for extending a shadow manager to support more advanced shadowing techniques such as shadow maps.

Basic Lighting

The basic lighting system that is created in Torque3D requires at least Shader Model 1.0. Much like the advanced lighting code, the basic lighting system is an override of already created classes from the lighting core (engine/lighting) that resides in engine/lighting/basic.

Key Classes

	BasicLightManager : Located in engine/lighting/basic/basicLightManager.h

The BasicLightManager is an override of the LightManager that will provide a lighting system for low end cards, it only requires shader model 1.0.

	BasicSceneObjectLightingPlugin : Located in engine/lighting/basic/BasicSceneObjectLightingPlugin.h

A BasicSceneObjectLightingPlugin is an override of the SceneObjectLightingPlugin that is used by the BasicLightManager during it’s _onPreRender function for updating shadow plugins.

Advanced Lighting

Torque3D takes advantage of Shader Model 3.0 to allow advanced lighting technqiues. The source code in engine/lighting/advanced is an override of already created classes from the lighting core (engine/lighting) to implement these techniques.

Key Classes

	
	AdvancedLightingFeatures : Located in engine/lighting/advanced/advancedLightingFeatures.h

	The AdvancedLightingFeatures class provided static methods for registering and unregistering features to the Feature Manager (FeatureMgr). When the function registerFeatures is scalled it will features related to lighting based upon the GFXFormat passed into the function. These features are defined in “Engine/source/materials/materialFeatureTypes.h” and have the prefix “MFT_”.

	
	AdvancedLightManager : Located in engine/lighting/advanced/advancedLightManager.h

	The AdvanceLightManager is an override of LightManager that provides a setup for the deferred rendering system. AdvanceLightManager requires at least shader model 3.0.

Common Lighting Classes

Common is a place where classes that do not particularly fit in one designated area, such as advanced or lighting. The are not considered core classes of the lighting system either. In here you will find classes that will be used to assist in implementing features for the lighting system.

Key Classes

	ShadowBase : Located in engine/lighting/common/shadowBase.h

The ShadowBase class is an abstract class containing all pure virtual functions that will be overwritten by the shadow technique using them.

	BlobShadow : Located in engine/lighting/common/blobShadow.h

A BlodShadow is one of the basic ways you may use the ShadowBase class. The BlobShadow is just a shadow based upon a radius.

	LightMapParams : Located in engine/lighting/common/lightMapParams.h

The LightMapParams is an override of the LightInfoEx from the lighting core. Most “LightShadowMap” based classes will use LightMapParams in their render function to determine if it should use light mapped geometry. As LightMapParams are a super class of LightInfoEx, they will be grabbed by LightInfo’s “getExtended” function as a parameter type.

Shadow Maps

There are a wide range of shadow maps available in Torque3D, such as the Paraboloid Shadow Map. This folder contains a common base class for many shadow maps to override (LightShadowMap) and also an override of the ShadowManager class from the lighing core folder that is named “ShadowMapManager”.

Key Classes

	ShadowMapManager : Located in engine/lighting/shadowMap/shadowMapManager.h

The ShadowMapManager is used to render a shadow map pass via its onPreRender function that is triggered by a signal of the SceneGraph.

	LightShadowMap : Located in engine/lighting/shadowMap/lightShadowMap.h

Represents everything Torque 3D needs to render a shadow map for one light.

	DualParaboloidLightShadowMap : Located in engine/lighting/shadowMap/dualparaboloidLightShadowMap.h

The DualParaboloidLightShadowMap class uses the Dual Paraboloid shadow mapping technique and is an override of the ParabolidLightShadowMap class, which is an override of the LightShadowMap.

Using the LightManager Class

Introduction

The LightManager is one of the most comprehensive classes in the lighting system. LightManager is defined as a singleton and provides the user with the ability to register global lights, compute static lighting, register special types of lights and return the active LightManager. The active LightManager can be accessed at any time via the static function “getActiveLM”, or with the #define “LIGHTMGR”. Even though it has a wealth of functionality, on its own it can not operate and is the base class to BasicLightManager and AdvancedLightManager. It contains four key functions that need to be overridden for its subclasses to be initialized:

bool isCompatible() const

Should return true if this light manager is compatible with the current platform and GFX device:

void setLightInfo(ProcessedMaterial *pmat, const Material *mat, const SceneGraphData &sgData,
const SceneState *state, U32 pass, GFXShaderConstBuffer *shaderConsts)

Sets shader constants / textures for LightInfo’s:

void setTextureStage(const SceneGraphData &sgData, const U32 currTexFlag, const U32 textureSlot,
GFXShaderConstBuffer *shaderConsts, ShaderConstHandles *handles)

Allows he ability to set textures during the Material::setTextureStage call, return true if it has done work:

void _addLightInfoEx(LightInfo *lightInfo)

Attaches any LightInfoEx data for the light manager to the light info object.

Example Uses

The Sun class will need to have a LightInfo object created for it. As a result, in its constructor it will create a LightInfo object by calling the static function createLightInfo(LightInfo *) to allocate a new lightInfo object for its use. Inside of the LightManager::createLightInfo(LightInfo *) function the allocated LightInfo will then be added to all of the LightManager’s currently allocated light objects by traversing the LightManagerMap returned by the member function _getLightManagers(). Finally, the function will return the pointer to the allocated LightInfo object that is created.

After the Sun class creates the light info via “LightManager::createLightInfo()” the last thing it will do is set the type of light that it is (with LightInfo::setType). It sets the type to “LightInfo::Vector”, or commonly referred to as “directional”.

Other examples of classes using createLightInfo are the following. If the type of light is not specified after the LightInfo is created, it is “vector” by default.

	class Projectile

Sets the type to LightInfo::Point

	class Explosion

Does not set a LightInfo after it is created in the constructor, so by default it users Point::Vector. However, later in the “Explosion::onAdd” function it will set the type to a LightInfo::Point if the Explosion’s internal information calls for it.

	class ScatterSky

Will set the type to LightInfo::Vector

Compatibility

As mentioned in the section above, the LightManager contains the pure virtual function “bool isCompatible()”, which is basically self explanatory. If the subclass detects that the graphics card does not meet the requirements that it needs, it will return false. This compatibility function will be called when a light manager is assigned to the SceneGraph. When the isCompatible function is called via “bool SceneGraph::_setLightManager” and it detects that the function did not return true, it will not assign the LightManager to the SceneGraph.

Activating and Deactivating the LightManager

The LightManager will provide the function “activate” that can be overridden by its subclasses, however, the subclasses should call the LightManager::activate function from any override that is written. The activate function will ensure that the SceneManager passed in is valid, the light manager currently is not active and that no other light manager is active.

Using the Active LightManager

The active LightManager is available throughout the code base via the static function “LightManager *getActiveLM()”, or the most commonly used #define “LIGHTMGR”. The LIGHTMGR definition is used throughout the code base to utilize the fact that the LightManager is defined as a singleton.

Example Uses:

WaterBlock::setupVertexBlock(U32, U32, U32)

WaterBlock uses LIGHTMGR to retrive the Sun light and obtain the direction it is pointing at:

CloudLayer::renderObject(ObjectRenderInst *, SceneState *, BaseMatInstance *)

CloudLayer uses LIGHTMGR during rendering to help obtain the ambient color of the sun:

GuiObjectView::renderWorld(const RectI&)

GuiObjectWorld uses LIGHTMGR to unregister all of the lights via “LIGHTMGR->unregisterAllLights()”.

AdvancedLightManager

The AdvancedLightManager is a singleton, meaning that there is always an instance available to grab and that the class is created at the runtimes initialization. In addition to overriding the pure virtual functions from its base class, LightMananger, it will override the activate and deactivate functions. It will also overrides the way global lights are registered and unregistered. As previously mentioned in the Overview section, the AdvancedLightManager requires the graphics card to support shader model 3.0. Additional functionality over the base LightManager is the ability to look for a LightShadowMap per SimObject (if the object can cast to an ISceneLight properly).

BasicLightManager

The BasicLightManager at its base is like the AdvancedLightManager, meaning that it is a singleton, that there is always an instance available, and that the object is created at the runtime’s initialization. In addition to overriding the pure virtual functions from its base class, LightMananger, it will override the activate and deactivate functions. It will also create the static method “getShadowFilterDistance” to help filter out shadows. For an example of this, take a look at the function “ProjectedShadow::_renderToTexture”.

LightManager

LightManager Class Reference

	
lightScene(const char *, const char *)

	Will generate static lighting (aka lightmaps) for the scene if supported by the active light manager. If mode is “forceAlways”, the lightmaps will be regenerated regardless of whether lighting cache files can be written to. If mode is “forceWritable”, then the lightmaps will be regenerated only if the lighting cache files can be written.

Syntax:

lightScene(const char* callback, const char* param)

	Parameters

	
	callback – The name of the function to execute when the lighting is complete.

	param – Either “forceAlways” or “forceWritable”.

	Returns

	bool Returns true if the scene lighting process was started.

Examples:

// Get the sunlight.
LightInfo *sunLight = mLightManager->getSpecialLight(LightManager::slSunLightType);

	
getSceneLightingInterface()

	Will return the AvailableSLInterfaces for the LightManager, if there is no available lighting system then it will create a new AvailableSLInterfaces and then return that.

Syntax:

getSceneLightingInterface()

	Returns

	LightInfo * The LightInfo * of the special light.

Examples:

// From PersistInfo::read
SceneLightingInterfaces sli = LIGHTMGR->getSceneLightingInterface()->
mAvailableSystemInterfaces;

	
_update4LightConsts(const SceneGraphData &sgData, GFXShaderConstHandle *, GFXShaderConstHandle *, GFXShaderConstHandle *, GFXShaderConstHandle *, GFXShaderConstHandle *, GFXShaderConstHandle *, GFXShaderConstBuffer *)

	Will update the shader constants of GFXShaderConstBuffer * depending on the validity of the GFXShaderConstHandle *’s passed in.

Syntax:

update4LightConsts(const SceneGraphData &sgData, GFXShaderConstHandle *lightPositionSC, GFXShaderConstHandle *lightDiffuseSC, GFXShaderConstHandle *lightAmbientSC, GFXShaderConstHandle *lightInvRadiusSqSC, GFXShaderConstHandle *lightSpotDirSC, GFXShaderConstHandle **lightSpotAngleSC, GFXShaderConstBuffer *shaderConsts)

	Parameters

	
	sgData – The scene graph data related to how the lights will be used.

	lightPositionSC – The shader constant for the position paramter.

	lightDiffuseSC – The shader constant for the diffuse paramter.

	lightAmbientSC – The shader constant for the ambient paramter.

	lightInvRadiusSqSC – The shader constant for the light inverse radius paramter.

	lightSpotDirSC – The shader constant for the spot light direction paramter.

	lightSpotAngleSC – The shader constant for the spot light angle paramter.

	shaderConsts – The shader consts for the buffer.

	Returns

	no return value.

Examples:

// From AdvancedLightManager::setLightInfo
// Update the forward shading light constants.
_update4LightConsts(sgData,
 lsc->mLightPositionSC,
 lsc->mLightDiffuseSC,
 lsc->mLightAmbientSC,
 lsc->mLightInvRadiusSqSC,
 lsc->mLightSpotDirSC,
 lsc->mLightSpotAngleSC,
 shaderConsts);

	
getAllUnsortedLights(Vector *)

	Will append all of the registered lights to the “Vector *” variable passed in.

Syntax:

getAllUnsortedLights(Vector *list)

	Parameters

	list – A vector of “LightInfo” pointers that will have the registered lights added to it.

	Returns

	no return value.

Examples:

// From SceneLighting::light
LIGHTMGR->getAllUnsortedLights(&mLights);

	
unregisterAllLights()

	Will clear out all of the special lights and registered lights.

Syntax:

unregisterAllLights()

	Returns

	no return value.

Examples:

// Unregister all the lights in the light manager.
LIGHTMGR->unregisterAllLights();

	
unregisterLocalLight(LightInfo *)

	Empty function.

Syntax:

Not used.

	Returns

	no return value.

Examples:

None.

	
registerLocalLight(LightInfo *)

	Empty function.

Syntax:

Not used.

	Returns

	no return value.

Examples:

None.

	
unregisterGlobalLight(LightInfo *)

	Will remove the passed in light from the registered lights. If the light passed in is the sun, then it will clear the suns special light also.

Syntax:

unregisterGlobalLight(LightInfo *light)

	Parameters

	light – The light to be registered from mRegisteredLights.

	Returns

	no return value.

Examples:

lightManager->unregisterGlobalLight(mLight);

	
registerGlobalLight(LightInfo *, SimObject *)

	If the light is not already registered, then the light will be added to the registered lights. If it already added, a AssertFatal will be thrown.

Syntax:

registerGlobalLight(LightInfo *light, SimObject *obj)

	Parameters

	
	light – The light to be registered to mRegisteredLights.

	obj – Not used.

	Returns

	no return value.

Examples:

// From inside of Item::registerLights
lightManager->registerGlobalLight(mLight, this);

	
registerGlobalLights(const Frustum *, bool)

	Register the lights depending if there is a Frustum or if there is static lighting. If there is no frustum or there is static lighting, then there will be no light culling. If there is a frustum or there is no static lighting, then cull the lights using the frustum.

After the decision for light culling or not, it will have the lights register themselves.

Syntax:

registerGlobalLights(const Frustum *frustum, bool staticLighting)

	Parameters

	
	frustrum – The frustum to be used for light culling.

	staticLighting – Whether or not static lighting is being processed.

	Returns

	no return value.

Examples:

// Get the lights for rendering the scene.
LIGHTMGR->registerGlobalLights(&sceneState->getFrustum(), false);

	
setSpecialLight(LightManager::SpecialLightTypesEnum, LightInfo *)

	Register the light with the LightManager and set the light to one of the special light types for the LightManager.

Syntax:

setSpecialLight(LightManager::SpecialLightTypesEnum type, LightInfo *light)

	Parameters

	
	type – The special light type.

	light – The light to apply the type to.

	Returns

	no return value.

Examples:

// Set the sunlight.
mLightManager->setSpecialLight(LightManager::slSunLightType, theSun);

	
getSpecialLight(LightManager::SpecialLightTypesEnum, bool)

	Will return the special light based upon the type passed in if it is available. If it is not available, and the useDefault is set to true then it will return the result of getDefaultLight(). In the event that the special light is not found and useDefault is false, the function will return false.

Syntax:

getSpecialLight(LightManager::SpecialLightTypesEnum type, bool useDefault)

	Parameters

	
	type – The special light type to find.

	useDefault – If the special light based up the light is not found, it will return the default light from getDefaultLight(). useDefault is set to true by default.

	Returns

	LightInfo * The LightInfo * of the special light.

Examples:

// Get the sunlight.
LightInfo *sunLight = mLightManager->getSpecialLight(LightManager::slSunLightType);

	
getDefaultLight()

	Will return the sun if it is registered, as it is always the default light. However, if the sun has not been registered yet then it will create a dummy special light.

Syntax:

getDefaultLight()

	Returns

	LightInfo * The LightInfo * of the special light.

Examples:

// Get the default light, which will be the sun if it is registered
mLightManager->getDefaultLight();

	
deactivate()

	Will check to see if the LightManager has been already been deactived and that it is the active light manager. If it is passes those two checks, it will call it’s deactivate callback and then unregister all of the lights associated with LightManager (via unregiserAllLights(), detailed below).

Syntax:

deactivate()

	Returns

	No return value.

Examples:

// Deactivate the light manager
mLightManager->deactivate();

	
activate(SceneGraph *)

	Will activate the LightManager if it is not already activate (in which case an AssertFatal will be thrown) and call the callback for activating the light manager.

Syntax:

activate(SceneGraph *sceneManager);

	Parameters

	sceneManager – The SceneGraph that will be used to activate rendering passes and the post effect fog if there is a prepass.

	Returns

	No return value.

Examples:

// From inside of "SceneGraph::_setLightManager(LightManager *lm)" located in
// sceneGraph.cpp
mLightManager->activate(this);

	
initLightFields()

	A static function that will traverse the LightManagerMap and will call each LightManager’s _initLightFields function. Since _initLightFields is a pure virtual function, it will call the derived classes _initLightFields.

Syntax:

initLightFields()

	Returns

	No return value.

Examples:

LightManager::initLightFields();

	
getLightManagerNames(String *)

	A static function that will create a String containing all of the LightManager names from the LightManagerMap.

Syntax:

getLightManagerNames(String *outString);

	Parameters

	outString – The string that will be constructed based upon the available LightManger names from the LightManagerMap.

	Returns

	No return value.

Examples:

If the LightManagerMap had two LightManager's inside of it, one being
"Advanced Lighting" and the other "Basic Lighting" then outString will be
"Advanced Lighting Basic Lighting". The spacing between "Advanced Lighting"
and "Basic Lighting" is a tab ("\\t").

	
findByName(const char *)

	A static function that traverses the LightManagerMap for the LightManager with the name passed in. If no LightManager in the LightManagerMap contains that name, it will return NULL.

Syntax:

findByName(const char *name);

	Parameters

	name – The name of the LightManager to find.

	Returns

	LightManager* The LightManager found in the LightManagerMap with the name passed in.

Examples:

// Find the LightManager with the name "Advanced Lighting"
LightManager::findByName("Advanced Lighting")

	
_getLightManagers()

	Returns the static LightManagerMap.

Syntax:

_getLightManagers()

	Returns

	LightManagerMap

Examples:

// Retrieve the LightManagerMap, example is from LightManagerMap::findByName
LightManagerMap &lightManagers = _getLightManagers();

	
~LightManager()

	Will safely delete the default light and Available Scene Lighting Interfaces. It will also remove its self from the LightManagerMap.

Syntax:

~LightManager()

	Returns

	No return value.

Examples:

This function is called implicitly at the destruction of LightManager.

	
LightManager(const char *, const char *)

	Initializes the class variables to the default values.

Syntax:

LightManager(const char *name, const char * id);

	Parameters

	
	name – The name of the LightManager.

	id – The id of the LightManager, often an abbreviation of the name.

	Returns

	No return value.

Examples:

// The LightManager being given the name "Advanced Lighting" and the id of "ADVLM"
LightManager("Advanced Lighting", "ADVLM")

BasicLightManager

BasicLightManager Class Reference

	
isCompatible()

	Checks to make sure that the graphics card is compatible with the current pixel shader version that is needed. Currently at least 1.0 is needed.

Syntax:

isCompatible()

	Returns

	no return value.

Examples:

// Make sure its valid... else fail!
if (!lm->isCompatible())
return false;

	
activate(SceneGraph *)

	In addition to calling its base classes active(SceneGraph*), it will also set the Scenegraph to enable post effect fog and tell the material manager not to use prepass.

Syntax:

activate(SceneGraph *sceneManager); // SceneGraph* The SceneGraph to activate.

	Returns

	SceneGraph* The activated SceneGraph object.

	
deactivate()

	Will remove all the objects from the AdvancedLightBinManager and the PrePassRenderBin, then set them to NULL. It will deactivate the Shadow Manager, unregister all the advanced lighting features and then finally send a trigger to let everyone know the LightManager has been deactivated.

Syntax:

deactivate()

	Returns

	no return value.

Examples:

if (mLightManager)
 mLightManager->deactivate();

	
setLightInfo(ProcessedMaterial *, const Material *, const SceneGraphData&, const SceneState *, U32, GFXShaderConstBuffer *)

	Will make sure that the current lighting constants are initialized, then it will update the lighting constants via _update4LightConsts::_update4LightConsts.

Syntax:

setLightInfo(ProcessedMaterial *pmat, Material *mat, const SceneGraphData &sgData, SceneState *state, U32 pass, GFXShaderConstBuffer *shaderConsts)

	Parameters

	
	pmat – Not used.

	mat – Not used.

	sgData – Used in the call for _update4LightConsts. See LightManager::_update4LightConsts.

	state – Not used.

	pass – Not used.

	shaderConsts – Is used to check to see if it is the same as the last shader. This check is done because T3D sorts by material and the light manager should get hit repeatedly by the same shader. The advantage of the check is that it gives optimization that will prevent has table look ups. It is also used in the call for _update4LightConsts. See LightManager::_update4LightConsts.

	Returns

	no return value.

Examples:

// From inside of ProcessedShaderMaterial::setSceneInfo
LIGHTMGR->setLightInfo(this, mMaterial, sgData, state, pass, shaderConsts);

	
setTextureStage(const SceneGraphData &sgData, const U32 currTexFlag, const U32 textureSlot, GFXShaderConstBuffer *shaderConsts, ShaderConstHandles *handles)

	Will always return false.

Syntax:

setTextureStage(const SceneGraphData &sgData, const U32 currTexFlag, const U32 textureSlot, GFXShaderConstBuffer *shaderConsts, ShaderConstHandles *handles)

	Parameters

	
	sgData – Not used.

	currTexFlag – Not used.

	textureSlot – Not used

	shaderConsts – Not used.

	handles – Not used.

	Returns

	no return value.

Examples:

// From inside of ProcessedCustomMaterial::setTextureStages
lm->setTextureStage(sgData, currTexFlag, i, shaderConsts, handles)

AdvancedLightManager

AdvancedLightManager Class Reference

	
getLightBinManager()

	
Will return the lightBinManager for this light manager.

Syntax:

getLightBinManager();

	Returns

	AdvancedLightBinManager * The lightBinManager member variable in AdvancedLightManager.

Examples:

lightmgr->getLightBinManager()

	
isCompatible()

	
Checks to make sure that the graphics card is compatible with the current pixel shader version that is needed. Currently at least 3.0 is needed.

Syntax:

isCompatible();

	Returns

	No return value.

Examples:

// Make sure its valid... else fail!
if (!lm->isCompatible())
 return false;

	
activate(SceneGraph *)

	
In addition to calling its base classes active(SceneGraph*), it will activate the Shadow Manager and create the AdvancedLightBinManager. It will also setup the Render Prepass Manager and register the feature as an AdvancedLightingFeature.

Syntax:

activate(SceneGraph *sceneManager);

	Parameters

	SceneGraph* – The SceneGraph to activate lighting for.

	Returns

	SceneGraph * The SceneGraph that will be used to create lighting features.

Examples:

// From the engine function "resetLightManager"
LIGHTMGR->activate(LIGHTMGR->getSceneManager());

	
deactivate()

	
Will remove all the objects from the AdvancedLightBinManager and the PrePassRenderBin, then set them to NULL. It will deactivate the Shadow Manager, unregister all the advanced lighting features and then finally send a trigger to let everyone know the LightManager has been deactivated.

Syntax:

deactivate()

	Returns

	No return value.

Examples:

if (mLightManager)
 mLightManager->deactivate();

	
registerGlobalLight(LightInfo *, SimObject *)

	
In addition to calling LightManager::registerGlobalLight, it will add the light to the AdvancedLightBinManager member variable if the AdvancedLightBinManager is created and the light type is a LightInfo::Point or LightInfo::Spot.

Syntax:

registerGlobalLight(LightInfo *light, SimObject *obj)

	Parameters

	
	type – The light to be registered to mRegisteredLights.

	light – Not used.

	Returns

	No return value.

Examples:

// From inside of Item::registerLights
lightManager->registerGlobalLight(mLight, this);

	
unregisterAllLights()

	
In addition to calling LightManager::unregisterAllLights, it will clear the AdvancedLightBinManager if it has been created.

Syntax:

unregisterAllLights()

	Returns

	No return value.

Examples:

// Unregister all the lights in the light manager.
LIGHTMGR->unregisterAllLights();

	
setLightInfo(ProcessedMaterial *, const Material *, const SceneGraphData&, const SceneState *, U32, GFXShaderConstBuffer *)

	
Will check to make sure that the SceneGraphData is not PrePassBin, if it is then it will return out immediately. If it is not, then it will update the constants for the GFXShaderConstBuffer passed in.

Syntax:

setLightInfo(ProcessedMaterial *pmat, Material *mat, const SceneGraphData &sgData, SceneState *state, U32 pass, GFXShaderConstBuffer *shaderConsts)

	Parameters

	
	pmat – Not used.

	mat – Not used.

	sgData – Will be used to ensure rendering is not being done from the PrePassBin and also to update light constants by a call to _update4LightConsts(...).

	state – While setting information to “shaderConsts” it will be used to obtain the camera’s transform.

	pass – Not used.

	shaderConsts – Will be used to obtain the LightingShaderConstants and to the call to _update4LightConsts(...). It will also have its “set” function called to set the shader constant for “ViewToLightProj”.

	Returns

	No return value.

Examples:

// From inside of ProcessedShaderMaterial::setSceneInfo
LIGHTMGR->setLightInfo(this, mMaterial, sgData, state, pass, shaderConsts);

	
setTextureStage(const SceneGraphData &sgData, const U32 currTexFlag, const U32 textureSlot, GFXShaderConstBuffer *shaderConsts, ShaderConstHandles *handles)

	
Will assign a Shadowmap if it exists. It will grab the ShadowMap via the LightingShaderContants obtained via the shaderConsts passed in.

Syntax:

setTextureStage(const SceneGraphData &sgData, const U32 currTexFlag, const U32 textureSlot, GFXShaderConstBuffer *shaderConsts, ShaderConstHandles *handles)

	Parameters

	
	sgData – Used to obtain ShadowMapParams.

	currTexFlag – Depending on the currTexFlag the texture will be set differently to the GFXDevice.

	textureSlot – Not Used.

	shaderConsts – Used to obtain the LightingShaderConstants via getLightingShaderConstants(…).

	handles – Not used.

	Returns

	No return value.

Examples:

// From inside of ProcessedCustomMaterial::setTextureStages
lm->setTextureStage(sgData, currTexFlag, i, shaderConsts, handles)

	
getSphereMesh(U32&, GFXPrimitiveBuffer *&)

	
Will return a vertex buffer handled filled out by a SphereMesh (mSphereGeometry), along with set the variables passed in. If the SphereMesh (mSphereGeometry) is not created by the time this function is called, it will create the sphere mesh (mSphereGeometry) in addition to returning it.

Syntax:

getSphereMesh(U32 outNumPrimitives, GFXPrimitiveBuffer *&outPrimitives)

	Parameters

	
	outNumPrimitives – Will be set to the number of polygons for the SphereMesh.

	outPrimitives – Will always be set to NULL.

	Returns

	GFXVertexBufferHandle<AdvancedLightManager::LightVertex> Used for the vertex buffer, typically for a LightBinEntry.

Examples:

// From inside AdvancedLightBinManager::addLight
AdvancedLightBinEntry::LightBinEntry lEntry.vertBuffer = mLightManager->
 getSphereMesh(lEntry.numPrims, lEntry.primBuffer);

	
getConeMesh(U32&, GFXPrimitiveBuffer *&)

	
Will return a vertex buffer handled filled out by information for a cone, along with set the variables passed in. If the cone geomtery (mConeGeometry) is not created by the time this function is called, it will create the cone geometry (mConeGeometry) in addition to returning it.

Syntax:

getConeMesh(U32 outNumPrimitives, GFXPrimitiveBuffer *&outPrimitives)

	Parameters

	
	outNumPrimitives – Will be set to the number of polygons for the SphereMesh.

	outPrimitives – Will always be set to NULL.

	Returns

	GFXVertexBufferHandle<AdvancedLightManager::LightVertex> Used for the vertex buffer, typically for a LightBinEntry.

Examples:

// From inside AdvancedLightBinManager::addLight
AdvancedLightBinEntry::LightBinEntry lEntry.vertBuffer = mLightManager->
 getConeMesh(lEntry.numPrims, lEntry.primBuffer);

	
findShadowMapForObject(SimObject *)

	
Will take in a SimObject*, then cast it to a ISceneLight*. If the converted variable is valid (meaning you passed in a valid ISceneLight), then it would get the shadow map available for the light.

Syntax:

findShadowMapForObject(SimObject *object)

	Parameters

	object – The SimObject to be converted to a ISceneLight* to find the ShadowMap.

	Returns

	LightShadowMap * The found shadow map from the ISceneLight casted “object” variable.

Examples:

LightShadowMap *lightShadowMap = lm->findShadowMapForObject(object);

ShadowManager

ShadowManager Class Reference

	
activate()

	Called when the shadow manager should become active. It will assign the class variable “SceneGraph* mSceneManager” to the global “SceneGraph* gClientSceneGraph” variable.

Syntax:

activate()

	Returns

	no return value.

Examples:

// Called from within the AdvancedLightManager::activate, SHADOWMGR is a #define
// of the ShadowMapManager::instance() function.
SHADOWMGR->activate();

	
deactivate()

	Called when we don’t want the shadow manager active (should clean up). As this is basically just a base class, this function does nothing and should be overridden by the super class to clean clean up its own data.

Syntax:

deactivate()

	Returns

	no return value.

Examples:

// Called from within the AdvancedLightManager::deactivate, SHADOWMGR is a #define
// of the ShadowMapManager::instance() function.
SHADOWMGR->deactivate();

	
canActivate()

	Called to find out if it is valid to activate this shadow system. Currently this function will always return true.

Syntax:

canActivate()

	Returns

	Will always return true (bool).

Examples:

Currently this function is not called in the base and is left up to the user to implement.

ShadowMapManager

ShadowMapManager Class Reference

	
activate()

	Called when the ShadowMapManager should become active. If the ShadowMapManager is unable to retrieve a SceneManager through the internal method getSceneManager then it will return a console error saying it was unable to active the ShadowMapManager and return out of the function. If it is able to retrieve the SceneManager then it will notify the SceneManager of its onPreRender function and turn its self active.

Syntax:

activate()

	Returns

	no return value.

Examples:

// Called from within the AdvancedLightManager::activate, SHADOWMGR is a #define
// of the ShadowMapManager::instance() function.
SHADOWMGR->activate();

	
deactivate()

	Called when the ShadowMapManager should be decactivated. The ShadowMapManager will notify the SceneManger to remove its onPreRender function from the pre-render signal, clean up the shadow texture memory and makes its self no longer active.

Syntax:

deactivate()

	Returns

	no return value.

Examples:

// Called from within the AdvancedLightManager::deactivate, SHADOWMGR is a #define
// of the ShadowMapManager::instance() function.
SHADOWMGR->deactivate();

	
setLightShadowMapForLight(LightInfo *)

	Looks up the shadow map for the light then sets it.

Syntax:

setLightShadowMapForLight(LightInfo *light)

	Parameters

	light – Will use this variable to look up the potential ShadowMapParams.

	Returns

	no return value.

Examples:

// Set light holds the active shadow map.
mShadowManager->setLightShadowMapForLight(sunLight);

	
setLightShadowMap(LightShadowMap *)

	Sets the current shadowmap (used in setLightInfo/setTextureStage calls).

Syntax:

setLightShadowMap(LightShadowMap *lm)

	Parameters

	lm – The current shadow map that will be assigned to the classes internal “LightShadowMap *mCurrentShadowMap” variable.

	Returns

	no return value.

Examples:

// While traversing the shadow maps in "ShadowMapPass::render".
LightShadowMap *lsm = shadowMaps[i];
mShadowManager->setLightShadowMap(lsm);

LightInfo

LightInfo Class Reference

	
unpackExtended(BitStream *)

	Will traverse the vector of LightInfoEx pointers (mExtended) and call their individual unpackUpdate function with the passed in stream as a parameter.

Syntax:

unpackExtended(BitStream *stream)isCompatible()

	Parameters

	stream – Used to pass to the individual calls of the unpackUpdate through the traversed mExtended.

	Returns

	No return value.

Examples:

// From LightBase::unpackUpdate
mLight->unpackExtended(stream);

	
packExtended(BitStream *)

	Will traverse the vector of LightInfoEx pointers (mExtended) and call their individual packUpdate function with the passed in stream as a parameter.

Syntax:

packExtended(BitStream *stream)

	Parameters

	stream – Used to pass to the individual calls of the packUpdate through the traversed mExtended.

	Returns

	No return value.

Examples:

// From LightNase::packUpdate at lightBase.cpp
mLight->packExtended(stream);

	
packExtended(BitStream *)

	Will traverse the vector of LightInfoEx pointers (mExtended) and call their individual packUpdate function with the passed in stream as a parameter.

Syntax:

packExtended(BitStream *stream)

	Parameters

	stream – Used to pass to the individual calls of the packUpdate through the traversed mExtended.

	Returns

	No return value.

Examples:

// From LightNase::packUpdate at lightBase.cpp
mLight->packExtended(stream);

	
getWorldToLightProj(MatrixF *)

	Builds the world to light view projected used for shadow texture and cookie lookups.

Syntax:

getWorldToLightProj(MatrixF *outMatrix)

	Parameters

	outMatrix – The generated Matrix, if the type of the light is a spot then this matrix will be created by multiplying the cone projection by the inverse transform of the light. If the type of the light is not a Spot, then the Matrix will be assigned to the inverse of the light.

	Returns

	No return value.

Examples:

// From AdvancedLightManager::setLightInfo
MatrixF proj;
light->getWorldToLightProj(&proj);

	
deleteAllLightInfoEx()

	Deletes all LightInfoEx objects.

Syntax:

deleteAllLightInfoEx()

	Returns

	No return value.

Examples:

// From the destructor of LightInfo
deleteAllLightInfoEx();

	
addExtended(LightInfoEx *)

	Will add the passed in LightInfoEx * to the current vector of LightInfo * (mExtended) if it is not null.

Syntax:

addExtended(LightInfoEx *lightInfoEx)

	Parameters

	lightInfoEx – Will be added to mExtended.

	Returns

	No return value.

Examples:

// AdvancedLightManager::_addLightInfoEx from advancedLightManager.cpp
lightInfo->addExtended(new ShadowMapParams(lightInfo));

	
getExtended(const LightInfoExType&)

	Will return the LightInfoEx * mExtended based upon the LightInfoExType passed in.

Syntax:

getExtended(const LightInfoExType &type)

	Parameters

	type – The type of a LightInfoEx to be used to return the LightInfoExType.

	Returns

	LightInfoEx * The LightInfoEx * from mExtended with regards to the type passed in.

Examples:

// From CubeLightShadowMap::setShaderParameters at cubeLightShadowMap.cpp
ShadowMapParams *p = mLight->getExtended<ShadowMapParams>();

	
setGFXLight(GFXLightInfo *)

	Sets a fixed function GFXLight with the properties on this class.

Syntax:

setGFXLight(GFXLightInfo *light)

	Parameters

	light – The light that will have its properties filled in based upon the properties of this class.

	Returns

	No return value.

Examples:

// From ProcessedFFMaterial::_setPrimaryLightInfo at porcessedFFMaterial.cpp
GFXLightInfo xlatedLight;
light->setGFXLight(&xlatedLight);

	
set(const LightInfo *)

	Copies the data passed in from the LightInfo passed in, such as the properties and the contents of mExtended.

Syntax:

set(const LightInfo *light)

	Parameters

	light – The light in which the information to be set to this class should be obtained from.

	Returns

	No return value.

Examples:

None.

Rendering

	Overview
	Introduction

	High Level Features

	Platform Support

	Key Concepts

	Important Links

	Conclusion

	Source Code Tour
	Introduction

	GFX Core

	DirectX (D3D, D3D9)

	OpenGL (gl and ggl)

	Null

	Sim

	Test

	RenderInstance

	Conclusion

	Render Management
	Introduction

	RenderInst

	ObjectRenderInst

	MeshRenderInst

	RenderBinManager

	RenderPassManager

	Sub-Managers

	Conclusion

	RenderDelegate
	Concept

	SkyBox Example

	RenderObjectExample

	RenderDelegate vs Other Render Methods

	Conclusion

	Stateblocks
	Concept

	Technical Description

	Source Code

	GFXSamplerStateDesc

	GFXStateBlockDesc

	GFXStateBlock

	GFXStateBlockData

	Engine Example

	Script Example

	Conclusion

	Shader Constant Buffers
	Concept

	Technical Description

	Source Code

	Engine Example

	Script Example

	Conclusion

	Interface
	Introduction

	Core Global Variables

	Script Classes
	Render Managers
	RenderObjectMgr

	RenderMeshMgr

	RenderTerrainMgr

	RenderRefractMgr

	RenderImposterMgr

	RenderOcclusionMgr

	RenderTranslucentMgr

	RenderGlowMgr

	GFXStateBlockData
	Description

	PostEffect
	Description

	Methods

	GFXSamplerStateData
	Description

	GFXInit
	Description

	Methods

	Conclusion

Overview

Introduction

Torque 3D’s rendering system is a complex set of modules working together to deliver a next-gen appearance. In addition to many stand-alone rendering systems, such as managers and render instances, a core system is GFX. GFX is an abstract graphics layer designed to reside above graphics APIs such as Direct3D and OpenGL. The system utilizes current and next-gen concepts, such as deferred rendering technology, state blocks, shader buffers, and so on.

High Level Features

Torque 3D’s rendering features advanced technology, similar to what you might find in DirectX

	GLSL and HLSL shader support

	Vertex and primitive buffers

	Post-processing effects

	Deferred lighting

	Compatibility with Windows, Mac OS X

	State blocks

	Shader constant buffers

Platform Support

GFX wraps around multiple rendering systems, which are handled automatically for you. When working in the engine, you will want to focus on the source code related to your target platform:

	Windows - GFX->D3D9 for rendering while input, window management, and general Windows components are handled by platformWin32, windowManager->win32, and a few other filters which will be detailed in the GFX Engine Tour. Source Code Tour - TODO //Add Internal Link

	Mac OSX - GFX->gl for rendering while platformMac and windowManager->mac handle input, window management, and other Mac components.

Key Concepts

In order to grasp the high level rendering concepts of Torque 3D, you should be familiar with the following:

	SDK - A **S**oftware **D**evelopment **K**it is typically a collection of tools and APIs that focus on developing applications for a particular framework/hardware/OS. An example would be the DirectX SDK, which includes all of the APIs and debugging tools used in developing Windows games.

	API - An **A**pplication **P**rogramming **I**nterface is a collection of functions, classes, and systems dedicated to supporting a specific feature. An example would be DirectX’s Direct3D, which is used for rendering.

	DirectX (http://msdn.microsoft.com/en-us/directx/default.aspx) - A collection of APIs which handle rendering, input, audio, and other forms of media interaction. DirectX is commonly what drives game and video programming on Microsoft’s operating systems. Examples of DirectX APIs include Direct3D (D3D) and DirectInput. DirectX developers must use the DirectX SDK to develop a Windows game. The SDK contains all of the DirectX APIs including the runtime libraries and source headers.

	OpenGL (http://www.opengl.org/) - OpenGL stands for Open Graphics Library. This powerful, cross-platform API is used for low-level rendering of 2D and 3D graphics. Supporting OpenGL in Torque 3D is what allows the engine to run on Mac OSX.

	Shaders - Shaders are part of the DirectX and OpenGL rendering systems. A shader file contains a set of instructions that get passed to the GPU along with the 3D data it will affect. Both OpenGL and DirectX have their own shader languages, both of which are handled by Torque 3D’s GFX. Examples of shaders include motion blur, reflection, bloom, bump mapping, and other advanced rendering effects. Shaders are typically written in a high level shading language based on C programming.

	GLSL - OpenGL Shader Language is a high level shading language utilized by OpenGL to create and render shaders in a game.

	HLSL (http://msdn.microsoft.com/en-us/library/bb509561%28VS.85%29.aspx) - High Level Shader Language is used by DirectX for creating and displaying shaders in a game. Using HLSL, you can create C like programmable shaders for the Direct3D pipeline.

	Textures and Materials - A texture is typically an image file mapped to a polygon or shape, which provides color and detail to the model. Torque 3D materials are used to wrap texture and shader information into a single object.

	Vertex Buffer - A vertex buffer is an array of vertex data which can exist in system or video memory.

Important Links

	Torque 3D Documentation Page - http://www.garagegames.com/documentation/torque-3d

	OpenGL Home Page - http://www.opengl.org/

	DirectX Home Page - http://msdn.microsoft.com/en-us/directx/default.aspx

Conclusion

This article is just a high level description of Torque 3D’s rendering system. From here you can proceed however you want. However, it is highly recommended you proceed to the next section (Source Code Tour) if you are new to Torque 3D, GFX, or rendering code in general.

Source Code Tour

Introduction

This document will explain the source code folders and files that make up Torque 3D’s rendering system.

GFX Core

You can find the core GFX files in engine/gfx. Some of the source files in this system are meant to be sub-classed based on platform. There are currently 4 main gfxDevice classes:

	GFXDevice

	GFXD3D9Device (inside the D3D9 directory)

	GFXGLDevice (inside the gl directory)

	GFXNullDevice (inside the Null directory)

As you can see, each platform has its own GFXDevice. The same goes for other platform dependent files: gfxShader, gfxCubemap, gfxVertexBuffer, and so on. Some of the other source files are stand-alone. For instance, gfxStructs.h contains classes/structs and functions used by all platforms. This usually involves generic information, such as GFXLightInfo containing light type, position, etc.

DirectX (D3D, D3D9)

Because Torque 3D supports cross-platform compatibility, it is important to keep the GFX layers separate. The D3D folder contains only two files: screenshotD3D.h and screenshotD3D.cpp. Just as the name implies, these two files are used in capturing screens while running a game. (Currently D3D9 only).

You will see the major platform specific classes represented here, such as the GFXdevice, TextureManager, VertexBuffer, etc. The functionality remains the same, but the application and execution are specific to the API.

OpenGL (gl and ggl)

Much like the D3D sections, the gl folder and its files contain rendering functionality specifically meant to run on a Mac. Once again, the major systems are integrated into the OpenGL layer (StateBlock, GFXDevice, PrimitiveBuffer, etc).

Within the gl directory is another folder: ggl. The source code in this section make up the Torque OpenGL Library. In the code itself, you will find the various OpenGL configurations, bindings, and extension definitions.

Null

The Null folder contains gfxNullDevice.h and gfxNullDevice.cpp. This device layer is used primarily for dedicated servers, which typically do not require any rendering. Dedicated servers usually just process simulation events and relays that information to the clients. There is no real reason to waste processing power and memory rendering objects that no one will see.

Sim

The 3 systems found in this folder are: CubeMapData, gfxStateBlockData, and debugDraw.

debugDraw does exactly what it sounds like. Once you enable debugDraw, you can pass it data (Point3Fs and ColorF) which will then render points, cubes, and other polygons. For instance, if you pass in the points that make up a Player’s bounding box, you will see a box surrounding that player when running the game.

CubemapData is a class exposed to TorqueScript, making the class a ConsoleObject. A Cubemap is a texture that represents a rendering of the surrounding environment. The easiest example to explain would be a Sky cubemap rendered onto a body of water. The cubemap would consist of various sky images taken from different angles.

GFXStateBlockData is extremely important. Since GFXStateBlocks are meant to be created in script, a ConsoleObject that can hold StateBlock description was needed. GFXStateBlockData is that ConsoleObject. This covered in more detail in Stateblocks. (TODO - Internal link)

Test

You can ignore this folder, as it was used during internal testing.

RenderInstance

Another section of engine code that is considered an important part of GFX can be found under renderInstance (engine/renderInstance). The files found in this directory make up the various render managers. We will cover these in the next GFX document. For now, just remember these classes are responsible for controlling the rendering flow of your game.

Conclusion

This guide is another high level walk through of a Torque 3D system. Even though we covered some major files and concepts, you should take the time to read through the code comments left by the engine developers. Some of this will make more since as you read through the remaining GFX documents.

Render Management

Introduction

The purpose of the render manager system is to gather rendering commands submitted from game code and sort them to get proper effects, draw order, and optimal performance from GFX.

RenderInst

RenderInst is a base structure for more task-specific render managers. The current version of RenderInst only contains information on sorting, translucency, and rendering type overrides.

ObjectRenderInst

ObjectRenderInst is a derived from RenderInst. It does not actually contain any information about meshes, materials, transforms, etc. However, it makes use of a very important feature: Delegate callbacks. (RenderDelegate - TODO Internal Link)

MeshRenderInst

Derived from RenderInst, a MeshRenderInst object contains the critical data needed for rendering. It is declared directly below ObjectRenderInst. Within this structure is an object’s geometry(mesh), lighting information, textures, transforms, and base material.

Some of the most basic classes are used in MeshRenderInst:

	GFXVertexBufferHandleBase and GFXPrimitiveBufferHandle handle the vertex buffer and primitive buffer (respectively)

	World transforms and object-to-world transforms are handled by MatrixF pointers

	LightInfo pointers retain information for primary and secondary lighting

	GFXTextureObject pointers also aid in lighting, as well as texturing the object

RenderBinManager

RenderBinManager manages and signals a main list of RenderInst objects.

RenderBinManager contains the variables and functions necessary for adding, processing, sorting, and clearing RenderInst objects. To get a closer look at RenderBinManager, open engine/source/renderInstance/renderBinManager.h and renderBinManager.cpp.

Most of the important management functionality is defined in the class, but you should notice a very important chunk of functionality missing: rendering code. RenderBinManager does have a rendering function:

virtual void render(SceneState *state) {}

But as you can see, we are not going to be directly using a RenderBinManager for rendering. It’s important to know how the class’s base functionality works, but we will get to the actual rendering code when we look at RenderBinManager’s children.

This class lays the ground work, but the tangible rendering sub-managers derive from RenderBinManager: RenderMeshMgr, RenderObjectMgr, RenderTranslucentMgr, and so on. These are detailed further down in the sub-managers section.

RenderPassManager

The RenderPassManager could be considered the “top manager” when it comes to the rendering system. The responsibilities of this manager include:

	Declaring and organizing the various RIT: “R”ender “I”nstance “T”ypes

	Allocating a render instance for MeshRenderInst, ObjectRenderInst, and so on

	Adding, sorting, and rendering a list of RenderInst’s per bin

	Memory allocation and deallocation for the RenderBinManagers

	Adding, sorting, and managing the various RenderBinManagers. The importance of this task is best shown in code

See the code initializing the rendering managers, initRenderManager.cs:

// In game/core/scripts/client/renderManager.cs:
function initRenderManager()
{
 // If we already have a script version of
 // RenderPassManager (DiffuseRenderPassManager)
 // do not proceed with this function
 assert(!isObject(DiffuseRenderPassManager), "initRenderManager() - DiffuseRenderPassManager already initialized!");

 // Create a new RenderPassManager
 new RenderPassManager(DiffuseRenderPassManager);

 // Begin adding sub-managers
 DiffuseRenderPassManager.addManager(new RenderPassStateBin() { renderOrder = 0.001; stateToken = AL_FormatToken; });

 // We really need to fix the sky to render after all the
 // meshes... but that causes issues in reflections.
 DiffuseRenderPassManager.addManager(new RenderObjectMgr() { bintype = "Sky"; renderOrder = 0.1; processAddOrder = 0.1; });

 DiffuseRenderPassManager.addManager(new RenderObjectMgr() { bintype = "Begin"; renderOrder = 0.2; processAddOrder = 0.2; });
 // Normal mesh rendering.
 DiffuseRenderPassManager.addManager(new RenderMeshMgr() { bintype = "Interior"; renderOrder = 0.3; processAddOrder = 0.3; });
 DiffuseRenderPassManager.addManager(new RenderTerrainMgr() { renderOrder = 0.4; processAddOrder = 0.4; });
 DiffuseRenderPassManager.addManager(new RenderMeshMgr() { bintype = "Mesh"; renderOrder = 0.5; processAddOrder = 0.5; });
 DiffuseRenderPassManager.addManager(new RenderImposterMgr() { renderOrder = 0.56; processAddOrder = 0.56; });
 DiffuseRenderPassManager.addManager(new RenderObjectMgr() { bintype = "Object"; renderOrder = 0.6; processAddOrder = 0.6; });

 DiffuseRenderPassManager.addManager(new RenderObjectMgr() { bintype = "Shadow"; renderOrder = 0.7; processAddOrder = 0.7; });
 DiffuseRenderPassManager.addManager(new RenderMeshMgr() { bintype = "Decal"; renderOrder = 0.8; processAddOrder = 0.8; });
 DiffuseRenderPassManager.addManager(new RenderOcclusionMgr() { bintype = "Occluder"; renderOrder = 0.9; processAddOrder = 0.9; });

 // We now render translucent objects that should handle
 // their own fogging and lighting.

 // Note that the fog effect is triggered before this bin.
 DiffuseRenderPassManager.addManager(new RenderObjectMgr(ObjTranslucentBin) { bintype = "ObjectTranslucent"; renderOrder = 1.0; processAddOrder = 1.0; });

 DiffuseRenderPassManager.addManager(new RenderObjectMgr() { bintype = "Water"; renderOrder = 1.2; processAddOrder = 1.2; });
 DiffuseRenderPassManager.addManager(new RenderObjectMgr() { bintype = "Foliage"; renderOrder = 1.3; processAddOrder = 1.3; });
 DiffuseRenderPassManager.addManager(new RenderParticleMgr() { renderOrder = 1.35; processAddOrder = 1.35; });
 DiffuseRenderPassManager.addManager(new RenderTranslucentMgr() { renderOrder = 1.4; processAddOrder = 1.4; });

 // Note that the GlowPostFx is triggered after this bin.
 DiffuseRenderPassManager.addManager(new RenderGlowMgr(GlowBin) { renderOrder = 1.5; processAddOrder = 1.5; });

 // Resolve format change token
 DiffuseRenderPassManager.addManager(new RenderPassStateBin(AL_FormatToken_Pop) { renderOrder = 1.6; stateToken = AL_FormatToken; });
}

The premise behind this chunk of code is simple. Calling DiffuseRenderPassManager “the manager of managers” seems appropriate. As the client is being initialized, initRenderManager() is called to create the rendering managers.

Using the .addManager(…) function, the RenderPassManager stores an internal list of RenderBinManagers. We have managers for Sky, Interiors, Lighting, Shadows, and so on.

Sub-Managers

As mentioned previously, the actual rendering managers are children of RenderBinManager. We are calling them sub-managers, since the RenderPassManager manages and maintains them. Each of these rendering sub-managers contains rendering code unique to its purpose, though multiple instantiations do occur to handle our various renderable Torque objects.

Let’s go down a simplified list of these classes and their main purpose:

	RenderObjectMgr - This class is used for rendering more than any of the other sub-managers. This manager is responsible for rendering common objects that do not have a standard mesh.

	Sky

	Shadows

	Water

	Foliage

	Shapebase

	RenderMeshMgr - This class is used for rendering mesh based objects such as interiors, TSMesh, and decals.

	RenderTerrainMgr - This class is used for rendering the terrain.

	RenderRefractMgr - Stock Torque 3D uses only one RenderRefractMgr. The name of the manager describes it well. This manager takes in RenderInst elements and checks to see if they have a refraction custom material. If this check succeeds, the element is maintained by the manager and makes use of the refraction rendering code.

	RenderImposterMgr - This is a special render manager for processing single billboard imposters typically generated by the tsLastDetail class.

	RenderOcclusionMgr - Used for performing occlusion queries on the scene.

	RenderTranslucentMgr - Stock Torque 3D uses only one RenderTranslucentMgr. This manager is a bit more complex than the previous ones described. A RenderInst element must meet a strict set of requirements to be managed by this class. If you look at RenderTranslucentMgr::addElement(…), you can see there are 3 main if(…) statements checking for translucent properties and appropriate render instance type. The actual render function is quite clean, and you can gain more insight about the class by reading through it.

	RenderGlowMgr - Just like the previous two managers, there is only one instance of RenderGlowMgr in stock Torque 3D. The name is pretty self-descriptive. This manager is responsible for accepting RenderInst elements that require rendering with a properly set up glow buffer.

Conclusion

The purpose of this document is to provide you with a basic understanding of the rendering management system used by Torque 3D. There is still much to be explained in the way of rendering flow, extending the system, and specific examples.

We’ve covered the basic renderable object instances, base class render managers, specialized rendering manager classes, and touched on some new subjects such as the RenderDelegate. (TODO - Internal Link)

RenderDelegate

Concept

The concept and functionality behind RenderDelgate gives you, the developer, a lot of flexibility when you are creating your own rendering objects. RenderDelgates are based on the system sending a signal, which is caught by an object’s RenderDelegate. The RenderDelgate itself calls an object’s render function.

Let’s take a look at a few simple examples.

SkyBox Example

The SkyBox object is a great example of a custom object that requires rendering. The class is derived from SceneObject, which does not have a rendering function. Open engine/source/environment/skyBox.h. If you scroll through the SkyBox class, you will find the declaration of its RenderDelegate:

/// Our render delegate.
void _renderObject(ObjectRenderInst *ri, SceneState *state, BaseMatInstance *mi);

Open skyBox.cpp (same directory), then locate the SkyBox::prepRenderImage(…) function. At the bottom of the function, Sky’s RenderDelegate is bound. In the following code, read each line’s comment to understand what is happening:

// Create a render instance by asking the RenderPassManager for one
ObjectRenderInst *ri = state->getRenderPass()->allocInst<ObjectRenderInst>();

// Bind the SkyBox's rendering function to the renderDelegate
ri->renderDelegate.bind(this, &SkyBox::_renderObject);

// Set the Render Instance Type (RIT)
ri->type = RenderPassManager::RIT_Sky;

// Set the sorting keys
ri->defaultKey = 10;
ri->defaultKey2 = 0;

// Add the render instance to the manager
state->getRenderPass()->addInst(ri);

When binding, we are passing in the SkyBox class (this), and its rendering function. Let’s say the rendering function had a different name, such as _renderSky:

ri->renderDelegate.bind(this, &SkyBox::_renderSky);

What we are doing is preparing the SkyBox class to receive a render signal and act on it. One of our manager’s (which we will discuss in a minute), will parse through all of its contained objects. When it comes across SkyBox, it will send a render signal to the class. It doesn’t care about the name of the rendering function, it just tells the object to render with certain information:

void SkyBox::_renderObject(ObjectRenderInst *ri, SceneState *state, BaseMatInstance *mi)
{
 ...

 GFXTransformSaver saver;
 GFX->setVertexBuffer(mVB);

 MatrixF worldMat = MatrixF::Identity;
 worldMat.setPosition(state->getCameraPosition());

 SceneData sgData;
 sgData.init(state);
 sgData.objTrans = &worldMat;

 ...

RenderObjectExample

No doubt, if you are reading through these engine docs you are most likely a programmer. Regardless of your experience, diving head first into Torque 3D’s source code can be overwhelming. If you need a very simple RenderDelegate example, you do not have to dig through the entire Player->ShapeBase->etc hierarchy.

Instead, an example class was written specifically for demonstrating a basic RenderDelegate: RenderObjectExample. The source files, renderObjectExample.h and .cpp, are found in engine/source/T3D/examples. Every line has been heavily commented to explain the purpose of the class.

RenderObjectExample has even been exposed to script and the World Editor. You can add a RenderObjectExample to your scene while debugging the engine, and go through each line of rendering code step by step.

RenderDelegate vs Other Render Methods

A render object (using a RenderDelegate) handles its own rendering by submitting itself as an ObjectRenderInst along with a delegate for its render() function. However, the preferred rendering method in the engine is to submit a MeshRenderInst along with a Material, vertex buffer, primitive buffer, and transform and let the RenderMeshMgr handle the actual rendering.

With that in mind, you may be wondering why you should ever use a RenderDelegate when some of the most important classes do not use it: Player, Item, ShapeBase, etc. While writing the actual rendering code can be complex, deciding on which method to use is simple.

When you have access to an object’s 3D geometry (mesh) and material (textures and texture properties), you might as well make use of the mesh and shape rendering systems. This includes anything using COLLADA and .DTS.

If your new object does not use 3D geometry, you should look into using the RenderDelegate system. More importantly, integration of 3rd party technologies that handle their own rendering, such as SpeedTree or Scaleform, should definitely use RenderDelegates.

	SpeedTree - http://www.speedtree.com/

	Scaleform - http://web.archive.org/web/20111026114129/http://www.scaleform.com/

Conclusion

This goal of this document was to provide you with an introduction and specific examples of the RenderDelegate system. Should you decide to create your own custom classes which require object rendering, please refer back to this doc.

Remember, if your new object has a 3D mesh and makes use of the material system, you are encouraged to follow the example set by RenderMeshExample and RenderObjectExample. If you are implementing a very custom object, or a are integrating a 3rd party product with its own rendering, using a RenderDelegate will be much easier.

Stateblocks

Concept

The purpose of GFXStateblocks is quite simple: an entire rendering state is contained in one object, and you are able to set the rendering state with one call. If you’ve written rendering code before, you may have written code similar to this before:

// Enable Blending
glEnable (GL_BLEND);

// Set The Blend Mode
glBlendFunc (GL_SRC_ALPHA ,GL_ONE_MINUS_SRC_ALPHA)

What if you need to setup that kind of rendering state more than just once? GFXStateblocks allow you to wrap that up into the following:

GFX->setStateBlock(myState);

There’s a little more tech and setup involved, but the above example should be enough to encourage you to read on and use this concept in your own project.

Technical Description

Using GFXStateblocks allows you to pre-generate your rendering states, which is going to save you time, cleanup your code, apply modern rendering techniques, and give you more control over your game’s rendering from the engine as well as script. When combined with CustomMaterials, the material definitions in script need less custom engine support.

Stateblocks are created by filling out a GFXStateBlockDesc structure and calling GFX->createStateBlock on it. This returns a GFXStateBlockRef, which is a reference-counted GFXStateBlock. This is essentially a GFXResource, just like a texture. Then you use a stateblock by calling GFX->setStateBlock and passing the state block in.

Using a stateblock fully defines a render state, which completely does away with all concepts canonical. This is actually a good thing as this will reduce bugs introduced because a state was not properly cleaned up before exiting.

Source Code

It might help if we tour the engine code, so you can get some concrete code samples in front of your eyes. Start by opening gfxStateBlock.h and gfxStateBlock.cpp, both of which are found in engine/source/gfx. Let’s browse the header (.h) first. All four major declarations are important here:

struct GFXSamplerStateDesc {...};

struct GFXStateBlockDesc {...};

class GFXStateBlock {...};

typedef StrongRefPtr<GFXStateBlock> GFXStateBlockRef;

GFXSamplerStateDesc

The GFXSamplerStateDesc struct contains variables and methods to identify the texture object used for each texture lookup. You’ll find texture arguments for color, alpha, min/mag/mip filter, and address modes. A solid example of how this structure is used can be found in the gfxD3D9StateBlock::activate(…) function.

Inside this method, a GFXSamplerStateDesc variable (ssd) is set to one of the stateblocks internal samplers. The function performs a check to see how OpenGL handles the GL_TEXTURE_2D variable:

Abbreviated code from GFXGLStateBlock::activate(…), found in engine/source/gfx/gl/gfxGLStateBlock.cpp

const GFXSamplerStateDesc ssd = mDesc.samplers[i];

switch (ssd.textureColorOp)
{
case GFXTOPDisable:
 if(!tex)
 break;
 glDisable(GL_TEXTURE_2D);
 updateTexParam = false;
 break;
}

GFXStateBlockDesc

GFXStateBlockDesc defines a render state, which is then used to create a GFXStateBlock instance. If you look through the structure, you will read through some common render state ops and references: blending (source/destination/operation), depth buffer (z buffer enable/bias/definition), color writes (write red/blue/green/alpha), and so on.

A nifty concept applied through GFXStateBlockDescr is the combining state block descriptions. This is done so through the::addDesc(…) function:

/// Adds data from desc to this description, uses *defined
parameters in desc to figure out what blocks of
state to actually copy from desc.
void addDesc(const GFXStateBlockDesc& desc);

GFXStateBlock

The base GFXStateBlock class looks very bare. It is derived from StrongRefBase and GFXResource. Being a StrongRefBase object, the stateblock will exist as long as the reference exists. When all of the strong references to the stateblock go away, it is permanently deleted. It is treated as a GFXResource since our GFX system needs to track its resources owned by a particular device.

There are only 4 functions in this base class, and they are all virtual. This is due to the fact that we have multiple graphical APIs to support, which means we are going to have GFXStateBlocks for DirectX and OpenGL:

	GFXD3D9StateBlock

	GFXGLStateBlock

Of course, we have our null device stateblock (GFXNullStateBlock), but you will not actually need to use that for any rendering. The other GFX devices will have their own implementation of stateblocks. In fact, let’s take a look at the GL implementation. Open engine/source/gfx/gl/gfxGLStateBlock.h. The class we are looking at is GFXGLStateBlock.

Within this function we have a working interface (constructor and destructor), a function called by OpenGL to activate the stateblock (::activate), and a tangible GFXStateBlockDesc member variable (mDesc). The activate function definition can be found in gfxGLStateBlock.cpp

GFXGLStateBlock::activate(const GFXGLStateBlock* oldState)
{
 // Internal code not shown
}

It is heavily commented and has a very important warning at the beginning. It is highly recommended you read through the comments and code to get a better understanding of how the stateblock is set up.

GFXStateBlockData

Two very important classes we need to take a look at is the GFXStateBlockData class and GFXSamplerStateData class, found in engine/source/gfx/sim/gfxStateBlockData.h/.cpp. The class definitions and their comments are quite descriptive:

/// Allows definition of render state via script,
basically wraps a GFXStateBlockDesc
class GFXStateBlockData: public SimObject

/// Allows definition of sampler state via script,
basically wraps a GFXSamplerStateDesc
class GFXSamplerStateData: public SimObject

As you read, these classes allow us to create GFXStateBlock and GFXSamplerState descriptions in TorqueScript. This means you are able to utilize a lot more custom shader and rendering work without being as reliant on custom engine code. You should definitely look through the::initPersistFields() functions for each class. You will notice the various references and ops that make up a render state are exposed.

Engine Example

We are going to use a very simple engine example for showing how GFXStateBlocks are created and used. Start by opening engine/source/interior/interior.h/.cpp. When we use debug rendering, we are able to see certain aspects of an interior that are normally invisible to a player. One such aspect would be the rendering of portals.

In the Interior class, we have defined multiple stateblock references. Let’s look at one that affects our portal rendering:

GFXStateBlockRef mInteriorDebugPortalSB;

Ok! We have our stateblock reference, but it still needs some information. Go into Interior.cpp, and scroll down to the prepForRendering function around line 343:

bool Interior::prepForRendering(const char* path)
{
 // Previous and remaining code not shown

 mInteriorDebugPortalSB = GFX->createStateBlock(sh);

}

This line of code shows we have initialized our stateblock reference, but what device does so? We haven’t seen any OpenGL or DirectX code anywhere, so how can we know if we are using a GFXGLStateBlock or not? This is where GFX takes control. GFX->createStateBlock(…) takes in a fully initialized GFXStateBlockDesc reference.

GFX then proceeds to set up the hash value and search for existing stateblocks. If the stateblock we need does not exist, it calls createStateBlockInternal. This function drills into our platform’s device, so we have a GFXGLDevice::createStateBlockInternal and a GFXD3D9Device::createStateBlockInternal.

When creating a GFXStateBlock in script, quite a few things happen for you automatically. However, when you are in the engine there are a few “Gotchas” you have to remember. When you create a GFXStateBlock in the engine, you must call setStateBlock before you use it!

Called in Interior::debugRenderPortals():

GFX->setStateBlock(mInteriorDebugPortalSB);

A simple, more generic engine example would be this:

// Setup code, done once
GFXStateBlockDesc desc;
desc.setBlend(true, GFXSrcAlpha, GFXInvSrcAlpha);
GFXStateBlockRef myState = GFX->createStateBlock(desc);

// Render time code
GFX->setStateBlock(myState);

Script Example

Earlier, I mentioned using shader data and GFXStateBlocks together in script. We have provided you with a couple of examples. Open Examples/FPS Example/game/core/scripts/client/postFX.cs. This file contains multiple GFXStateBlockData and ShaderData definitions. First, we focus on the default stateblock:

singleton GFXStateBlockData(PFX_DefaultStateBlock)
{
 zDefined = true;
 zEnable = false;
 zWriteEnable = false;

 samplersDefined = true;
 samplerStates[0] = SamplerClampLinear;
};

The above code demonstrates how to declare a GFXStateBlock in TorqueScript using the exposed Console Object, GFXStateBlockData. In this example, we define depth sorting and handle linear clamping. We can then use this stateblock in a PostEffect definition:

singleton PostEffect(BL_ShadowFilterPostFx)
{
 requirements = "";

 shader = BL_ShadowFilterShader;
 stateBlock = PFX_DefaultStateBlock;
 targetClear = "PFXTargetClear_OnDraw";
 targetClearColor = "0 0 0 0";
 texture[0] = "$inTex";
 target = "$outTex";
};

A GFXStateBlockData definition can also be used in the creation of a separate stateblock, as shown below:

singleton GFXStateBlockData(LightRayStateBlock: PFX_DefaultStateBlock)
{
 samplersDefined = true;
 samplerStates[0] = SamplerClampLinear;
 samplerStates[1] = SamplerClampLinear;
};

Essentially, we wanted the exact same rendering state for our two post processing effects. Instead of having to modify our engine code (twice), we can define our stateblock in script (once) and use it multiple times.

Conclusion

There is a lot to learn about GFXStateBlocks. The intent of this article was to give you a strong introduction on the purpose, engine structure, and examples of how to use this new system. As you develop new shaders, look for ways you can save yourself time and headaches by using GFXStateBlocks.

Shader Constant Buffers

Concept

Much like state blocks, shader constant buffers help reduce the amount of rendering code you have to write. This concept is quite similar to DirectX 10’s version of constant buffers, which share a similar purpose:

Quoted concepts from DirectX HLSL MSDN:

A constant buffer, or shader constant buffer, is a
buffer that contains shader constants.

Conceptually, it looks just like a
single-element vertex buffer.

A constant buffer is a specialized buffer resource
that is accessed like a buffer.

A buffer resource is designed to minimize the
overhead of setting shader constants.

Technical Description

A shader constant buffer is just a block of memory (or an object) that contains the constants that a shader needs to have bound. Specifically, they buffer a collection of string/value pairs that are sent to a shader. They are allocated by the shader itself because the shader may have information about layout that no other part of the system will know about.

You can look up handles by shader constant name. This removes the need for a static shader constant-to-slot mapping and also allows us to do some CPU side optimizations. Under the hood, the string/value pair is mapped to a block of memory that can be handed to a shader with one call.

Source Code

We are going to take a light tour of the engine code that makes up the GFXShaderConstBuffer system. Let’s start by opening engine/source/gfx/gfxShader.h. Toward the top of this header, you will see a struct and two base classes that make up this system:

/// Instances of this struct are returned GFXShaderConstBuffer
struct GFXShaderConstDesc {...};

/// This is an opaque handle used by GFXShaderConstBuffer
/// clients to set individual shader constants.
/// Derived classes can put whatever info they need into here,
/// these handles are owned by the shader constant buffer
/// (or shader). Client code should not free these.
class GFXShaderConstHandle {...};

/// GFXShaderConstBuffer is a collection of
/// string/value pairs that are sent to a shader.
/// Under the hood, the string value pair is
/// mapped to a block of memory that can
/// be blasted to a shader with one call (ideally)
class GFXShaderConstBuffer {...}

It should be obvious by the amount of pure virtual function declarations that GFXShaderConstHandle and GFXShaderConstBuffer are meant to have children. Both GFXD3D9 and GFXGL will get their own versions of shader constant buffers. In this file, there is not much you can learn from GFXShaderConstHandle. However, you might want to scan GFXShaderConstBuffer.

It is derived from StrongRefBase and GFXResource. Being a StrongRefBase object, the stateblock will exist as long as the reference exists. When all of the strong references to the stateblock go away, it is permanently deleted. It is treated as a GFXResource since our GFX system needs to track its resources owned by a particular device.

The virtual function declarations should give you insight on how we are setting up the future child functionality. We have almost twenty overloaded functions named set(…). Each one takes in a GFXShaderConstHandle* and a constant. The handles contains the name of the constant, which should be a name contained in the array returned in getShaderConstDesc.

It is very important that you remember what GFXShaderConstBufferRef is:

In engine/source/gfx/gfxShader.h:

typedef StrongRefPtr<GFXShaderConstBuffer> GFXShaderConstBufferRef;

GFXShaderConstBufferRef is like a pointer (reference) to GFXShaderConstBuffer, with a few key differences. A few paragraphs back I mentioned GFX tracking its resources and references, and this is one of the ways it does so. This is a referenced counted, object template pointer class (quite descriptive!). Heavy emphasis on the referenced counted.

If you open engine/source/gfx/gl/gfxGLShader.h, you can see how we have set up our OpenGL version of a constant shader buffer.

We have our child class declaration:

class GFXGLShaderConstBuffer: public GFXShaderConstBuffer{...}

The GL version contains an activation function:

/// Called by GFXGLDevice to activate this buffer.
void activate();

The class even keeps track of the shader that creates the buffer:

WeakRefPtr<GFXGLShader> mShader;

/// Return the shader that created this buffer
virtual GFXShader* getShader() { return mShader; }

Of course, the multiple virtual void set(…) functions get defined as well, but in the gfxGLShader.cpp file. The base relationship you should remember is a GFX shader creates and uses a shader constant buffer, while the constant buffer keeps track of its owner and sets the actual constants.

Engine Example

As for an engine example, I’ll start with a generic chunk of code:

We will set up our constant buffer and handle once:

// Setup code
GFXShaderConstBufferRef myBuff = shader->allocConstBuffer();
GFXShaderConstHandle* myHandle = shader->getShaderConstHandle("$diffuseColor");

Now you can set the constant buffer:

// Render code
myBuff->set(myHandle, myConst);
GFX->setShaderConstBuffer(myBuff);

Now that you see the basic code concept, let’s examine an existing constant buffer in the engine. The CloudLayer class handles its shader constant buffer internally. Open engine/source/environment/cloudLayer.cpp. Scroll down until you see the following function:

bool CloudLayer::onAdd(){...}

Further into the function, around line 92, you can see where the internal GFXShaderConstBufferRef (mShaderConsts) is allocated:

// Create ShaderConstBuffer and Handles
mShaderConsts = mShader->allocConstBuffer();

The GFXShaderConstHandle pointers are internal members belonging to the CloudLayer class:

In engine/source/environment/cloudLayer.h::

GFXShaderConstHandle *mModelViewProjSC;
GFXShaderConstHandle *mAmbientColorSC;
GFXShaderConstHandle *mSunColorSC;
GFXShaderConstHandle *mSunVecSC;
GFXShaderConstHandle *mTexOffsetSC[3];
GFXShaderConstHandle *mTexScaleSC;
GFXShaderConstHandle *mBaseColorSC;
GFXShaderConstHandle *mCoverageSC;
GFXShaderConstHandle *mEyePosWorldSC;

Back in the cloudLayer.cpp, these handles are set after the buffer has been allocated:

mModelViewProjSC = mShader->getShaderConstHandle("$modelView");
mEyePosWorldSC = mShader->getShaderConstHandle("$eyePosWorld");
mSunVecSC = mShader->getShaderConstHandle("$sunVec");
mTexOffsetSC[0] = mShader->getShaderConstHandle("$texOffset0");
mTexOffsetSC[1] = mShader->getShaderConstHandle("$texOffset1");
mTexOffsetSC[2] = mShader->getShaderConstHandle("$texOffset2");
mTexScaleSC = mShader->getShaderConstHandle("$texScale");
mAmbientColorSC = mShader->getShaderConstHandle("$ambientColor");
mSunColorSC = mShader->getShaderConstHandle("$sunColor");
mCoverageSC = mShader->getShaderConstHandle("$cloudCoverage");
mBaseColorSC = mShader->getShaderConstHandle("$cloudBaseColor");

The actual setting of the shader data, constant buffer, and stateblock does not happen until further down in the source file. If you scroll down to around line 264, you will find the rendering function for CloudLayer:

void CloudLayer::renderObject(ObjectRenderInst *ri, SceneState *state, BaseMatInstance *mi){...}

On line 276, GFX takes over and performs the “set” code:

GFX->setShader(mShader);

// HERE WE SET THE SHADER CONSTANT BUFFER
GFX->setShaderConstBuffer(mShaderConsts);

GFX->setStateBlock(mStateblock);

Script Example

Using shader constant buffers in TorqueScript is a little different than in the engine code. At this time, most game developers know about the SSAO (Screen Space Ambient Occlusion) rendering technique. Torque 3D has a SSAO solution, which is defined in TorqueScript.

SSAO is a PostEffect, so it must be defined as such. Locate and open Examples/FPS Example/game/core/scripts/client/postFx/ssao.cs. The effect is declared using the following code (reduced to just show the declaration):

singleton PostEffect(SSAOPostFx){...};

In the CloudLayer example, I mentioned the class contained internal GFXShaderConstHandle pointers as member variables. In TorqueScript, SSAO uses scoped global variables:

// The small radius SSAO settings.
$SSAOPostFx::sRadius = 0.1;
$SSAOPostFx::sStrength = 6.0;
$SSAOPostFx::sDepthMin = 0.1;
$SSAOPostFx::sDepthMax = 1.0;
$SSAOPostFx::sDepthPow = 1.0;
$SSAOPostFx::sNormalTol = 0.0;
$SSAOPostFx::sNormalPow = 1.0;

// The large radius SSAO settings.
$SSAOPostFx::lRadius = 1.0;
$SSAOPostFx::lStrength = 10.0;
$SSAOPostFx::lDepthMin = 0.2;
$SSAOPostFx::lDepthMax = 2.0;
$SSAOPostFx::lDepthPow = 0.2;
$SSAOPostFx::lNormalTol = -0.5;
$SSAOPostFx::lNormalPow = 2.0;

These variables are used when setting the buffer. As a script object, SSAOPostFx can have member functions. An important function to define for PostEffect objects is setShaderConsts(%this). If a PostEffect object, such as SSAOPostFx, has this function defined, it will be called by the engine automatically.

If you scroll down to the function, you can see how it sets the shader constant buffer:

function SSAOPostFx::setShaderConsts(%this)
{
 %this.setShaderConst("$overallStrength", $SSAOPostFx::overallStrength);

 // Abbreviate is s-small l-large.

 %this.setShaderConst("$sRadius", $SSAOPostFx::sRadius);
 %this.setShaderConst("$sStrength", $SSAOPostFx::sStrength);
 %this.setShaderConst("$sDepthMin", $SSAOPostFx::sDepthMin);
 %this.setShaderConst("$sDepthMax", $SSAOPostFx::sDepthMax);
 %this.setShaderConst("$sDepthPow", $SSAOPostFx::sDepthPow);
 %this.setShaderConst("$sNormalTol", $SSAOPostFx::sNormalTol);
 %this.setShaderConst("$sNormalPow", $SSAOPostFx::sNormalPow);

 %this.setShaderConst("$lRadius", $SSAOPostFx::lRadius);
 %this.setShaderConst("$lStrength", $SSAOPostFx::lStrength);
 %this.setShaderConst("$lDepthMin", $SSAOPostFx::lDepthMin);
 %this.setShaderConst("$lDepthMax", $SSAOPostFx::lDepthMax);
 %this.setShaderConst("$lDepthPow", $SSAOPostFx::lDepthPow);
 %this.setShaderConst("$lNormalTol", $SSAOPostFx::lNormalTol);
 %this.setShaderConst("$lNormalPow", $SSAOPostFx::lNormalPow);

 %blur =%this->blurY;
 %blur.setShaderConst("$blurDepthTol", $SSAOPostFx::blurDepthTol);
 %blur.setShaderConst("$blurNormalTol", $SSAOPostFx::blurNormalTol);

 %blur =%this->blurX;
 %blur.setShaderConst("$blurDepthTol", $SSAOPostFx::blurDepthTol);
 %blur.setShaderConst("$blurNormalTol", $SSAOPostFx::blurNormalTol);

 %blur =%this->blurY2;
 %blur.setShaderConst("$blurDepthTol", $SSAOPostFx::blurDepthTol);
 %blur.setShaderConst("$blurNormalTol", $SSAOPostFx::blurNormalTol);

 %blur =%this->blurX2;
 %blur.setShaderConst("$blurDepthTol", $SSAOPostFx::blurDepthTol);
 %blur.setShaderConst("$blurNormalTol", $SSAOPostFx::blurNormalTol);
}

Conclusion

The intent of this document was to provide you with a strong introduction to GFX shader constant buffers. There are various examples scattered throughout the code, so you might want to spend some more time browsing through the code and comments.

Should you decide to create your own custom classes with renderable objects, remember to check this document again and see how you can use constant buffers in your code. The optimization is well worth the learning curve.

Interface

Introduction

The following categories represent the GFX interface in TorqueScript.

Core Global Variables

default values

	
	$pref::Video::displayDevice = “D3D9”;

	
	User’s preference for device

	
	$pref::Video::disableVerticalSync = 1;

	
	Toggles adapter to wait for vsync

	
	$pref::Video::mode = “1024 768 false 32 60 0”;

	
	Contains settings for video resolution, screen mode (full/windowed), bit depth, refresh rate, and anti-aliasing

	
	$pref::Video::screenShotSession = 0;

	
	Number attached to screenshot_ file when taking an actual screenshot from within the game.

	
	$pref::Video::screenShotFormat = “PNG”;

	
	The file format of a screenshot taken in game, either .jpg or .png

Script Classes

Render Managers

For more detailed information, refer back to the Render Management Guide. (TODO - Internal Link)

RenderObjectMgr

This class is used for rendering more than any of the other sub-managers. This manager is responsible for rendering common objects that do not have a standard mesh.

	Sky

	Shadows

	Water

	Foliage

	Shapebase

RenderMeshMgr

This class is used for rendering mesh based objects such as interiors, TSMesh, and decals.

RenderTerrainMgr

This class is used for rendering the terrain

RenderRefractMgr

Stock Torque 3D uses only one RenderRefractMgr. The name of the manager describes it well. This manager takes in RenderInst elements and checks to see if they have a refraction custom material. If this check succeeds, the element is maintained by the manager and makes use of the refraction rendering code.

RenderImposterMgr

This is a special render manager for processing single billboard imposters typically generated by the tsLastDetail class.

RenderOcclusionMgr

Used for performing occlusion queries on the scene.

RenderTranslucentMgr

Stock Torque 3D uses only one RenderTranslucentMgr. This manager is a bit more complex than the previous ones described. A RenderInst element must meet a strict set of requirements to be managed by this class. If you look at RenderTranslucentMgr::addElement(…), you can see there are 3 main if(…) statements checking for translucent properties and appropriate render instance type. The actual render function is quite clean, and you can gain more insight about the class by reading through it.

RenderGlowMgr

Just like the previous two managers, there is only one instance of RenderGlowMgr in stock Torque 3D. The name is pretty self-descriptive. This manager is responsible for accepting RenderInst elements that require rendering with a properly set up glow buffer.

GFXStateBlockData

For more detailed information, refer back to the Stateblocks Guide.

Description

Allows definition of render state via script, basically wraps a GFXStateBlockDesc

PostEffect

Description

Class used for defining post-processing effects, such as depth of field, SSAO, and light rays.

Methods

	*void reload(): Reloads the effect shader and textures.

	*void enable(): Enables the effect.

	*void disable(): Disables the effect.

	*bool toggle(): Toggles the effect state returning true if we enable it.

	*bool isEnabled(): Returns true if the effect is enabled.

	*void setShaderConst(): Sets the shader constant buffer for this effect

	*F32 getAspectRatio(): Returns width over height aspect ratio of the backbuffer.

	const char dumpShaderDisassembly(): Dumps this PostEffect shader’s disassembly to a temporary text file. Returns the fullpath of that file if successful.

	*void setShaderMacro(string key, [string value]: Add/set a shader macro.

GFXSamplerStateData

Description

Allows definition of sampler state via script, basically wraps a GFXSamplerStateDesc

GFXInit

Description

Interface for tracking GFX adapters and initializing them into devices.

Methods

	*float getSoundDuration(): Return the duration (in seconds) of the sound referenced by the profile.

	*S32 getAdapterCount(): Return the number of adapters available.

	const char getAdapterName(int id): Returns the name of a given adapter.

	*const char*getAdapterType(int id): Returns the type (D3D9, D3D8, GL, Null) of a given adapter.

	*F32 getAdapterShaderModel(int id): Returns the SM supported by a given adapter.

	*S32 getDefaultAdapterIndex(): Returns the index of the adapter we’ll be starting up with.

	*S32 getAdapterModeCount(int id): Gets the number of modes available on the specified adapter. id Index of the adapter to get data from. Return the number of video modes supported by the adapter, or -1 if the given adapter was not found.

	const char getAdapterMode(int id, int modeId): Gets information on the specified adapter and mode. id Index of the adapter to get data from. Param modeId Index of the mode to get data from. Return (string) a video mode string given an adapter and mode index.

	*void createNullDevice(): Create a NULL device.

Conclusion

This interface guide covers everything you will need to know about using Torque 3D’s stock render system (GFX) in TorqueScript.

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	
 	~LightManager (C++ function)

_

 	
 	_getLightManagers (C++ function)

 	
 	_update4LightConsts (C++ function)

A

 	
 	ActionMap::bind (C++ function), [1]

 	ActionMap::bindCmd (C++ function)

 	ActionMap::bindObj (C++ function), [1]

 	ActionMap::getBinding (C++ function)

 	ActionMap::getCommand (C++ function)

 	ActionMap::getDeadZone (C++ function)

 	ActionMap::getScale (C++ function)

 	ActionMap::isInverted (C++ function)

 	ActionMap::pop (C++ function)

 	ActionMap::push (C++ function)

 	ActionMap::save (C++ function)

 	ActionMap::unbind (C++ function)

 	ActionMap::unbindObj (C++ function)

 	activate (C++ function), [1], [2], [3], [4]

 	activateDirectInput (C++ function)

 	activatePackage (C++ function)

 	addBadWord (C++ function)

 	addExtended (C++ function)

 	addGlobalShaderMacro (C++ function)

 	addMaterialMapping (C++ function)

 	addTaggedString (C++ function)

 	AIClient::getAimLocation (C++ member)

 	AIClient::getLocation (C++ member)

 	AIClient::getMoveDestination (C++ member)

 	AIClient::getTargetObject (C++ member)

 	AIClient::missionCycleCleanup (C++ member)

 	AIClient::move (C++ member)

 	AIClient::moveForward (C++ member)

 	AIClient::setAimLocation (C++ member)

 	AIClient::setMoveDestination (C++ member)

 	AIClient::setMoveSpeed (C++ member)

 	AIClient::setTargetObject (C++ member)

 	AIClient::stop (C++ member)

 	aiConnect (C++ function)

 	AIConnection::getAddress (C++ member)

 	AIConnection::getFreeLook (C++ member)

 	AIConnection::getMove (C++ function)

 	AIConnection::getTrigger (C++ function)

 	AIConnection::setFreeLook (C++ function)

 	AIConnection::setMove (C++ function)

 	AIConnection::setTrigger (C++ function)

 	AIPlayer::clearAim (C++ function)

 	AIPlayer::getAimLocation (C++ function)

 	AIPlayer::getAimObject (C++ function)

 	AIPlayer::getMoveDestination (C++ function)

 	AIPlayer::getMoveSpeed (C++ function)

 	AIPlayer::mMoveTolerance (C++ member)

 	AIPlayer::moveStuckTestDelay (C++ member)

 	AIPlayer::moveStuckTolerance (C++ member)

 	AIPlayer::setAimLocation (C++ function)

 	AIPlayer::setAimObject (C++ function)

 	AIPlayer::setMoveDestination (C++ function)

 	AIPlayer::setMoveSpeed (C++ function)

 	AIPlayer::stop (C++ function)

 	AITurretShape::activateTurret (C++ function)

 	AITurretShape::addToIgnoreList (C++ function)

 	AITurretShape::deactivateTurret (C++ function)

 	AITurretShape::getTarget (C++ function)

 	AITurretShape::getWeaponLeadVelocity (C++ function)

 	AITurretShape::hasTarget (C++ function)

 	AITurretShape::recenterTurret (C++ function)

 	AITurretShape::removeFromIgnoreList (C++ function)

 	AITurretShape::resetTarget (C++ function)

 	AITurretShape::setAllGunsFiring (C++ function)

 	AITurretShape::setGunSlotFiring (C++ function)

 	AITurretShape::setTurretState (C++ function)

 	AITurretShape::setWeaponLeadVelocity (C++ function)

 	AITurretShape::startScanForTargets (C++ function)

 	AITurretShape::startTrackingTarget (C++ function)

 	AITurretShape::stopScanForTargets (C++ function)

 	AITurretShape::stopTrackingTarget (C++ function)

 	
 	AITurretShapeData::maxScanDistance (C++ member)

 	AITurretShapeData::maxScanHeading (C++ member)

 	AITurretShapeData::maxScanPitch (C++ member)

 	AITurretShapeData::maxWeaponRange (C++ member)

 	AITurretShapeData::scanTickFrequency (C++ member)

 	AITurretShapeData::scanTickFrequencyVariance (C++ member)

 	AITurretShapeData::stateDirection (C++ member)

 	AITurretShapeData::stateFire (C++ member)

 	AITurretShapeData::stateName (C++ member)

 	AITurretShapeData::stateScaleAnimation (C++ member)

 	AITurretShapeData::stateScan (C++ member)

 	AITurretShapeData::stateScript (C++ member)

 	AITurretShapeData::stateSequence (C++ member)

 	AITurretShapeData::stateTimeoutValue (C++ member)

 	AITurretShapeData::stateTransitionOnActivated (C++ member)

 	AITurretShapeData::stateTransitionOnAtRest (C++ member)

 	AITurretShapeData::stateTransitionOnDeactivated (C++ member)

 	AITurretShapeData::stateTransitionOnNoTarget (C++ member)

 	AITurretShapeData::stateTransitionOnNotAtRest (C++ member)

 	AITurretShapeData::stateTransitionOnTarget (C++ member)

 	AITurretShapeData::stateTransitionOnTimeout (C++ member)

 	AITurretShapeData::stateWaitForTimeout (C++ member)

 	AITurretShapeData::trackLostTargetTime (C++ member)

 	AITurretShapeData::weaponLeadVelocity (C++ member)

 	allowConnections (C++ member)

 	ArrayObject::add (C++ function)

 	ArrayObject::append (C++ function)

 	ArrayObject::caseSensitive (C++ member)

 	ArrayObject::count (C++ function)

 	ArrayObject::countKey (C++ function)

 	ArrayObject::countValue (C++ function)

 	ArrayObject::crop (C++ function)

 	ArrayObject::duplicate (C++ function)

 	ArrayObject::echo (C++ function)

 	ArrayObject::empty (C++ function)

 	ArrayObject::erase (C++ function)

 	ArrayObject::getCurrent (C++ function)

 	ArrayObject::getIndexFromKey (C++ function)

 	ArrayObject::getIndexFromValue (C++ function)

 	ArrayObject::getKey (C++ function)

 	ArrayObject::getValue (C++ function)

 	ArrayObject::insert (C++ function)

 	ArrayObject::key (C++ member)

 	ArrayObject::moveFirst (C++ function)

 	ArrayObject::moveLast (C++ function)

 	ArrayObject::moveNext (C++ function)

 	ArrayObject::movePrev (C++ function)

 	ArrayObject::pop_back (C++ function)

 	ArrayObject::pop_front (C++ function)

 	ArrayObject::push_back (C++ function)

 	ArrayObject::push_front (C++ function)

 	ArrayObject::setCurrent (C++ function)

 	ArrayObject::setKey (C++ function)

 	ArrayObject::setValue (C++ function)

 	ArrayObject::sort (C++ function)

 	ArrayObject::sorta (C++ function)

 	ArrayObject::sortd (C++ function)

 	ArrayObject::sortf (C++ function)

 	ArrayObject::sortfd (C++ function)

 	ArrayObject::sortfk (C++ function)

 	ArrayObject::sortfkd (C++ function)

 	ArrayObject::sortk (C++ function)

 	ArrayObject::sortka (C++ function)

 	ArrayObject::sortkd (C++ function)

 	ArrayObject::sortn (C++ function)

 	ArrayObject::sortna (C++ function)

 	ArrayObject::sortnd (C++ function)

 	ArrayObject::sortnk (C++ function)

 	ArrayObject::sortnka (C++ function)

 	ArrayObject::sortnkd (C++ function)

 	ArrayObject::uniqueKey (C++ function)

 	ArrayObject::uniqueValue (C++ function)

B

 	
 	backtrace (C++ function)

 	BanList::add (C++ function)

 	BanList::addAbsolute (C++ function)

 	BanList::isBanned (C++ function)

 	BanList::removeBan (C++ function)

 	BarrelDistortionPostEffect::hmdIndex (C++ member)

 	BarrelDistortionPostEffect::scaleOutput (C++ member)

 	BarrelDistortionPostEffect::sensorIndex (C++ member)

 	
 	BasicClouds::height (C++ member)

 	BasicClouds::layerEnabled (C++ member)

 	BasicClouds::texDirection (C++ member)

 	BasicClouds::texOffset (C++ member)

 	BasicClouds::texScale (C++ member)

 	BasicClouds::texSpeed (C++ member)

 	BasicClouds::texture (C++ member)

 	beginSampling (C++ function)

 	buildTaggedString (C++ function)

C

 	
 	calcExplosionCoverage (C++ function)

 	call (C++ function)

 	Camera::angularDrag (C++ member)

 	Camera::angularForce (C++ member)

 	Camera::autoFitRadius (C++ function)

 	Camera::brakeMultiplier (C++ member)

 	Camera::controlMode (C++ member)

 	Camera::drag (C++ member)

 	Camera::extendedMovePosRotIndex (C++ member)

 	Camera::force (C++ member)

 	Camera::getAngularVelocity (C++ function)

 	Camera::getMode (C++ function)

 	Camera::getOffset (C++ function)

 	Camera::getPosition (C++ function)

 	Camera::getRotation (C++ function)

 	Camera::getVelocity (C++ function)

 	Camera::isEditOrbitMode (C++ function)

 	Camera::isRotationDamped (C++ function)

 	Camera::lookAt (C++ function)

 	Camera::mass (C++ member)

 	Camera::movementSpeed (C++ member)

 	Camera::newtonMode (C++ member)

 	Camera::newtonRotation (C++ member)

 	Camera::setAngularDrag (C++ function)

 	Camera::setAngularForce (C++ function)

 	Camera::setAngularVelocity (C++ function)

 	Camera::setBrakeMultiplier (C++ function)

 	Camera::setDrag (C++ function)

 	Camera::setEditOrbitMode (C++ function)

 	Camera::setEditOrbitPoint (C++ function)

 	Camera::setFlyForce (C++ function)

 	Camera::setFlyMode (C++ function)

 	Camera::setMass (C++ function)

 	Camera::setNewtonFlyMode (C++ function)

 	Camera::setOffset (C++ function)

 	Camera::setOrbitMode (C++ function)

 	Camera::setOrbitObject (C++ function)

 	Camera::setOrbitPoint (C++ function)

 	Camera::setRotation (C++ function)

 	Camera::setSpeedMultiplier (C++ function)

 	Camera::setTrackObject (C++ function)

 	Camera::setValidEditOrbitPoint (C++ function)

 	Camera::setVelocity (C++ function)

 	Camera::speedMultiplier (C++ member)

 	canActivate (C++ function)

 	
 	cleanupTexturePool (C++ function)

 	clearGFXResourceFlags (C++ function)

 	closeNetPort (C++ function)

 	CloudLayer::baseColor (C++ member)

 	CloudLayer::coverage (C++ member)

 	CloudLayer::exposure (C++ member)

 	CloudLayer::height (C++ member)

 	CloudLayer::texDirection (C++ member)

 	CloudLayer::texScale (C++ member)

 	CloudLayer::texSpeed (C++ member)

 	CloudLayer::texture (C++ member)

 	CloudLayer::windSpeed (C++ member)

 	cls (C++ function), [1]

 	collapseEscape (C++ function)

 	commandToClient (C++ function)

 	commandToServer (C++ function)

 	compile (C++ function)

 	ConsoleLogger::attach (C++ function)

 	ConsoleLogger::detach (C++ function)

 	ConsoleLogger::level (C++ member)

 	containerBoxEmpty (C++ function)

 	containerFindFirst (C++ function)

 	containerFindNext (C++ function)

 	containerRayCast (C++ function)

 	containerSearchCurrDist (C++ function)

 	containerSearchCurrRadiusDist (C++ function)

 	containerSearchNext (C++ function)

 	containsBadWords (C++ function)

 	ConvexShape::Material (C++ member)

 	ConvexShape::surface (C++ member)

 	countBits (C++ function)

 	createPath (C++ function)

 	CubemapData::cubeFace (C++ member)

 	CubemapData::dynamic (C++ member)

 	CubemapData::dynamicFarDist (C++ member)

 	CubemapData::dynamicNearDist (C++ member)

 	CubemapData::dynamicObjectTypeMask (C++ member)

 	CubemapData::dynamicSize (C++ member)

 	CubemapData::getFilename (C++ function)

 	CubemapData::updateFaces (C++ function)

 	CustomMaterial::fallback (C++ member)

 	CustomMaterial::forwardLit (C++ member)

 	CustomMaterial::shader (C++ member)

 	CustomMaterial::stateBlock (C++ member)

 	CustomMaterial::target (C++ member)

 	CustomMaterial::version (C++ member)

D

 	
 	deactivate (C++ function), [1], [2], [3], [4]

 	deactivateDirectInput (C++ function)

 	deactivatePackage (C++ function)

 	Debris::init (C++ function)

 	Debris::lifetime (C++ member)

 	DebrisData::baseRadius (C++ member)

 	DebrisData::bounceVariance (C++ member)

 	DebrisData::elasticity (C++ member)

 	DebrisData::emitters (C++ member)

 	DebrisData::explodeOnMaxBounce (C++ member)

 	DebrisData::Explosion (C++ member)

 	DebrisData::fade (C++ member)

 	DebrisData::friction (C++ member)

 	DebrisData::gravModifier (C++ member)

 	DebrisData::ignoreWater (C++ member)

 	DebrisData::lifetime (C++ member)

 	DebrisData::lifetimeVariance (C++ member)

 	DebrisData::maxSpinSpeed (C++ member)

 	DebrisData::minSpinSpeed (C++ member)

 	DebrisData::numBounces (C++ member)

 	DebrisData::shapeFile (C++ member)

 	DebrisData::snapOnMaxBounce (C++ member)

 	DebrisData::staticOnMaxBounce (C++ member)

 	DebrisData::terminalVelocity (C++ member)

 	DebrisData::texture (C++ member)

 	DebrisData::useRadiusMass (C++ member)

 	DebrisData::velocity (C++ member)

 	DebrisData::velocityVariance (C++ member)

 	debug (C++ function)

 	DebugDrawer::drawBox (C++ function)

 	DebugDrawer::drawLine (C++ function)

 	DebugDrawer::setLastTTL (C++ function)

 	DebugDrawer::setLastZTest (C++ function)

 	DebugDrawer::toggleDrawing (C++ function)

 	DebugDrawer::toggleFreeze (C++ function)

 	debugDumpAllObjects (C++ function)

 	debugEnumInstances (C++ function)

 	debugv (C++ function)

 	DecalData::clippingAngle (C++ member)

 	DecalData::fadeEndPixelSize (C++ member)

 	DecalData::fadeStartPixelSize (C++ member)

 	DecalData::fadeTime (C++ member)

 	DecalData::frame (C++ member)

 	DecalData::lifeSpan (C++ member)

 	DecalData::Material (C++ member)

 	DecalData::postApply (C++ function)

 	DecalData::randomize (C++ member)

 	DecalData::renderPriority (C++ member)

 	DecalData::size (C++ member)

 	
 	DecalData::texCols (C++ member)

 	DecalData::texRows (C++ member)

 	DecalData::textureCoordCount (C++ member)

 	DecalData::textureCoords (C++ member)

 	decalManagerAddDecal (C++ function)

 	decalManagerClear (C++ function)

 	decalManagerDirty (C++ function)

 	decalManagerLoad (C++ function)

 	decalManagerRemoveDecal (C++ function)

 	decalManagerSave (C++ function)

 	DecalRoad::breakAngle (C++ member)

 	DecalRoad::discardAll (C++ member)

 	DecalRoad::EditorOpen (C++ member)

 	DecalRoad::Material (C++ member)

 	DecalRoad::Node (C++ member)

 	DecalRoad::postApply (C++ function)

 	DecalRoad::regenerate (C++ function)

 	DecalRoad::renderPriority (C++ member)

 	DecalRoad::showBatches (C++ member)

 	DecalRoad::showRoad (C++ member)

 	DecalRoad::showSpline (C++ member)

 	DecalRoad::textureLength (C++ member)

 	DecalRoad::updateDelay (C++ member)

 	DecalRoad::wireframe (C++ member)

 	deleteAllLightInfoEx (C++ function)

 	deleteVariables (C++ function)

 	describeGFXResources (C++ function)

 	describeGFXStateBlocks (C++ function)

 	detag (C++ function)

 	disableJoystick (C++ function)

 	disableXInput (C++ function)

 	dispatchMessage (C++ function)

 	dispatchMessageObject (C++ function)

 	displaySplashWindow (C++ function)

 	DNetSetLogging (C++ function)

 	dumpAlloc (C++ function)

 	dumpConsoleClasses (C++ function)

 	dumpConsoleFunctions (C++ function)

 	dumpEngineDocs (C++ function)

 	dumpFontCacheStatus (C++ function)

 	dumpMaterialInstances (C++ member)

 	dumpMemSnapshot (C++ function)

 	dumpNetStats (C++ function)

 	dumpNetStringTable (C++ function)

 	dumpRandomNormalMap (C++ function)

 	dumpStringMemStats (C++ function)

 	dumpTextureObjects (C++ function)

 	dumpUnflaggedAllocs (C++ function)

 	duplicateCachedFont (C++ function)

E

 	
 	echo (C++ function), [1], [2]

 	echoInputState (C++ function)

 	enableJoystick (C++ function)

 	enableSamples (C++ function)

 	enableXInput (C++ function)

 	endsWith (C++ function)

 	error (C++ function)

 	eval (C++ function)

 	EventManager::dumpEvents (C++ function)

 	EventManager::dumpSubscribers (C++ function)

 	EventManager::isRegisteredEvent (C++ function)

 	EventManager::postEvent (C++ function)

 	EventManager::queue (C++ member)

 	EventManager::registerEvent (C++ function)

 	EventManager::remove (C++ function)

 	EventManager::removeAll (C++ function)

 	EventManager::subscribe (C++ function)

 	EventManager::unregisterEvent (C++ function)

 	excludeOtherInstance (C++ function)

 	exec (C++ function)

 	execPrefs (C++ function)

 	expandEscape (C++ function)

 	expandFilename (C++ function)

 	expandOldFilename (C++ function)

 	ExplosionData::camShakeAmp (C++ member)

 	ExplosionData::camShakeDuration (C++ member)

 	ExplosionData::camShakeFalloff (C++ member)

 	ExplosionData::camShakeFreq (C++ member)

 	ExplosionData::camShakeRadius (C++ member)

 	ExplosionData::Debris (C++ member)

 	ExplosionData::debrisNum (C++ member)

 	ExplosionData::debrisNumVariance (C++ member)

 	
 	ExplosionData::debrisPhiMax (C++ member)

 	ExplosionData::debrisPhiMin (C++ member)

 	ExplosionData::debrisThetaMax (C++ member)

 	ExplosionData::debrisThetaMin (C++ member)

 	ExplosionData::debrisVelocity (C++ member)

 	ExplosionData::debrisVelocityVariance (C++ member)

 	ExplosionData::delayMS (C++ member)

 	ExplosionData::delayVariance (C++ member)

 	ExplosionData::emitter (C++ member)

 	ExplosionData::explosionScale (C++ member)

 	ExplosionData::explosionShape (C++ member)

 	ExplosionData::faceViewer (C++ member)

 	ExplosionData::lifetimeMS (C++ member)

 	ExplosionData::lifetimeVariance (C++ member)

 	ExplosionData::lightEndBrightness (C++ member)

 	ExplosionData::lightEndColor (C++ member)

 	ExplosionData::lightEndRadius (C++ member)

 	ExplosionData::lightNormalOffset (C++ member)

 	ExplosionData::lightStartBrightness (C++ member)

 	ExplosionData::lightStartColor (C++ member)

 	ExplosionData::lightStartRadius (C++ member)

 	ExplosionData::offset (C++ member)

 	ExplosionData::particleDensity (C++ member)

 	ExplosionData::ParticleEmitter (C++ member)

 	ExplosionData::particleRadius (C++ member)

 	ExplosionData::playSpeed (C++ member)

 	ExplosionData::shakeCamera (C++ member)

 	ExplosionData::sizes (C++ member)

 	ExplosionData::soundProfile (C++ member)

 	ExplosionData::subExplosion (C++ member)

 	ExplosionData::times (C++ member)

 	exportCachedFont (C++ function)

 	exportEngineAPIToXML (C++ function)

F

 	
 	fileBase (C++ function)

 	fileCreatedTime (C++ function)

 	fileDelete (C++ function)

 	FileDialog::changePath (C++ member)

 	FileDialog::defaultFile (C++ member)

 	FileDialog::defaultPath (C++ member)

 	FileDialog::Execute (C++ function)

 	FileDialog::fileName (C++ member)

 	FileDialog::filters (C++ member)

 	FileDialog::title (C++ member)

 	fileExt (C++ function)

 	fileModifiedTime (C++ function)

 	fileName (C++ function)

 	FileObject::close (C++ function)

 	FileObject::isEOF (C++ function)

 	FileObject::openForAppend (C++ function)

 	FileObject::openForRead (C++ function)

 	FileObject::openForWrite (C++ function)

 	FileObject::peekLine (C++ function)

 	FileObject::readLine (C++ function)

 	FileObject::writeLine (C++ function)

 	FileObject::writeObject (C++ function), [1]

 	filePath (C++ function)

 	fileSize (C++ function)

 	FileStreamObject::close (C++ function)

 	FileStreamObject::open (C++ function)

 	filterString (C++ function)

 	findByName (C++ function)

 	findFirstFile (C++ function)

 	findFirstFileMultiExpr (C++ function)

 	findNextFile (C++ function)

 	findNextFileMultiExpr (C++ function)

 	findShadowMapForObject (C++ function)

 	firstWord (C++ function)

 	flagCurrentAllocs (C++ function)

 	flagCurrentGFXResources (C++ function)

 	flushTextureCache (C++ function)

 	FlyingVehicle::useCreateHeight (C++ function)

 	FlyingVehicleData::autoAngularForce (C++ member)

 	FlyingVehicleData::autoInputDamping (C++ member)

 	FlyingVehicleData::autoLinearForce (C++ member)

 	FlyingVehicleData::backwardJetEmitter (C++ member)

 	FlyingVehicleData::createHoverHeight (C++ member)

 	FlyingVehicleData::downJetEmitter (C++ member)

 	FlyingVehicleData::engineSound (C++ member)

 	FlyingVehicleData::forwardJetEmitter (C++ member)

 	FlyingVehicleData::horizontalSurfaceForce (C++ member)

 	FlyingVehicleData::hoverHeight (C++ member)

 	FlyingVehicleData::jetSound (C++ member)

 	FlyingVehicleData::maneuveringForce (C++ member)

 	FlyingVehicleData::maxAutoSpeed (C++ member)

 	FlyingVehicleData::minTrailSpeed (C++ member)

 	FlyingVehicleData::rollForce (C++ member)

 	FlyingVehicleData::rotationalDrag (C++ member)

 	FlyingVehicleData::steeringForce (C++ member)

 	FlyingVehicleData::steeringRollForce (C++ member)

 	FlyingVehicleData::trailEmitter (C++ member)

 	FlyingVehicleData::verticalSurfaceForce (C++ member)

 	FlyingVehicleData::vertThrustMultiple (C++ member)

 	fmodDumpDSPInfo (C++ function)

 	fmodDumpMemoryStats (C++ function)

 	Forest::clear (C++ function)

 	Forest::dataFile (C++ member)

 	Forest::disableImposters (C++ member)

 	Forest::drawBounds (C++ member)

 	Forest::drawCells (C++ member)

 	Forest::forceImposters (C++ member)

 	Forest::isDirty (C++ function)

 	Forest::lodReflectScalar (C++ member)

 	Forest::regenCells (C++ function)

 	Forest::saveDataFile (C++ member)

 	ForestBrushElement::elevationMax (C++ member)

 	ForestBrushElement::elevationMin (C++ member)

 	ForestBrushElement::ForestItemData (C++ member)

 	ForestBrushElement::probability (C++ member)

 	ForestBrushElement::rotationRange (C++ member)

 	ForestBrushElement::scaleExponent (C++ member)

 	ForestBrushElement::scaleMax (C++ member)

 	ForestBrushElement::scaleMin (C++ member)

 	ForestBrushElement::sinkMax (C++ member)

 	ForestBrushElement::sinkMin (C++ member)

 	ForestBrushElement::sinkRadius (C++ member)

 	ForestBrushElement::slopeMax (C++ member)

 	ForestBrushElement::slopeMin (C++ member)

 	ForestItemData::branchAmp (C++ member)

 	ForestItemData::collidable (C++ member)

 	ForestItemData::dampingCoefficient (C++ member)

 	ForestItemData::detailAmp (C++ member)

 	ForestItemData::detailFreq (C++ member)

 	ForestItemData::mass (C++ member)

 	ForestItemData::radius (C++ member)

 	ForestItemData::rigidity (C++ member)

 	ForestItemData::shapeFile (C++ member)

 	ForestItemData::tightnessCoefficient (C++ member)

 	ForestItemData::trunkBendScale (C++ member)

 	ForestItemData::windScale (C++ member)

 	
 	ForestWindEmitter::attachToObject (C++ function)

 	ForestWindEmitter::gustFrequency (C++ member)

 	ForestWindEmitter::gustStrength (C++ member)

 	ForestWindEmitter::gustWobbleStrength (C++ member)

 	ForestWindEmitter::gustYawAngle (C++ member)

 	ForestWindEmitter::gustYawFrequency (C++ member)

 	ForestWindEmitter::hasMount (C++ member)

 	ForestWindEmitter::radialEmitter (C++ member)

 	ForestWindEmitter::radius (C++ member)

 	ForestWindEmitter::strength (C++ member)

 	ForestWindEmitter::turbulenceFrequency (C++ member)

 	ForestWindEmitter::turbulenceStrength (C++ member)

 	ForestWindEmitter::windEnabled (C++ member)

 	freeMemoryDump (C++ function)

 	fxFoliageReplicator::AllowedTerrainSlope (C++ member)

 	fxFoliageReplicator::AllowOnStatics (C++ member)

 	fxFoliageReplicator::AllowOnTerrain (C++ member)

 	fxFoliageReplicator::AllowOnWater (C++ member)

 	fxFoliageReplicator::AllowWaterSurface (C++ member)

 	fxFoliageReplicator::AlphaCutoff (C++ member)

 	fxFoliageReplicator::CullResolution (C++ member)

 	fxFoliageReplicator::DebugBoxHeight (C++ member)

 	fxFoliageReplicator::FadeInRegion (C++ member)

 	fxFoliageReplicator::FadeOutRegion (C++ member)

 	fxFoliageReplicator::FixAspectRatio (C++ member)

 	fxFoliageReplicator::FixSizeToMax (C++ member)

 	fxFoliageReplicator::FoliageCount (C++ member)

 	fxFoliageReplicator::FoliageFile (C++ member)

 	fxFoliageReplicator::FoliageRetries (C++ member)

 	fxFoliageReplicator::GroundAlpha (C++ member)

 	fxFoliageReplicator::HideFoliage (C++ member)

 	fxFoliageReplicator::InnerRadiusX (C++ member)

 	fxFoliageReplicator::InnerRadiusY (C++ member)

 	fxFoliageReplicator::LightOn (C++ member)

 	fxFoliageReplicator::LightSync (C++ member)

 	fxFoliageReplicator::lightTime (C++ member)

 	fxFoliageReplicator::MaxHeight (C++ member)

 	fxFoliageReplicator::MaxLuminance (C++ member)

 	fxFoliageReplicator::MaxSwayTime (C++ member)

 	fxFoliageReplicator::MaxWidth (C++ member)

 	fxFoliageReplicator::MinHeight (C++ member)

 	fxFoliageReplicator::MinLuminance (C++ member)

 	fxFoliageReplicator::MinSwayTime (C++ member)

 	fxFoliageReplicator::MinWidth (C++ member)

 	fxFoliageReplicator::OffsetZ (C++ member)

 	fxFoliageReplicator::OuterRadiusX (C++ member)

 	fxFoliageReplicator::OuterRadiusY (C++ member)

 	fxFoliageReplicator::PlacementAreaHeight (C++ member)

 	fxFoliageReplicator::PlacementColour (C++ member)

 	fxFoliageReplicator::RandomFlip (C++ member)

 	fxFoliageReplicator::seed (C++ member)

 	fxFoliageReplicator::ShowPlacementArea (C++ member)

 	fxFoliageReplicator::SwayMagFront (C++ member)

 	fxFoliageReplicator::SwayMagSide (C++ member)

 	fxFoliageReplicator::SwayOn (C++ member)

 	fxFoliageReplicator::SwaySync (C++ member)

 	fxFoliageReplicator::UseCulling (C++ member)

 	fxFoliageReplicator::UseDebugInfo (C++ member)

 	fxFoliageReplicator::useTrueBillboards (C++ member)

 	fxFoliageReplicator::ViewClosest (C++ member)

 	fxFoliageReplicator::ViewDistance (C++ member)

 	fxShapeReplicatedStatic::allowPlayerStep (C++ member)

 	fxShapeReplicatedStatic::collisionType (C++ member)

 	fxShapeReplicatedStatic::decalType (C++ member)

 	fxShapeReplicatedStatic::forceDetail (C++ member)

 	fxShapeReplicatedStatic::meshCulling (C++ member)

 	fxShapeReplicatedStatic::originSort (C++ member)

 	fxShapeReplicatedStatic::playAmbient (C++ member)

 	fxShapeReplicatedStatic::renderNormals (C++ member)

 	fxShapeReplicatedStatic::shapeName (C++ member)

 	fxShapeReplicatedStatic::skin (C++ member)

 	fxShapeReplicator::AlignToTerrain (C++ member)

 	fxShapeReplicator::AllowedTerrainSlope (C++ member)

 	fxShapeReplicator::AllowOnStatics (C++ member)

 	fxShapeReplicator::AllowOnTerrain (C++ member)

 	fxShapeReplicator::AllowOnWater (C++ member)

 	fxShapeReplicator::AllowWaterSurface (C++ member)

 	fxShapeReplicator::HideReplications (C++ member)

 	fxShapeReplicator::InnerRadiusX (C++ member)

 	fxShapeReplicator::InnerRadiusY (C++ member)

 	fxShapeReplicator::Interactions (C++ member)

 	fxShapeReplicator::OffsetZ (C++ member)

 	fxShapeReplicator::OuterRadiusX (C++ member)

 	fxShapeReplicator::OuterRadiusY (C++ member)

 	fxShapeReplicator::PlacementAreaHeight (C++ member)

 	fxShapeReplicator::PlacementColour (C++ member)

 	fxShapeReplicator::seed (C++ member)

 	fxShapeReplicator::ShapeCount (C++ member)

 	fxShapeReplicator::shapeFile (C++ member)

 	fxShapeReplicator::ShapeRetries (C++ member)

 	fxShapeReplicator::ShapeRotateMax (C++ member)

 	fxShapeReplicator::ShapeRotateMin (C++ member)

 	fxShapeReplicator::ShapeScaleMax (C++ member)

 	fxShapeReplicator::ShapeScaleMin (C++ member)

 	fxShapeReplicator::ShowPlacementArea (C++ member)

 	fxShapeReplicator::TerrainAlignment (C++ member)

G

 	
 	GameBase::applyImpulse (C++ function)

 	GameBase::applyRadialImpulse (C++ function)

 	GameBase::boundingBox (C++ member)

 	GameBase::dataBlock (C++ member)

 	GameBase::getDataBlock (C++ function)

 	GameBase::setControl (C++ function)

 	GameBase::setDataBlock (C++ function)

 	GameBaseData::category (C++ member)

 	GameBaseData::onAdd (C++ function)

 	GameBaseData::onMount (C++ function)

 	GameBaseData::onNewDataBlock (C++ function)

 	GameBaseData::onRemove (C++ function)

 	GameBaseData::onUnmount (C++ function)

 	GameConnection::activateGhosting (C++ function)

 	GameConnection::chaseCam (C++ function)

 	GameConnection::clearCameraObject (C++ function)

 	GameConnection::clearDisplayDevice (C++ function)

 	GameConnection::getCameraObject (C++ function)

 	GameConnection::getControlCameraDefaultFov (C++ function)

 	GameConnection::getControlCameraFov (C++ function)

 	GameConnection::getControlObject (C++ function)

 	GameConnection::getControlSchemeAbsoluteRotation (C++ function)

 	GameConnection::getDamageFlash (C++ function)

 	GameConnection::getServerConnection (C++ function)

 	GameConnection::getWhiteOut (C++ function)

 	GameConnection::initialControlSet (C++ function)

 	GameConnection::isAIControlled (C++ function)

 	GameConnection::isControlObjectRotDampedCamera (C++ function)

 	GameConnection::isDemoPlaying (C++ function)

 	GameConnection::isDemoRecording (C++ function)

 	GameConnection::isFirstPerson (C++ function)

 	GameConnection::listClassIDs (C++ function)

 	GameConnection::onConnectionAccepted (C++ function)

 	GameConnection::onConnectionDropped (C++ function)

 	GameConnection::onConnectionError (C++ function)

 	GameConnection::onConnectionTimedOut (C++ function)

 	GameConnection::onConnectRequestRejected (C++ function)

 	GameConnection::onConnectRequestTimedOut (C++ function)

 	GameConnection::onControlObjectChange (C++ function)

 	GameConnection::onDataBlocksDone (C++ function)

 	GameConnection::onDrop (C++ function)

 	GameConnection::onFlash (C++ function)

 	GameConnection::play2D (C++ function)

 	GameConnection::play3D (C++ function)

 	GameConnection::playDemo (C++ function)

 	GameConnection::resetGhosting (C++ function)

 	GameConnection::setBlackOut (C++ function)

 	GameConnection::setCameraObject (C++ function)

 	GameConnection::setConnectArgs (C++ function)

 	GameConnection::setControlCameraFov (C++ function)

 	GameConnection::setControlObject (C++ function)

 	GameConnection::setControlSchemeParameters (C++ function)

 	GameConnection::setFirstPerson (C++ function)

 	GameConnection::setJoinPassword (C++ function)

 	GameConnection::setLagIcon (C++ function)

 	GameConnection::setMissionCRC (C++ function)

 	GameConnection::startRecording (C++ function)

 	GameConnection::stopRecording (C++ function)

 	GameConnection::transmitDataBlocks (C++ function)

 	generateUUID (C++ function)

 	getActiveDDSFiles (C++ function)

 	getActiveLightManager (C++ function)

 	getAllUnsortedLights (C++ function)

 	getAppVersionNumber (C++ member)

 	getAppVersionString (C++ member)

 	getBestHDRFormat (C++ function)

 	getBitmapInfo (C++ function)

 	getBoxCenter (C++ function)

 	getBuildString (C++ member)

 	getCategoryOfClass (C++ function)

 	getCompileTimeString (C++ member)

 	getConeMesh (C++ function)

 	getCoreLangTable (C++ function)

 	getCurrentActionMap (C++ function)

 	getCurrentDirectory (C++ function)

 	getDefaultLight (C++ function)

 	getDescriptionOfClass (C++ function)

 	getDesktopResolution (C++ function)

 	getDirectoryList (C++ function)

 	getDisplayDeviceInformation (C++ function)

 	getDisplayDeviceList (C++ function)

 	getDSOPath (C++ function)

 	getEngineName (C++ member)

 	getExecutableName (C++ function)

 	getExtended (C++ function)

 	getField (C++ function)

 	getFieldCount (C++ function)

 	getFields (C++ function)

 	getFileCount (C++ function)

 	getFileCountMultiExpr (C++ function)

 	getFileCRC (C++ function)

 	getFunctionPackage (C++ function)

 	getLightBinManager (C++ function)

 	getLightManagerNames (C++ function), [1]

 	getMainDotCsDir (C++ function)

 	getMaterialMapping (C++ function)

 	getMax (C++ function)

 	getMethodPackage (C++ function)

 	getMin (C++ function)

 	getMissionAreaServerObject (C++ function)

 	getOVRHMDChromaticAbCorrection (C++ function)

 	getOVRHMDCount (C++ function)

 	getOVRHMDCurrentIPD (C++ function)

 	getOVRHMDDisplayDesktopPos (C++ function)

 	getOVRHMDDisplayDeviceId (C++ function)

 	getOVRHMDDisplayDeviceName (C++ function)

 	getOVRHMDDistortionCoefficients (C++ function)

 	getOVRHMDDistortionScale (C++ function)

 	getOVRHMDEyeXOffsets (C++ function)

 	getOVRHMDManufacturer (C++ function)

 	getOVRHMDProductName (C++ function)

 	getOVRHMDProfileIPD (C++ function)

 	getOVRHMDResolution (C++ function)

 	getOVRHMDVersion (C++ function)

 	getOVRHMDXCenterOffset (C++ function)

 	getOVRHMDYFOV (C++ function)

 	getOVRSensorAcceleration (C++ function)

 	getOVRSensorAngVelocity (C++ function)

 	getOVRSensorCount (C++ function)

 	getOVRSensorEulerRotation (C++ function)

 	getOVRSensorGravityCorrection (C++ function)

 	getOVRSensorMagnetometer (C++ function)

 	getOVRSensorMagnetometerCalibrated (C++ function)

 	getOVRSensorPredictionTime (C++ function)

 	getOVRSensorYawCorrection (C++ function)

 	getPackageList (C++ function)

 	getPixelShaderVersion (C++ function)

 	getRandom (C++ function)

 	getRandomSeed (C++ function)

 	getRazerHydraControllerPos (C++ function)

 	getRazerHydraControllerRot (C++ function)

 	getRazerHydraControllerTransform (C++ function)

 	getRealTime (C++ function)

 	getRecord (C++ function)

 	getRecordCount (C++ function)

 	getRecords (C++ function)

 	getSceneLightingInterface (C++ function)

 	getSimTime (C++ function)

 	getSpecialLight (C++ function)

 	getSphereMesh (C++ function)

 	getSubStr (C++ function)

 	getTag (C++ function)

 	getTaggedString (C++ function)

 	getTerrainHeight (C++ function), [1]

 	getTerrainHeightBelowPosition (C++ function), [1]

 	getTerrainUnderWorldPoint (C++ function), [1]

 	getTextureProfileStats (C++ function)

 	getTrailingNumber (C++ function)

 	getVariable (C++ function)

 	getVersionNumber (C++ member)

 	getVersionString (C++ member)

 	getWebDeployment (C++ function)

 	getWord (C++ function)

 	getWordCount (C++ function)

 	getWords (C++ function)

 	getWorkingDirectory (C++ function)

 	getWorldToLightProj (C++ function)

 	getXInputState (C++ function)

 	GFXCardProfilerAPI::getCard (C++ function)

 	GFXCardProfilerAPI::getRenderer (C++ function)

 	GFXCardProfilerAPI::getVendor (C++ function)

 	GFXCardProfilerAPI::getVersion (C++ function)

 	GFXCardProfilerAPI::getVideoMemoryMB (C++ function)

 	GFXCardProfilerAPI::queryProfile (C++ function)

 	GFXCardProfilerAPI::setCapability (C++ function)

 	GFXInit::createNullDevice (C++ function)

 	GFXInit::getAdapterCount (C++ function)

 	GFXInit::getAdapterMode (C++ function)

 	GFXInit::getAdapterModeCount (C++ function)

 	GFXInit::getAdapterName (C++ function)

 	GFXInit::getAdapterOutputName (C++ function)

 	GFXInit::getAdapterShaderModel (C++ function)

 	GFXInit::getAdapterType (C++ function)

 	GFXInit::getDefaultAdapterIndex (C++ function)

 	GFXSamplerStateData::addressModeU (C++ member)

 	GFXSamplerStateData::addressModeV (C++ member)

 	GFXSamplerStateData::addressModeW (C++ member)

 	GFXSamplerStateData::alphaArg1 (C++ member)

 	GFXSamplerStateData::alphaArg2 (C++ member)

 	GFXSamplerStateData::alphaArg3 (C++ member)

 	GFXSamplerStateData::alphaOp (C++ member)

 	GFXSamplerStateData::colorArg1 (C++ member)

 	GFXSamplerStateData::colorArg2 (C++ member)

 	GFXSamplerStateData::colorArg3 (C++ member)

 	GFXSamplerStateData::magFilter (C++ member)

 	GFXSamplerStateData::maxAnisotropy (C++ member)

 	GFXSamplerStateData::minFilter (C++ member)

 	GFXSamplerStateData::mipFilter (C++ member)

 	GFXSamplerStateData::mipLODBias (C++ member)

 	GFXSamplerStateData::resultArg (C++ member)

 	GFXSamplerStateData::textureColorOp (C++ member)

 	GFXSamplerStateData::textureTransform (C++ member)

 	GFXStateBlockData::alphaDefined (C++ member)

 	GFXStateBlockData::alphaTestEnable (C++ member)

 	GFXStateBlockData::alphaTestFunc (C++ member)

 	GFXStateBlockData::alphaTestRef (C++ member)

 	GFXStateBlockData::blendDefined (C++ member)

 	GFXStateBlockData::blendDest (C++ member)

 	GFXStateBlockData::blendEnable (C++ member)

 	GFXStateBlockData::blendOp (C++ member)

 	GFXStateBlockData::blendSrc (C++ member)

 	GFXStateBlockData::colorWriteAlpha (C++ member)

 	GFXStateBlockData::colorWriteBlue (C++ member)

 	GFXStateBlockData::colorWriteDefined (C++ member)

 	GFXStateBlockData::colorWriteGreen (C++ member)

 	GFXStateBlockData::colorWriteRed (C++ member)

 	GFXStateBlockData::cullDefined (C++ member)

 	GFXStateBlockData::cullMode (C++ member)

 	GFXStateBlockData::ffLighting (C++ member)

 	GFXStateBlockData::samplersDefined (C++ member)

 	GFXStateBlockData::samplerStates (C++ member)

 	GFXStateBlockData::separateAlphaBlendDefined (C++ member)

 	GFXStateBlockData::separateAlphaBlendDest (C++ member)

 	GFXStateBlockData::separateAlphaBlendEnable (C++ member)

 	GFXStateBlockData::separateAlphaBlendOp (C++ member)

 	GFXStateBlockData::separateAlphaBlendSrc (C++ member)

 	GFXStateBlockData::stencilDefined (C++ member)

 	GFXStateBlockData::stencilEnable (C++ member)

 	GFXStateBlockData::stencilFailOp (C++ member)

 	GFXStateBlockData::stencilFunc (C++ member)

 	GFXStateBlockData::stencilMask (C++ member)

 	GFXStateBlockData::stencilPassOp (C++ member)

 	GFXStateBlockData::stencilRef (C++ member)

 	GFXStateBlockData::stencilWriteMask (C++ member)

 	GFXStateBlockData::stencilZFailOp (C++ member)

 	GFXStateBlockData::textureFactor (C++ member)

 	GFXStateBlockData::vertexColorEnable (C++ member)

 	GFXStateBlockData::zBias (C++ member)

 	GFXStateBlockData::zDefined (C++ member)

 	GFXStateBlockData::zEnable (C++ member)

 	GFXStateBlockData::zFunc (C++ member)

 	GFXStateBlockData::zSlopeBias (C++ member)

 	GFXStateBlockData::zWriteEnable (C++ member)

 	gotoWebPage (C++ function)

 	GroundCover::billboardUVs (C++ member)

 	GroundCover::clumpExponent (C++ member)

 	GroundCover::clumpRadius (C++ member)

 	GroundCover::dissolveRadius (C++ member)

 	GroundCover::gridSize (C++ member)

 	GroundCover::invertLayer (C++ member)

 	GroundCover::layer (C++ member)

 	GroundCover::lockFrustum (C++ member)

 	GroundCover::Material (C++ member)

 	GroundCover::maxBillboardTiltAngle (C++ member)

 	GroundCover::maxClumpCount (C++ member)

 	GroundCover::maxElements (C++ member)

 	GroundCover::maxElevation (C++ member)

 	GroundCover::maxSlope (C++ member)

 	GroundCover::minClumpCount (C++ member)

 	GroundCover::minElevation (C++ member)

 	GroundCover::noBillboards (C++ member)

 	GroundCover::noShapes (C++ member)

 	GroundCover::probability (C++ member)

 	GroundCover::radius (C++ member)

 	GroundCover::reflectScale (C++ member)

 	GroundCover::renderCells (C++ member)

 	GroundCover::renderedBatches (C++ member)

 	GroundCover::renderedBillboards (C++ member)

 	GroundCover::renderedCells (C++ member)

 	GroundCover::renderedShapes (C++ member)

 	GroundCover::seed (C++ member)

 	GroundCover::shapeCullRadius (C++ member)

 	GroundCover::shapeFilename (C++ member)

 	GroundCover::shapesCastShadows (C++ member)

 	GroundCover::sizeExponent (C++ member)

 	GroundCover::sizeMax (C++ member)

 	GroundCover::sizeMin (C++ member)

 	GroundCover::windDirection (C++ member)

 	GroundCover::windGustFrequency (C++ member)

 	GroundCover::windGustLength (C++ member)

 	GroundCover::windGustStrength (C++ member)

 	GroundCover::windScale (C++ member)

 	GroundCover::windTurbulenceFrequency (C++ member)

 	GroundCover::windTurbulenceStrength (C++ member)

 	GroundCover::zOffset (C++ member)

 	GroundPlane::Material (C++ member)

 	GroundPlane::postApply (C++ function)

 	GroundPlane::scaleU (C++ member)

 	GroundPlane::scaleV (C++ member)

 	GroundPlane::squareSize (C++ member)

 	GuiAutoScrollCtrl::childBorder (C++ member)

 	GuiAutoScrollCtrl::isLooping (C++ member)

 	GuiAutoScrollCtrl::onComplete (C++ function)

 	GuiAutoScrollCtrl::onReset (C++ function)

 	GuiAutoScrollCtrl::onStart (C++ function)

 	GuiAutoScrollCtrl::onTick (C++ function)

 	GuiAutoScrollCtrl::reset (C++ function)

 	GuiAutoScrollCtrl::resetDelay (C++ member)

 	GuiAutoScrollCtrl::scrollDirection (C++ member)

 	GuiAutoScrollCtrl::scrollOutOfSight (C++ member)

 	GuiAutoScrollCtrl::scrollSpeed (C++ member)

 	GuiAutoScrollCtrl::startDelay (C++ member)

 	GuiBitmapButtonCtrl::autoFitExtents (C++ member)

 	GuiBitmapButtonCtrl::bitmap (C++ member)

 	GuiBitmapButtonCtrl::bitmapMode (C++ member)

 	GuiBitmapButtonCtrl::onAltClick (C++ function)

 	GuiBitmapButtonCtrl::onCtrlClick (C++ function)

 	GuiBitmapButtonCtrl::onDefaultClick (C++ function)

 	GuiBitmapButtonCtrl::onShiftClick (C++ function)

 	GuiBitmapButtonCtrl::setBitmap (C++ function)

 	GuiBitmapButtonCtrl::useModifiers (C++ member)

 	GuiBitmapButtonCtrl::useStates (C++ member)

 	GuiBitmapCtrl::bitmap (C++ member)

 	GuiBitmapCtrl::setBitmap (C++ function), [1]

 	GuiBitmapCtrl::setValue (C++ function)

 	GuiBitmapCtrl::wrap (C++ member)

 	GuiButtonBaseCtrl::buttonType (C++ member)

 	GuiButtonBaseCtrl::getText (C++ function)

 	GuiButtonBaseCtrl::groupNum (C++ member)

 	GuiButtonBaseCtrl::onClick (C++ function)

 	GuiButtonBaseCtrl::onDoubleClick (C++ function)

 	GuiButtonBaseCtrl::onMouseDown (C++ function)

 	GuiButtonBaseCtrl::onMouseDragged (C++ function)

 	GuiButtonBaseCtrl::onMouseEnter (C++ function)

 	GuiButtonBaseCtrl::onMouseLeave (C++ function)

 	GuiButtonBaseCtrl::onMouseUp (C++ function)

 	GuiButtonBaseCtrl::onRightClick (C++ function)

 	GuiButtonBaseCtrl::performClick (C++ function)

 	GuiButtonBaseCtrl::resetState (C++ function)

 	GuiButtonBaseCtrl::setStateOn (C++ function)

 	GuiButtonBaseCtrl::setText (C++ function)

 	GuiButtonBaseCtrl::setTextID (C++ function)

 	GuiButtonBaseCtrl::text (C++ member)

 	GuiButtonBaseCtrl::textID (C++ member)

 	GuiButtonBaseCtrl::useMouseEvents (C++ member)

 	GuiCanvas::alwaysHandleMouseButtons (C++ member)

 	GuiCanvas::clientToScreen (C++ function)

 	GuiCanvas::cursorOff (C++ function)

 	GuiCanvas::cursorOn (C++ function)

 	GuiCanvas::findFirstMatchingMonitor (C++ function)

 	GuiCanvas::getContent (C++ function)

 	GuiCanvas::getCursorPos (C++ function)

 	GuiCanvas::getExtent (C++ function)

 	GuiCanvas::getMode (C++ function)

 	GuiCanvas::getModeCount (C++ function)

 	GuiCanvas::getMonitorCount (C++ function)

 	GuiCanvas::getMonitorName (C++ function)

 	GuiCanvas::getMonitorRect (C++ function)

 	GuiCanvas::getMouseControl (C++ function)

 	GuiCanvas::getVideoMode (C++ function)

 	GuiCanvas::getWindowPosition (C++ function)

 	GuiCanvas::hideCursor (C++ function)

 	GuiCanvas::isCursorOn (C++ function)

 	GuiCanvas::isCursorShown (C++ function)

 	GuiCanvas::isFullscreen (C++ function)

 	GuiCanvas::isMaximized (C++ function)

 	GuiCanvas::isMinimized (C++ function)

 	GuiCanvas::maximizeWindow (C++ function)

 	GuiCanvas::minimizeWindow (C++ function)

 	GuiCanvas::numFences (C++ member)

 	GuiCanvas::popDialog (C++ function), [1]

 	GuiCanvas::popLayer (C++ function), [1]

 	GuiCanvas::pushDialog (C++ function)

 	GuiCanvas::renderFront (C++ function)

 	GuiCanvas::repaint (C++ function)

 	GuiCanvas::reset (C++ function)

 	GuiCanvas::restoreWindow (C++ function)

 	GuiCanvas::screenToClient (C++ function)

 	GuiCanvas::setContent (C++ function)

 	GuiCanvas::setCursor (C++ function)

 	GuiCanvas::setCursorPos (C++ function), [1]

 	GuiCanvas::setFocus (C++ function)

 	GuiCanvas::setVideoMode (C++ function)

 	GuiCanvas::setWindowPosition (C++ function)

 	GuiCanvas::setWindowTitle (C++ function)

 	GuiCanvas::showCursor (C++ function)

 	GuiCanvas::toggleFullscreen (C++ function)

 	GuiCheckBoxCtrl::isStateOn (C++ function)

 	GuiCheckBoxCtrl::setStateOn (C++ function)

 	GuiChunkedBitmapCtrl::bitmap (C++ member)

 	GuiChunkedBitmapCtrl::setBitmap (C++ function)

 	GuiChunkedBitmapCtrl::tile (C++ member)

 	GuiChunkedBitmapCtrl::useVariable (C++ member)

 	GuiClockHud::fillColor (C++ member)

 	GuiClockHud::frameColor (C++ member)

 	GuiClockHud::getTime (C++ function)

 	GuiClockHud::setReverseTime (C++ function)

 	GuiClockHud::setTime (C++ function)

 	GuiClockHud::showFill (C++ member)

 	GuiClockHud::showFrame (C++ member)

 	GuiClockHud::textColor (C++ member)

 	GuiConsole::onMessageSelected (C++ function)

 	GuiConsoleEditCtrl::useSiblingScroller (C++ member)

 	GuiContainer::anchorBottom (C++ member)

 	GuiContainer::anchorLeft (C++ member)

 	GuiContainer::anchorRight (C++ member)

 	GuiContainer::anchorTop (C++ member)

 	GuiContainer::docking (C++ member)

 	GuiContainer::margin (C++ member)

 	GuiContainer::padding (C++ member)

 	GuiControl::accelerator (C++ member)

 	GuiControl::active (C++ member)

 	GuiControl::addGuiControl (C++ function)

 	GuiControl::altCommand (C++ member)

 	GuiControl::clearFirstResponder (C++ function)

 	GuiControl::command (C++ member)

 	GuiControl::controlIsChild (C++ function)

 	GuiControl::extent (C++ member)

 	GuiControl::findHitControl (C++ function)

 	GuiControl::findHitControls (C++ function)

 	GuiControl::getAspect (C++ function)

 	GuiControl::getCenter (C++ function)

 	GuiControl::getExtent (C++ function)

 	GuiControl::getFirstResponder (C++ function)

 	GuiControl::getGlobalCenter (C++ function)

 	GuiControl::getGlobalPosition (C++ function)

 	GuiControl::getMinExtent (C++ function)

 	GuiControl::getParent (C++ function)

 	GuiControl::getPosition (C++ function)

 	GuiControl::getRoot (C++ function)

 	GuiControl::getValue (C++ member)

 	GuiControl::horizSizing (C++ member)

 	GuiControl::hovertime (C++ member)

 	GuiControl::isActive (C++ member)

 	GuiControl::isAwake (C++ function)

 	GuiControl::isContainer (C++ member)

 	GuiControl::isFirstResponder (C++ function)

 	GuiControl::isMouseLocked (C++ function)

 	GuiControl::isVisible (C++ function)

 	GuiControl::langTableMod (C++ member)

 	GuiControl::makeFirstResponder (C++ function)

 	GuiControl::minExtent (C++ member)

 	GuiControl::modal (C++ member)

 	GuiControl::onAction (C++ function)

 	GuiControl::onActive (C++ function)

 	GuiControl::onAdd (C++ function)

 	GuiControl::onControlDragEnter (C++ function)

 	GuiControl::onControlDragExit (C++ function)

 	GuiControl::onControlDragged (C++ function)

 	GuiControl::onControlDropped (C++ function)

 	GuiControl::onDialogPop (C++ function)

 	GuiControl::onDialogPush (C++ function)

 	GuiControl::onGainFirstResponder (C++ function)

 	GuiControl::onLoseFirstResponder (C++ function)

 	GuiControl::onRemove (C++ function)

 	GuiControl::onSleep (C++ function)

 	GuiControl::onVisible (C++ function)

 	GuiControl::onWake (C++ function)

 	GuiControl::pointInControl (C++ function)

 	GuiControl::position (C++ member)

 	GuiControl::profile (C++ member)

 	GuiControl::resize (C++ function)

 	GuiControl::setActive (C++ function)

 	GuiControl::setCenter (C++ function)

 	GuiControl::setExtent (C++ function), [1]

 	GuiControl::setFirstResponder (C++ function)

 	(C++ member)

 	GuiControl::setPosition (C++ function)

 	GuiControl::setPositionGlobal (C++ function)

 	GuiControl::setProfile (C++ function)

 	GuiControl::setValue (C++ function)

 	GuiControl::setVisible (C++ function)

 	GuiControl::tooltip (C++ member)

 	GuiControl::tooltipProfile (C++ member)

 	GuiControl::variable (C++ member)

 	GuiControl::vertSizing (C++ member)

 	GuiControl::visible (C++ member)

 	GuiControlArrayControl::colCount (C++ member)

 	GuiControlArrayControl::colSizes (C++ member)

 	GuiControlArrayControl::colSpacing (C++ member)

 	GuiControlArrayControl::rowSize (C++ member)

 	GuiControlArrayControl::rowSpacing (C++ member)

 	GuiControlProfile::autoSizeHeight (C++ member)

 	GuiControlProfile::autoSizeWidth (C++ member)

 	GuiControlProfile::bevelColorHL (C++ member)

 	GuiControlProfile::bevelColorLL (C++ member)

 	GuiControlProfile::bitmap (C++ member)

 	GuiControlProfile::border (C++ member)

 	GuiControlProfile::borderColor (C++ member)

 	GuiControlProfile::borderColorHL (C++ member)

 	GuiControlProfile::borderColorNA (C++ member)

 	GuiControlProfile::borderThickness (C++ member)

 	GuiControlProfile::canKeyFocus (C++ member)

 	GuiControlProfile::category (C++ member)

 	GuiControlProfile::cursorColor (C++ member)

 	GuiControlProfile::fillColor (C++ member)

 	GuiControlProfile::fillColorHL (C++ member)

 	GuiControlProfile::fillColorNA (C++ member)

 	GuiControlProfile::fillColorSEL (C++ member)

 	GuiControlProfile::fontCharset (C++ member)

 	GuiControlProfile::fontColor (C++ member)

 	GuiControlProfile::fontColorHL (C++ member)

 	GuiControlProfile::fontColorLink (C++ member)

 	GuiControlProfile::fontColorLinkHL (C++ member)

 	GuiControlProfile::fontColorNA (C++ member)

 	GuiControlProfile::fontColors (C++ member)

 	GuiControlProfile::fontColorSEL (C++ member)

 	GuiControlProfile::fontSize (C++ member)

 	GuiControlProfile::fontType (C++ member)

 	GuiControlProfile::getStringWidth (C++ function)

 	GuiControlProfile::hasBitmapArray (C++ member)

 	GuiControlProfile::justify (C++ member)

 	GuiControlProfile::modal (C++ member)

 	GuiControlProfile::mouseOverSelected (C++ member)

 	GuiControlProfile::numbersOnly (C++ member)

 	GuiControlProfile::opaque (C++ member)

 	GuiControlProfile::profileForChildren (C++ member)

 	GuiControlProfile::returnTab (C++ member)

 	GuiControlProfile::soundButtonDown (C++ member)

 	GuiControlProfile::soundButtonOver (C++ member)

 	GuiControlProfile::tab (C++ member)

 	GuiControlProfile::textOffset (C++ member)

 	GuiCrossHairHud::damageFillColor (C++ member)

 	GuiCrossHairHud::damageFrameColor (C++ member)

 	GuiCrossHairHud::damageOffset (C++ member)

 	GuiCrossHairHud::damageRect (C++ member)

 	GuiCursor::bitmapName (C++ member)

 	GuiCursor::hotSpot (C++ member)

 	GuiCursor::renderOffset (C++ member)

 	GuiDirectoryFileListCtrl::fileFilter (C++ member)

 	GuiDirectoryFileListCtrl::filePath (C++ member)

 	GuiDirectoryFileListCtrl::getSelectedFile (C++ function)

 	GuiDirectoryFileListCtrl::getSelectedFiles (C++ function)

 	GuiDirectoryFileListCtrl::reload (C++ function)

 	GuiDirectoryFileListCtrl::setFilter (C++ function)

 	GuiDirectoryFileListCtrl::setPath (C++ function)

 	GuiDragAndDropControl::deleteOnMouseUp (C++ member)

 	GuiDragAndDropControl::startDragging (C++ function)

 	GuiDynamicCtrlArrayControl::autoCellSize (C++ member)

 	GuiDynamicCtrlArrayControl::colCount (C++ member)

 	GuiDynamicCtrlArrayControl::colSize (C++ member)

 	GuiDynamicCtrlArrayControl::colSpacing (C++ member)

 	GuiDynamicCtrlArrayControl::dynamicSize (C++ member)

 	GuiDynamicCtrlArrayControl::fillRowFirst (C++ member)

 	GuiDynamicCtrlArrayControl::frozen (C++ member)

 	GuiDynamicCtrlArrayControl::padding (C++ member)

 	GuiDynamicCtrlArrayControl::refresh (C++ function)

 	GuiDynamicCtrlArrayControl::rowCount (C++ member)

 	GuiDynamicCtrlArrayControl::rowSize (C++ member)

 	GuiDynamicCtrlArrayControl::rowSpacing (C++ member)

 	GuiFadeinBitmapCtrl::click (C++ function)

 	GuiFadeinBitmapCtrl::done (C++ member)

 	GuiFadeinBitmapCtrl::fadeColor (C++ member)

 	GuiFadeinBitmapCtrl::fadeInEase (C++ member)

 	GuiFadeinBitmapCtrl::fadeInTime (C++ member)

 	GuiFadeinBitmapCtrl::fadeOutEase (C++ member)

 	GuiFadeinBitmapCtrl::fadeOutTime (C++ member)

 	GuiFadeinBitmapCtrl::onDone (C++ function)

 	GuiFadeinBitmapCtrl::waitTime (C++ member)

 	GuiFrameSetCtrl::addColumn (C++ function)

 	GuiFrameSetCtrl::addRow (C++ function)

 	GuiFrameSetCtrl::autoBalance (C++ member)

 	GuiFrameSetCtrl::borderColor (C++ member)

 	GuiFrameSetCtrl::borderEnable (C++ member)

 	GuiFrameSetCtrl::borderMovable (C++ member)

 	GuiFrameSetCtrl::borderWidth (C++ member)

 	GuiFrameSetCtrl::columns (C++ member)

 	GuiFrameSetCtrl::frameBorder (C++ function)

 	GuiFrameSetCtrl::frameMinExtent (C++ function)

 	GuiFrameSetCtrl::frameMovable (C++ function)

 	GuiFrameSetCtrl::framePadding (C++ function)

 	GuiFrameSetCtrl::fudgeFactor (C++ member)

 	GuiFrameSetCtrl::getColumnCount (C++ function)

 	GuiFrameSetCtrl::getColumnOffset (C++ function)

 	GuiFrameSetCtrl::getFramePadding (C++ function)

 	GuiFrameSetCtrl::getRowCount (C++ function)

 	GuiFrameSetCtrl::getRowOffset (C++ function)

 	GuiFrameSetCtrl::removeColumn (C++ function)

 	GuiFrameSetCtrl::removeRow (C++ function)

 	GuiFrameSetCtrl::rows (C++ member)

 	GuiFrameSetCtrl::setColumnOffset (C++ function)

 	GuiFrameSetCtrl::setRowOffset (C++ function)

 	GuiFrameSetCtrl::updateSizes (C++ function)

 	GuiGameListMenuCtrl::activateRow (C++ function)

 	GuiGameListMenuCtrl::addRow (C++ function)

 	GuiGameListMenuCtrl::callbackOnA (C++ member)

 	
 	GuiGameListMenuCtrl::callbackOnB (C++ member)

 	GuiGameListMenuCtrl::callbackOnX (C++ member)

 	GuiGameListMenuCtrl::callbackOnY (C++ member)

 	GuiGameListMenuCtrl::debugRender (C++ member)

 	GuiGameListMenuCtrl::getRowCount (C++ function)

 	GuiGameListMenuCtrl::getRowLabel (C++ function)

 	GuiGameListMenuCtrl::getSelectedRow (C++ function)

 	GuiGameListMenuCtrl::isRowEnabled (C++ function)

 	GuiGameListMenuCtrl::onChange (C++ function)

 	GuiGameListMenuCtrl::setRowEnabled (C++ function)

 	GuiGameListMenuCtrl::setRowLabel (C++ function)

 	GuiGameListMenuCtrl::setSelected (C++ function)

 	GuiGameListMenuProfile::hitAreaLowerRight (C++ member)

 	GuiGameListMenuProfile::hitAreaUpperLeft (C++ member)

 	GuiGameListMenuProfile::iconOffset (C++ member)

 	GuiGameListMenuProfile::rowSize (C++ member)

 	GuiGameListOptionsCtrl::addRow (C++ function)

 	GuiGameListOptionsCtrl::getCurrentOption (C++ function)

 	GuiGameListOptionsCtrl::selectOption (C++ function)

 	GuiGameListOptionsCtrl::setOptions (C++ function)

 	GuiGameListOptionsProfile::columnSplit (C++ member)

 	GuiGameListOptionsProfile::rightPad (C++ member)

 	GuiGraphCtrl::addAutoPlot (C++ function)

 	GuiGraphCtrl::addDatum (C++ function)

 	GuiGraphCtrl::centerY (C++ member)

 	GuiGraphCtrl::getDatum (C++ function)

 	GuiGraphCtrl::matchScale (C++ function)

 	GuiGraphCtrl::plotColor (C++ member)

 	GuiGraphCtrl::plotInterval (C++ member)

 	GuiGraphCtrl::plotType (C++ member)

 	GuiGraphCtrl::plotVariable (C++ member)

 	GuiGraphCtrl::removeAutoPlot (C++ function)

 	GuiGraphCtrl::setGraphType (C++ function)

 	GuiHealthBarHud::damageFillColor (C++ member)

 	GuiHealthBarHud::displayEnergy (C++ member)

 	GuiHealthBarHud::fillColor (C++ member)

 	GuiHealthBarHud::frameColor (C++ member)

 	GuiHealthBarHud::pulseRate (C++ member)

 	GuiHealthBarHud::pulseThreshold (C++ member)

 	GuiHealthBarHud::showFill (C++ member)

 	GuiHealthBarHud::showFrame (C++ member)

 	GuiHealthTextHud::fillColor (C++ member)

 	GuiHealthTextHud::frameColor (C++ member)

 	GuiHealthTextHud::pulseRate (C++ member)

 	GuiHealthTextHud::pulseThreshold (C++ member)

 	GuiHealthTextHud::showEnergy (C++ member)

 	GuiHealthTextHud::showFill (C++ member)

 	GuiHealthTextHud::showFrame (C++ member)

 	GuiHealthTextHud::showTrueValue (C++ member)

 	GuiHealthTextHud::textColor (C++ member)

 	GuiHealthTextHud::warningColor (C++ member)

 	GuiHealthTextHud::warnThreshold (C++ member)

 	GuiIconButtonCtrl::autoSize (C++ member)

 	GuiIconButtonCtrl::buttonMargin (C++ member)

 	GuiIconButtonCtrl::iconBitmap (C++ member)

 	GuiIconButtonCtrl::iconLocation (C++ member)

 	GuiIconButtonCtrl::makeIconSquare (C++ member)

 	GuiIconButtonCtrl::setBitmap (C++ function)

 	GuiIconButtonCtrl::sizeIconToButton (C++ member)

 	GuiIconButtonCtrl::textLocation (C++ member)

 	GuiIconButtonCtrl::textMargin (C++ member)

 	GuiInputCtrl::onInputEvent (C++ function)

 	GuiListBoxCtrl::addFilteredItem (C++ function)

 	GuiListBoxCtrl::allowMultipleSelections (C++ member)

 	GuiListBoxCtrl::clearItemColor (C++ function)

 	GuiListBoxCtrl::clearItems (C++ function)

 	GuiListBoxCtrl::clearSelection (C++ function)

 	GuiListBoxCtrl::colorBullet (C++ member)

 	GuiListBoxCtrl::deleteItem (C++ function)

 	GuiListBoxCtrl::doMirror (C++ function)

 	GuiListBoxCtrl::findItemText (C++ function)

 	GuiListBoxCtrl::fitParentWidth (C++ member)

 	GuiListBoxCtrl::getItemCount (C++ function)

 	GuiListBoxCtrl::getItemObject (C++ function)

 	GuiListBoxCtrl::getItemText (C++ function)

 	GuiListBoxCtrl::getLastClickItem (C++ function)

 	GuiListBoxCtrl::getSelCount (C++ function)

 	GuiListBoxCtrl::getSelectedItem (C++ function)

 	GuiListBoxCtrl::getSelectedItems (C++ function)

 	GuiListBoxCtrl::insertItem (C++ function)

 	GuiListBoxCtrl::isObjectMirrored (C++ function)

 	GuiListBoxCtrl::makeNameCallback (C++ member)

 	GuiListBoxCtrl::mirrorSet (C++ member)

 	GuiListBoxCtrl::onClearSelection (C++ function)

 	GuiListBoxCtrl::onDeleteKey (C++ function)

 	GuiListBoxCtrl::onDoubleClick (C++ function)

 	GuiListBoxCtrl::onMouseDragged (C++ function)

 	GuiListBoxCtrl::onMouseUp (C++ function)

 	GuiListBoxCtrl::onSelect (C++ function)

 	GuiListBoxCtrl::onUnselect (C++ function)

 	GuiListBoxCtrl::removeFilteredItem (C++ function)

 	GuiListBoxCtrl::setCurSel (C++ function)

 	GuiListBoxCtrl::setCurSelRange (C++ function)

 	GuiListBoxCtrl::setItemColor (C++ function)

 	GuiListBoxCtrl::setItemText (C++ function)

 	GuiListBoxCtrl::setItemTooltip (C++ function)

 	GuiListBoxCtrl::setMultipleSelection (C++ function)

 	GuiListBoxCtrl::setSelected (C++ function)

 	GuiMenuBar::addMenu (C++ function)

 	GuiMenuBar::addMenuItem (C++ function)

 	GuiMenuBar::addSubmenuItem (C++ function)

 	GuiMenuBar::clearMenuItems (C++ function)

 	GuiMenuBar::clearMenus (C++ function)

 	GuiMenuBar::clearSubmenuItems (C++ function)

 	GuiMenuBar::onMenuItemSelect (C++ function)

 	GuiMenuBar::onMenuSelect (C++ function)

 	GuiMenuBar::onMouseInMenu (C++ function)

 	GuiMenuBar::onSubmenuSelect (C++ function)

 	GuiMenuBar::padding (C++ member)

 	GuiMenuBar::removeMenu (C++ function)

 	GuiMenuBar::removeMenuItem (C++ function)

 	GuiMenuBar::setCheckmarkBitmapIndex (C++ function)

 	GuiMenuBar::setMenuBitmapIndex (C++ function)

 	GuiMenuBar::setMenuItemBitmap (C++ function)

 	GuiMenuBar::setMenuItemChecked (C++ function)

 	GuiMenuBar::setMenuItemEnable (C++ function)

 	GuiMenuBar::setMenuItemSubmenuState (C++ function)

 	GuiMenuBar::setMenuItemText (C++ function)

 	GuiMenuBar::setMenuItemVisible (C++ function)

 	GuiMenuBar::setMenuMargins (C++ function)

 	GuiMenuBar::setMenuText (C++ function)

 	GuiMenuBar::setMenuVisible (C++ function)

 	GuiMenuBar::setSubmenuItemChecked (C++ function)

 	GuiMessageVectorCtrl::allowedMatches (C++ member)

 	GuiMessageVectorCtrl::attach (C++ function)

 	GuiMessageVectorCtrl::detach (C++ function)

 	GuiMessageVectorCtrl::lineContinuedIndex (C++ member)

 	GuiMessageVectorCtrl::lineSpacing (C++ member)

 	GuiMessageVectorCtrl::matchColor (C++ member)

 	GuiMessageVectorCtrl::maxColorIndex (C++ member)

 	GuiMLTextCtrl::addText (C++ function)

 	GuiMLTextCtrl::allowColorChars (C++ member)

 	GuiMLTextCtrl::deniedSound (C++ member)

 	GuiMLTextCtrl::forceReflow (C++ function)

 	GuiMLTextCtrl::getText (C++ function)

 	GuiMLTextCtrl::lineSpacing (C++ member)

 	GuiMLTextCtrl::maxChars (C++ member)

 	GuiMLTextCtrl::onResize (C++ function)

 	GuiMLTextCtrl::onURL (C++ function)

 	GuiMLTextCtrl::scrollToBottom (C++ function)

 	GuiMLTextCtrl::scrollToTag (C++ function)

 	GuiMLTextCtrl::scrollToTop (C++ function)

 	GuiMLTextCtrl::setAlpha (C++ function)

 	GuiMLTextCtrl::setCursorPosition (C++ function)

 	GuiMLTextCtrl::setText (C++ function)

 	GuiMLTextCtrl::text (C++ member)

 	GuiMLTextCtrl::useURLMouseCursor (C++ member)

 	GuiMLTextEditCtrl::escapeCommand (C++ member)

 	GuiMouseEventCtrl::lockMouse (C++ member)

 	GuiMouseEventCtrl::onMouseDown (C++ function)

 	GuiMouseEventCtrl::onMouseDragged (C++ function)

 	GuiMouseEventCtrl::onMouseEnter (C++ function)

 	GuiMouseEventCtrl::onMouseLeave (C++ function)

 	GuiMouseEventCtrl::onMouseMove (C++ function)

 	GuiMouseEventCtrl::onMouseUp (C++ function)

 	GuiMouseEventCtrl::onRightMouseDown (C++ function)

 	GuiMouseEventCtrl::onRightMouseDragged (C++ function)

 	GuiMouseEventCtrl::onRightMouseUp (C++ function)

 	GuiObjectView::animSequence (C++ member)

 	GuiObjectView::cameraRotation (C++ member)

 	GuiObjectView::cameraSpeed (C++ member)

 	GuiObjectView::getCameraSpeed (C++ function)

 	GuiObjectView::getModel (C++ function)

 	GuiObjectView::getMountedModel (C++ function)

 	GuiObjectView::getMountSkin (C++ function)

 	GuiObjectView::getOrbitDistance (C++ function)

 	GuiObjectView::getSkin (C++ function)

 	GuiObjectView::lightAmbient (C++ member)

 	GuiObjectView::lightColor (C++ member)

 	GuiObjectView::lightDirection (C++ member)

 	GuiObjectView::maxOrbitDiststance (C++ member)

 	GuiObjectView::minOrbitDiststance (C++ member)

 	GuiObjectView::mountedNode (C++ member)

 	GuiObjectView::mountedShapeFile (C++ member)

 	GuiObjectView::mountedSkin (C++ member)

 	GuiObjectView::onMouseEnter (C++ function)

 	GuiObjectView::onMouseLeave (C++ function)

 	GuiObjectView::orbitDiststance (C++ member)

 	GuiObjectView::setCameraSpeed (C++ function)

 	GuiObjectView::setLightAmbient (C++ function)

 	GuiObjectView::setLightColor (C++ function)

 	GuiObjectView::setLightDirection (C++ function)

 	GuiObjectView::setModel (C++ function)

 	GuiObjectView::setMount (C++ function)

 	GuiObjectView::setMountedModel (C++ function)

 	GuiObjectView::setMountSkin (C++ function)

 	GuiObjectView::setOrbitDistance (C++ function)

 	GuiObjectView::setSeq (C++ function)

 	GuiObjectView::setSkin (C++ function)

 	GuiObjectView::shapeFile (C++ member)

 	GuiObjectView::skin (C++ member)

 	GuiPaneControl::barBehindText (C++ member)

 	GuiPaneControl::caption (C++ member)

 	GuiPaneControl::captionID (C++ member)

 	GuiPaneControl::collapsable (C++ member)

 	GuiPaneControl::setCollapsed (C++ function)

 	GuiPopUpMenuCtrl::add (C++ function)

 	GuiPopUpMenuCtrl::addScheme (C++ function)

 	GuiPopUpMenuCtrl::bitmap (C++ member)

 	GuiPopUpMenuCtrl::bitmapBounds (C++ member)

 	GuiPopUpMenuCtrl::changeTextById (C++ function)

 	GuiPopUpMenuCtrl::clear (C++ member)

 	GuiPopUpMenuCtrl::clearEntry (C++ function)

 	GuiPopUpMenuCtrl::findText (C++ function)

 	GuiPopUpMenuCtrl::forceClose (C++ member)

 	GuiPopUpMenuCtrl::forceOnAction (C++ member)

 	GuiPopUpMenuCtrl::getSelected (C++ member)

 	GuiPopUpMenuCtrl::getText (C++ member)

 	GuiPopUpMenuCtrl::getTextById (C++ function)

 	GuiPopUpMenuCtrl::maxPopupHeight (C++ member)

 	GuiPopUpMenuCtrl::replaceText (C++ function)

 	GuiPopUpMenuCtrl::reverseTextList (C++ member)

 	GuiPopUpMenuCtrl::sbUsesNAColor (C++ member)

 	GuiPopUpMenuCtrl::setEnumContent (C++ function)

 	GuiPopUpMenuCtrl::setFirstSelected (C++ function)

 	GuiPopUpMenuCtrl::setNoneSelected (C++ member)

 	GuiPopUpMenuCtrl::setSelected (C++ function)

 	GuiPopUpMenuCtrl::size (C++ member)

 	GuiPopUpMenuCtrl::sort (C++ member)

 	GuiPopUpMenuCtrl::sortID (C++ member)

 	GuiPopUpMenuCtrlEx::add (C++ function), [1]

 	GuiPopUpMenuCtrlEx::addCategory (C++ function)

 	GuiPopUpMenuCtrlEx::addScheme (C++ function)

 	GuiPopUpMenuCtrlEx::bitmap (C++ member)

 	GuiPopUpMenuCtrlEx::bitmapBounds (C++ member)

 	GuiPopUpMenuCtrlEx::clear (C++ function)

 	GuiPopUpMenuCtrlEx::clearEntry (C++ function)

 	GuiPopUpMenuCtrlEx::findText (C++ function)

 	GuiPopUpMenuCtrlEx::forceClose (C++ function)

 	GuiPopUpMenuCtrlEx::forceOnAction (C++ function)

 	GuiPopUpMenuCtrlEx::getColorById (C++ member)

 	GuiPopUpMenuCtrlEx::getSelected (C++ function)

 	GuiPopUpMenuCtrlEx::getText (C++ function)

 	GuiPopUpMenuCtrlEx::getTextById (C++ function)

 	GuiPopUpMenuCtrlEx::hotTrackCallback (C++ member)

 	GuiPopUpMenuCtrlEx::maxPopupHeight (C++ member)

 	GuiPopUpMenuCtrlEx::replaceText (C++ member)

 	GuiPopUpMenuCtrlEx::reverseTextList (C++ member)

 	GuiPopUpMenuCtrlEx::sbUsesNAColor (C++ member)

 	GuiPopUpMenuCtrlEx::setEnumContent (C++ member)

 	GuiPopUpMenuCtrlEx::setNoneSelected (C++ function)

 	GuiPopUpMenuCtrlEx::setSelected (C++ function), [1]

 	GuiPopUpMenuCtrlEx::setText (C++ function)

 	GuiPopUpMenuCtrlEx::size (C++ member)

 	GuiPopUpMenuCtrlEx::sort (C++ function)

 	GuiPopUpMenuCtrlEx::sortID (C++ function)

 	GuiProgressBitmapCtrl::bitmap (C++ member)

 	GuiProgressBitmapCtrl::setBitmap (C++ function)

 	GuiRolloutCtrl::autoCollapseSiblings (C++ member)

 	GuiRolloutCtrl::caption (C++ member)

 	GuiRolloutCtrl::clickCollapse (C++ member)

 	GuiRolloutCtrl::collapse (C++ function)

 	GuiRolloutCtrl::defaultHeight (C++ member)

 	GuiRolloutCtrl::expand (C++ function)

 	GuiRolloutCtrl::expanded (C++ member)

 	GuiRolloutCtrl::hideHeader (C++ member)

 	GuiRolloutCtrl::instantCollapse (C++ function)

 	GuiRolloutCtrl::instantExpand (C++ function)

 	GuiRolloutCtrl::isExpanded (C++ function)

 	GuiRolloutCtrl::margin (C++ member)

 	GuiRolloutCtrl::onCollapsed (C++ function)

 	GuiRolloutCtrl::onExpanded (C++ function)

 	GuiRolloutCtrl::onHeaderRightClick (C++ function)

 	GuiRolloutCtrl::sizeToContents (C++ function)

 	GuiRolloutCtrl::toggleCollapse (C++ function)

 	GuiRolloutCtrl::toggleExpanded (C++ function)

 	GuiScriptNotifyCtrl::onChildAdded (C++ function)

 	(C++ member)

 	GuiScriptNotifyCtrl::onChildRemoved (C++ function)

 	(C++ member)

 	GuiScriptNotifyCtrl::onChildResized (C++ function)

 	(C++ member)

 	GuiScriptNotifyCtrl::onGainFirstResponder (C++ function)

 	(C++ member)

 	GuiScriptNotifyCtrl::onLoseFirstResponder (C++ function)

 	(C++ member)

 	GuiScriptNotifyCtrl::onParentResized (C++ function)

 	(C++ member)

 	GuiScriptNotifyCtrl::onResize (C++ function)

 	(C++ member)

 	GuiScrollCtrl::childMargin (C++ member)

 	GuiScrollCtrl::computeSizes (C++ function)

 	GuiScrollCtrl::constantThumbHeight (C++ member)

 	GuiScrollCtrl::getScrollPosition (C++ function)

 	GuiScrollCtrl::getScrollPositionX (C++ function)

 	GuiScrollCtrl::getScrollPositionY (C++ function)

 	GuiScrollCtrl::hScrollBar (C++ member)

 	GuiScrollCtrl::lockHorizScroll (C++ member)

 	GuiScrollCtrl::lockVertScroll (C++ member)

 	GuiScrollCtrl::mouseWheelScrollSpeed (C++ member)

 	GuiScrollCtrl::onScroll (C++ function)

 	GuiScrollCtrl::scrollToBottom (C++ function)

 	GuiScrollCtrl::scrollToObject (C++ function)

 	GuiScrollCtrl::scrollToTop (C++ function)

 	GuiScrollCtrl::setScrollPosition (C++ function)

 	GuiScrollCtrl::vScrollBar (C++ member)

 	GuiScrollCtrl::willFirstRespond (C++ member)

 	GuiSeparatorCtrl::borderMargin (C++ member)

 	GuiSeparatorCtrl::caption (C++ member)

 	GuiSeparatorCtrl::invisible (C++ member)

 	GuiSeparatorCtrl::leftMargin (C++ member)

 	GuiSeparatorCtrl::type (C++ member)

 	GuiShapeNameHud::distanceFade (C++ member)

 	GuiShapeNameHud::fillColor (C++ member)

 	GuiShapeNameHud::frameColor (C++ member)

 	GuiShapeNameHud::labelFillColor (C++ member)

 	GuiShapeNameHud::labelFrameColor (C++ member)

 	GuiShapeNameHud::labelPadding (C++ member)

 	GuiShapeNameHud::showFill (C++ member)

 	GuiShapeNameHud::showFrame (C++ member)

 	GuiShapeNameHud::showLabelFill (C++ member)

 	GuiShapeNameHud::showLabelFrame (C++ member)

 	GuiShapeNameHud::textColor (C++ member)

 	GuiShapeNameHud::verticalOffset (C++ member)

 	GuiSliderCtrl::getValue (C++ function)

 	GuiSliderCtrl::isThumbBeingDragged (C++ function)

 	GuiSliderCtrl::onMouseDragged (C++ function)

 	GuiSliderCtrl::range (C++ member)

 	GuiSliderCtrl::setValue (C++ function)

 	GuiSliderCtrl::snap (C++ member)

 	GuiSliderCtrl::ticks (C++ member)

 	GuiSliderCtrl::value (C++ member)

 	GuiSpeedometerHud::center (C++ member)

 	GuiSpeedometerHud::color (C++ member)

 	GuiSpeedometerHud::length (C++ member)

 	GuiSpeedometerHud::maxAngle (C++ member)

 	GuiSpeedometerHud::maxSpeed (C++ member)

 	GuiSpeedometerHud::minAngle (C++ member)

 	GuiSpeedometerHud::tail (C++ member)

 	GuiSpeedometerHud::width (C++ member)

 	GuiSplitContainer::fixedPanel (C++ member)

 	GuiSplitContainer::fixedSize (C++ member)

 	GuiSplitContainer::orientation (C++ member)

 	GuiSplitContainer::splitPoint (C++ member)

 	GuiSplitContainer::splitterSize (C++ member)

 	GuiStackControl::changeChildPosition (C++ member)

 	GuiStackControl::changeChildSizeToFit (C++ member)

 	GuiStackControl::dynamicNonStackExtent (C++ member)

 	GuiStackControl::dynamicPos (C++ member)

 	GuiStackControl::dynamicSize (C++ member)

 	GuiStackControl::freeze (C++ function)

 	GuiStackControl::horizStacking (C++ member)

 	GuiStackControl::isFrozen (C++ function)

 	GuiStackControl::padding (C++ member)

 	GuiStackControl::stackingType (C++ member)

 	GuiStackControl::updateStack (C++ function)

 	GuiStackControl::vertStacking (C++ member)

 	GuiSwatchButtonCtrl::color (C++ member)

 	GuiSwatchButtonCtrl::gridBitmap (C++ member)

 	GuiSwatchButtonCtrl::setColor (C++ function)

 	GuiTabBookCtrl::addPage (C++ function)

 	GuiTabBookCtrl::allowReorder (C++ member)

 	GuiTabBookCtrl::defaultPage (C++ member)

 	GuiTabBookCtrl::frontTabPadding (C++ member)

 	GuiTabBookCtrl::getSelectedPage (C++ function)

 	GuiTabBookCtrl::minTabWidth (C++ member)

 	GuiTabBookCtrl::onTabRightClick (C++ function)

 	GuiTabBookCtrl::onTabSelected (C++ function)

 	GuiTabBookCtrl::selectedPage (C++ member)

 	GuiTabBookCtrl::selectPage (C++ function)

 	GuiTabBookCtrl::tabHeight (C++ member)

 	GuiTabBookCtrl::tabMargin (C++ member)

 	GuiTabBookCtrl::tabPosition (C++ member)

 	GuiTabPageCtrl::fitBook (C++ member)

 	GuiTabPageCtrl::select (C++ function)

 	GuiTextCtrl::maxLength (C++ member)

 	GuiTextCtrl::setText (C++ function)

 	GuiTextCtrl::setTextID (C++ function)

 	GuiTextCtrl::text (C++ member)

 	GuiTextCtrl::textID (C++ member)

 	GuiTextEditCtrl::clearSelectedText (C++ function)

 	GuiTextEditCtrl::deniedSound (C++ member)

 	GuiTextEditCtrl::escapeCommand (C++ member)

 	GuiTextEditCtrl::forceValidateText (C++ function)

 	GuiTextEditCtrl::getCursorPos (C++ function)

 	GuiTextEditCtrl::getText (C++ function)

 	GuiTextEditCtrl::historySize (C++ member)

 	GuiTextEditCtrl::isAllTextSelected (C++ function)

 	GuiTextEditCtrl::onReturn (C++ function)

 	GuiTextEditCtrl::onTabComplete (C++ function)

 	GuiTextEditCtrl::onValidate (C++ function)

 	GuiTextEditCtrl::password (C++ member)

 	GuiTextEditCtrl::passwordMask (C++ member)

 	GuiTextEditCtrl::selectAllText (C++ function)

 	GuiTextEditCtrl::setCursorPos (C++ function)

 	GuiTextEditCtrl::setText (C++ function)

 	GuiTextEditCtrl::sinkAllKeyEvents (C++ member)

 	GuiTextEditCtrl::tabComplete (C++ member)

 	GuiTextEditCtrl::validate (C++ member)

 	GuiTextEditSliderBitmapCtrl::bitmap (C++ member)

 	GuiTextEditSliderBitmapCtrl::focusOnMouseWheel (C++ member)

 	GuiTextEditSliderBitmapCtrl::format (C++ member)

 	GuiTextEditSliderBitmapCtrl::increment (C++ member)

 	GuiTextEditSliderBitmapCtrl::range (C++ member)

 	GuiTextEditSliderCtrl::focusOnMouseWheel (C++ member)

 	GuiTextEditSliderCtrl::format (C++ member)

 	GuiTextEditSliderCtrl::increment (C++ member)

 	GuiTextEditSliderCtrl::range (C++ member)

 	GuiTextListCtrl::addRow (C++ function)

 	GuiTextListCtrl::clear (C++ function)

 	GuiTextListCtrl::clearSelection (C++ function)

 	GuiTextListCtrl::clipColumnText (C++ member)

 	GuiTextListCtrl::columns (C++ member)

 	GuiTextListCtrl::findTextIndex (C++ function)

 	GuiTextListCtrl::fitParentWidth (C++ member)

 	GuiTextListCtrl::getRowId (C++ function)

 	GuiTextListCtrl::getRowNumById (C++ function)

 	GuiTextListCtrl::getRowText (C++ function)

 	GuiTextListCtrl::getRowTextById (C++ function)

 	GuiTextListCtrl::getSelectedId (C++ function)

 	GuiTextListCtrl::getSelectedRow (C++ function)

 	GuiTextListCtrl::isRowActive (C++ function)

 	GuiTextListCtrl::onDeleteKey (C++ function)

 	GuiTextListCtrl::onSelect (C++ function)

 	GuiTextListCtrl::removeRow (C++ function)

 	GuiTextListCtrl::removeRowById (C++ function)

 	GuiTextListCtrl::rowCount (C++ function)

 	GuiTextListCtrl::scrollVisible (C++ function)

 	GuiTextListCtrl::setRowActive (C++ function)

 	GuiTextListCtrl::setRowById (C++ function)

 	GuiTextListCtrl::setSelectedById (C++ function)

 	GuiTextListCtrl::setSelectedRow (C++ function)

 	GuiTextListCtrl::sort (C++ function)

 	GuiTextListCtrl::sortNumerical (C++ function)

 	GuiTheoraCtrl::backgroundColor (C++ member)

 	GuiTheoraCtrl::getCurrentTime (C++ function)

 	GuiTheoraCtrl::isPlaybackDone (C++ function)

 	GuiTheoraCtrl::matchVideoSize (C++ member)

 	GuiTheoraCtrl::pause (C++ function)

 	GuiTheoraCtrl::play (C++ function)

 	GuiTheoraCtrl::playOnWake (C++ member)

 	GuiTheoraCtrl::renderDebugInfo (C++ member)

 	GuiTheoraCtrl::setFile (C++ function)

 	GuiTheoraCtrl::stop (C++ function)

 	GuiTheoraCtrl::stopOnSleep (C++ member)

 	GuiTheoraCtrl::theoraFile (C++ member)

 	GuiTheoraCtrl::transcoder (C++ member)

 	GuiTickCtrl::setProcessTicks (C++ function)

 	GuiTreeViewCtrl::addChildSelectionByValue (C++ member)

 	GuiTreeViewCtrl::addSelection (C++ function)

 	GuiTreeViewCtrl::buildIconTable (C++ function)

 	GuiTreeViewCtrl::buildVisibleTree (C++ member)

 	GuiTreeViewCtrl::cancelRename (C++ member)

 	GuiTreeViewCtrl::canRenameObject (C++ function)

 	GuiTreeViewCtrl::canRenameObjects (C++ member)

 	GuiTreeViewCtrl::clear (C++ function)

 	GuiTreeViewCtrl::clearAllOnSingleSelection (C++ member)

 	GuiTreeViewCtrl::clearFilterText (C++ function)

 	GuiTreeViewCtrl::clearSelection (C++ function)

 	GuiTreeViewCtrl::compareToObjectID (C++ member)

 	GuiTreeViewCtrl::deleteObjectAllowed (C++ member)

 	GuiTreeViewCtrl::deleteSelection (C++ function)

 	GuiTreeViewCtrl::destroyTreeOnSleep (C++ member)

 	GuiTreeViewCtrl::dragToItemAllowed (C++ member)

 	GuiTreeViewCtrl::editItem (C++ function)

 	GuiTreeViewCtrl::expandItem (C++ function)

 	GuiTreeViewCtrl::findChildItemByName (C++ function)

 	GuiTreeViewCtrl::findItemByName (C++ function)

 	GuiTreeViewCtrl::findItemByObjectId (C++ function)

 	GuiTreeViewCtrl::findItemByValue (C++ function)

 	GuiTreeViewCtrl::fullRowSelect (C++ member)

 	GuiTreeViewCtrl::getChild (C++ function)

 	GuiTreeViewCtrl::getFilterText (C++ function)

 	GuiTreeViewCtrl::getFirstRootItem (C++ member)

 	GuiTreeViewCtrl::getItemCount (C++ member)

 	GuiTreeViewCtrl::getItemText (C++ function)

 	GuiTreeViewCtrl::getItemValue (C++ function)

 	GuiTreeViewCtrl::getNextSibling (C++ function)

 	GuiTreeViewCtrl::getParent (C++ function)

 	GuiTreeViewCtrl::getPrevSibling (C++ function)

 	GuiTreeViewCtrl::getSelectedItem (C++ function)

 	GuiTreeViewCtrl::getSelectedItemList (C++ member)

 	GuiTreeViewCtrl::getSelectedItemsCount (C++ member)

 	GuiTreeViewCtrl::getSelectedObject (C++ function)

 	GuiTreeViewCtrl::getSelectedObjectList (C++ member)

 	GuiTreeViewCtrl::getTextToRoot (C++ function)

 	GuiTreeViewCtrl::handleRenameObject (C++ function)

 	GuiTreeViewCtrl::hideSelection (C++ function)

 	GuiTreeViewCtrl::insertItem (C++ function)

 	GuiTreeViewCtrl::isItemSelected (C++ function)

 	GuiTreeViewCtrl::isParentItem (C++ function)

 	GuiTreeViewCtrl::isValidDragTarget (C++ function)

 	GuiTreeViewCtrl::itemHeight (C++ member)

 	GuiTreeViewCtrl::lockSelection (C++ function)

 	GuiTreeViewCtrl::markItem (C++ function)

 	GuiTreeViewCtrl::mouseDragging (C++ member)

 	GuiTreeViewCtrl::moveItemDown (C++ function)

 	GuiTreeViewCtrl::moveItemUp (C++ function)

 	GuiTreeViewCtrl::multipleSelections (C++ member)

 	GuiTreeViewCtrl::onAddGroupSelected (C++ function)

 	GuiTreeViewCtrl::onAddMultipleSelectionBegin (C++ function)

 	GuiTreeViewCtrl::onAddMultipleSelectionEnd (C++ function)

 	GuiTreeViewCtrl::onAddSelection (C++ function)

 	GuiTreeViewCtrl::onBeginReparenting (C++ function)

 	GuiTreeViewCtrl::onClearSelection (C++ function)

 	GuiTreeViewCtrl::onDefineIcons (C++ function)

 	GuiTreeViewCtrl::onDeleteObject (C++ function)

 	GuiTreeViewCtrl::onDeleteSelection (C++ function)

 	GuiTreeViewCtrl::onDragDropped (C++ function)

 	GuiTreeViewCtrl::onEndReparenting (C++ function)

 	GuiTreeViewCtrl::onInspect (C++ function)

 	GuiTreeViewCtrl::onKeyDown (C++ function)

 	GuiTreeViewCtrl::onMouseDragged (C++ function)

 	GuiTreeViewCtrl::onMouseUp (C++ function)

 	GuiTreeViewCtrl::onObjectDeleteCompleted (C++ function)

 	GuiTreeViewCtrl::onRemoveSelection (C++ function)

 	GuiTreeViewCtrl::onRenameValidate (C++ member)

 	GuiTreeViewCtrl::onReparent (C++ function)

 	GuiTreeViewCtrl::onRightMouseDown (C++ function)

 	GuiTreeViewCtrl::onRightMouseUp (C++ function)

 	GuiTreeViewCtrl::onSelect (C++ function)

 	GuiTreeViewCtrl::onUnselect (C++ function)

 	GuiTreeViewCtrl::open (C++ function)

 	GuiTreeViewCtrl::removeAllChildren (C++ member)

 	GuiTreeViewCtrl::removeChildSelectionByValue (C++ member)

 	GuiTreeViewCtrl::removeItem (C++ function)

 	GuiTreeViewCtrl::removeSelection (C++ function)

 	GuiTreeViewCtrl::renameInternal (C++ member)

 	GuiTreeViewCtrl::scrollVisible (C++ function)

 	GuiTreeViewCtrl::scrollVisibleByObjectId (C++ function)

 	GuiTreeViewCtrl::selectItem (C++ function)

 	GuiTreeViewCtrl::setDebug (C++ function)

 	GuiTreeViewCtrl::setFilterText (C++ function)

 	GuiTreeViewCtrl::setItemImages (C++ function)

 	GuiTreeViewCtrl::setItemTooltip (C++ function)

 	GuiTreeViewCtrl::showClassNameForUnnamedObjects (C++ member)

 	GuiTreeViewCtrl::showClassNames (C++ member)

 	GuiTreeViewCtrl::showInternalNames (C++ member)

 	GuiTreeViewCtrl::showItemRenameCtrl (C++ function)

 	GuiTreeViewCtrl::showObjectIds (C++ member)

 	GuiTreeViewCtrl::showObjectNames (C++ member)

 	GuiTreeViewCtrl::showRoot (C++ member)

 	GuiTreeViewCtrl::sort (C++ function)

 	GuiTreeViewCtrl::tabSize (C++ member)

 	GuiTreeViewCtrl::textOffset (C++ member)

 	GuiTreeViewCtrl::toggleHideSelection (C++ function)

 	GuiTreeViewCtrl::toggleLockSelection (C++ function)

 	GuiTreeViewCtrl::tooltipOnWidthOnly (C++ member)

 	GuiTreeViewCtrl::useInspectorTooltips (C++ member)

 	GuiTSCtrl::calculateViewDistance (C++ function)

 	GuiTSCtrl::cameraZRot (C++ member)

 	GuiTSCtrl::forceFOV (C++ member)

 	GuiTSCtrl::getWorldToScreenScale (C++ function)

 	GuiTSCtrl::project (C++ function)

 	GuiTSCtrl::reflectPriority (C++ member)

 	GuiTSCtrl::renderStyle (C++ member)

 	GuiTSCtrl::unproject (C++ function)

 	GuiWindowCtrl::attach (C++ function)

 	GuiWindowCtrl::attachTo (C++ function)

 	GuiWindowCtrl::canClose (C++ member)

 	GuiWindowCtrl::canCollapse (C++ member)

 	GuiWindowCtrl::canMaximize (C++ member)

 	GuiWindowCtrl::canMinimize (C++ member)

 	GuiWindowCtrl::canMove (C++ member)

 	GuiWindowCtrl::closeCommand (C++ member)

 	GuiWindowCtrl::edgeSnap (C++ member)

 	GuiWindowCtrl::onClose (C++ function)

 	GuiWindowCtrl::onCollapse (C++ function)

 	GuiWindowCtrl::onMaximize (C++ function)

 	GuiWindowCtrl::onMinimize (C++ function)

 	GuiWindowCtrl::onRestore (C++ function)

 	GuiWindowCtrl::resizeHeight (C++ member)

 	GuiWindowCtrl::resizeWidth (C++ member)

 	GuiWindowCtrl::selectWindow (C++ function)

 	GuiWindowCtrl::setCollapseGroup (C++ function)

 	GuiWindowCtrl::text (C++ member)

 	GuiWindowCtrl::toggleCollapseGroup (C++ function)

H

 	
 	HoverVehicleData::brakingActivationSpeed (C++ member)

 	HoverVehicleData::brakingForce (C++ member)

 	HoverVehicleData::dragForce (C++ member)

 	HoverVehicleData::dustTrailEmitter (C++ member)

 	HoverVehicleData::dustTrailFreqMod (C++ member)

 	HoverVehicleData::dustTrailOffset (C++ member)

 	HoverVehicleData::engineSound (C++ member)

 	HoverVehicleData::floatingGravMag (C++ member)

 	HoverVehicleData::floatingThrustFactor (C++ member)

 	HoverVehicleData::floatSound (C++ member)

 	HoverVehicleData::forwardJetEmitter (C++ member)

 	HoverVehicleData::gyroDrag (C++ member)

 	HoverVehicleData::jetSound (C++ member)

 	HoverVehicleData::mainThrustForce (C++ member)

 	HoverVehicleData::normalForce (C++ member)

 	
 	HoverVehicleData::pitchForce (C++ member)

 	HoverVehicleData::restorativeForce (C++ member)

 	HoverVehicleData::reverseThrustForce (C++ member)

 	HoverVehicleData::rollForce (C++ member)

 	HoverVehicleData::stabDampingConstant (C++ member)

 	HoverVehicleData::stabLenMax (C++ member)

 	HoverVehicleData::stabLenMin (C++ member)

 	HoverVehicleData::stabSpringConstant (C++ member)

 	HoverVehicleData::steeringForce (C++ member)

 	HoverVehicleData::strafeThrustForce (C++ member)

 	HoverVehicleData::triggerTrailHeight (C++ member)

 	HoverVehicleData::turboFactor (C++ member)

 	HoverVehicleData::vertFactor (C++ member)

 	HTTPObject::get (C++ function)

 	HTTPObject::post (C++ function)

I

 	
 	importCachedFont (C++ function)

 	initContainerRadiusSearch (C++ function)

 	initContainerTypeSearch (C++ function)

 	initDisplayDeviceInfo (C++ function)

 	initLightFields (C++ function)

 	isalnum (C++ function)

 	isClass (C++ function)

 	isCompatible (C++ function), [1]

 	isDebugBuild (C++ function)

 	isDefined (C++ function)

 	IsDirectory (C++ function)

 	isFile (C++ function)

 	isFunction (C++ function)

 	isJoystickEnabled (C++ function)

 	isLeapMotionActive (C++ function)

 	isMemberOfClass (C++ function)

 	isMethod (C++ function)

 	isOculusVRDeviceActive (C++ function)

 	isOVRHMDSimulated (C++ function)

 	isPackage (C++ function)

 	isQueueRegistered (C++ function)

 	isRazerHydraActive (C++ function)

 	isRazerHydraControllerDocked (C++ function)

 	isShippingBuild (C++ function)

 	isspace (C++ function)

 	isToolBuild (C++ function)

 	
 	isValidObjectName (C++ function)

 	isWriteableFileName (C++ function)

 	isXInputConnected (C++ function)

 	Item::getLastStickyNormal (C++ function)

 	Item::getLastStickyPos (C++ function)

 	Item::isAtRest (C++ function)

 	Item::isRotating (C++ function)

 	Item::isStatic (C++ function)

 	Item::maxWarpTicks (C++ member)

 	Item::minWarpTicks (C++ member)

 	Item::onEnterLiquid (C++ function)

 	Item::onLeaveLiquid (C++ function)

 	Item::onStickyCollision (C++ function)

 	Item::rotate (C++ member)

 	Item::setCollisionTimeout (C++ function)

 	ItemData::elasticity (C++ member)

 	ItemData::friction (C++ member)

 	ItemData::gravityMod (C++ member)

 	ItemData::lightColor (C++ member)

 	ItemData::lightOnlyStatic (C++ member)

 	ItemData::lightRadius (C++ member)

 	ItemData::lightTime (C++ member)

 	ItemData::lightType (C++ member)

 	ItemData::maxVelocity (C++ member)

 	ItemData::simpleServerCollision (C++ member)

 	ItemData::sticky (C++ member)

L

 	
 	LangTable::addLanguage (C++ function)

 	LangTable::getCurrentLanguage (C++ function)

 	LangTable::getLangName (C++ function)

 	LangTable::getNumLang (C++ function)

 	LangTable::getString (C++ function)

 	LangTable::setCurrentLanguage (C++ function)

 	LangTable::setDefaultLanguage (C++ function)

 	LeapMotionFrame::getFrameInternalId (C++ function)

 	LeapMotionFrame::getFrameRealTime (C++ function)

 	LeapMotionFrame::getFrameSimTime (C++ function)

 	LeapMotionFrame::getHandCount (C++ function)

 	LeapMotionFrame::getHandId (C++ function)

 	LeapMotionFrame::getHandPointablesCount (C++ function)

 	LeapMotionFrame::getHandPos (C++ function)

 	LeapMotionFrame::getHandRawPos (C++ function)

 	LeapMotionFrame::getHandRawTransform (C++ function)

 	LeapMotionFrame::getHandRot (C++ function)

 	LeapMotionFrame::getHandRotAxis (C++ function)

 	LeapMotionFrame::getHandTransform (C++ function)

 	LeapMotionFrame::getHandValid (C++ function)

 	LeapMotionFrame::getPointableHandIndex (C++ function)

 	LeapMotionFrame::getPointableId (C++ function)

 	LeapMotionFrame::getPointableLength (C++ function)

 	LeapMotionFrame::getPointablePos (C++ function)

 	LeapMotionFrame::getPointableRawPos (C++ function)

 	LeapMotionFrame::getPointableRawTransform (C++ function)

 	LeapMotionFrame::getPointableRot (C++ function)

 	LeapMotionFrame::getPointablesCount (C++ function)

 	LeapMotionFrame::getPointableTransform (C++ function)

 	LeapMotionFrame::getPointableType (C++ function)

 	LeapMotionFrame::getPointableValid (C++ function)

 	LeapMotionFrame::getPointableWidth (C++ function)

 	LeapMotionFrame::isFrameValid (C++ function)

 	LevelInfo::advancedLightmapSupport (C++ member)

 	LevelInfo::ambientLightBlendCurve (C++ member)

 	LevelInfo::ambientLightBlendPhase (C++ member)

 	LevelInfo::canvasClearColor (C++ member)

 	LevelInfo::decalBias (C++ member)

 	LevelInfo::fogAtmosphereHeight (C++ member)

 	LevelInfo::fogColor (C++ member)

 	LevelInfo::fogDensity (C++ member)

 	LevelInfo::fogDensityOffset (C++ member)

 	LevelInfo::nearClip (C++ member)

 	LevelInfo::soundAmbience (C++ member)

 	LevelInfo::soundDistanceModel (C++ member)

 	LevelInfo::visibleDistance (C++ member)

 	LightAnimData::brightnessA (C++ member)

 	LightAnimData::brightnessKeys (C++ member)

 	LightAnimData::brightnessPeriod (C++ member)

 	LightAnimData::brightnessSmooth (C++ member)

 	LightAnimData::brightnessZ (C++ member)

 	LightAnimData::colorA (C++ member)

 	LightAnimData::colorKeys (C++ member)

 	LightAnimData::colorPeriod (C++ member)

 	LightAnimData::colorSmooth (C++ member)

 	LightAnimData::colorZ (C++ member)

 	LightAnimData::offsetA (C++ member)

 	LightAnimData::offsetKeys (C++ member)

 	LightAnimData::offsetPeriod (C++ member)

 	LightAnimData::offsetSmooth (C++ member)

 	LightAnimData::OffsetZ (C++ member)

 	LightAnimData::rotA (C++ member)

 	LightAnimData::rotKeys (C++ member)

 	LightAnimData::rotPeriod (C++ member)

 	LightAnimData::rotSmooth (C++ member)

 	LightAnimData::rotZ (C++ member)

 	LightBase::animate (C++ member)

 	LightBase::animationPeriod (C++ member)

 	LightBase::animationPhase (C++ member)

 	LightBase::animationType (C++ member)

 	LightBase::attenuationRatio (C++ member)

 	LightBase::brightness (C++ member)

 	LightBase::castShadows (C++ member)

 	LightBase::color (C++ member)

 	LightBase::cookie (C++ member)

 	LightBase::fadeStartDistance (C++ member)

 	LightBase::flareScale (C++ member)

 	
 	LightBase::flareType (C++ member)

 	LightBase::includeLightmappedGeometryInShadow (C++ member)

 	LightBase::isEnabled (C++ member)

 	LightBase::lastSplitTerrainOnly (C++ member)

 	LightBase::logWeight (C++ member)

 	LightBase::numSplits (C++ member)

 	LightBase::overDarkFactor (C++ member)

 	LightBase::pauseAnimation (C++ member)

 	LightBase::playAnimation (C++ function), [1]

 	LightBase::priority (C++ member)

 	LightBase::representedInLightmap (C++ member)

 	LightBase::setLightEnabled (C++ function)

 	LightBase::shadowDarkenColor (C++ member)

 	LightBase::shadowDistance (C++ member)

 	LightBase::shadowSoftness (C++ member)

 	LightBase::shadowType (C++ member)

 	LightBase::texSize (C++ member)

 	LightDescription::animationPeriod (C++ member)

 	LightDescription::animationPhase (C++ member)

 	LightDescription::animationType (C++ member)

 	LightDescription::apply (C++ function)

 	LightDescription::attenuationRatio (C++ member)

 	LightDescription::brightness (C++ member)

 	LightDescription::castShadows (C++ member)

 	LightDescription::color (C++ member)

 	LightDescription::cookie (C++ member)

 	LightDescription::fadeStartDistance (C++ member)

 	LightDescription::flareScale (C++ member)

 	LightDescription::flareType (C++ member)

 	LightDescription::includeLightmappedGeometryInShadow (C++ member)

 	LightDescription::lastSplitTerrainOnly (C++ member)

 	LightDescription::logWeight (C++ member)

 	LightDescription::numSplits (C++ member)

 	LightDescription::overDarkFactor (C++ member)

 	LightDescription::range (C++ member)

 	LightDescription::representedInLightmap (C++ member)

 	LightDescription::shadowDarkenColor (C++ member)

 	LightDescription::shadowDistance (C++ member)

 	LightDescription::shadowSoftness (C++ member)

 	LightDescription::shadowType (C++ member)

 	LightDescription::texSize (C++ member)

 	LightFlareData::apply (C++ function)

 	LightFlareData::elementDist (C++ member)

 	LightFlareData::elementRect (C++ member)

 	LightFlareData::elementRotate (C++ member)

 	LightFlareData::elementScale (C++ member)

 	LightFlareData::elementTint (C++ member)

 	LightFlareData::elementUseLightColor (C++ member)

 	LightFlareData::flareEnabled (C++ member)

 	LightFlareData::flareTexture (C++ member)

 	LightFlareData::occlusionRadius (C++ member)

 	LightFlareData::overallScale (C++ member)

 	LightFlareData::renderReflectPass (C++ member)

 	LightManager (C++ function)

 	Lightning::applyDamage (C++ function)

 	Lightning::boltStartRadius (C++ member)

 	Lightning::chanceToHitTarget (C++ member)

 	Lightning::color (C++ member)

 	Lightning::fadeColor (C++ member)

 	Lightning::strikeObject (C++ function)

 	Lightning::strikeRadius (C++ member)

 	Lightning::strikeRandomPoint (C++ function)

 	Lightning::strikesPerMinute (C++ member)

 	Lightning::strikeWidth (C++ member)

 	Lightning::useFog (C++ member)

 	Lightning::warningFlashes (C++ function)

 	LightningData::strikeSound (C++ member)

 	LightningData::strikeTextures (C++ member)

 	LightningData::thunderSounds (C++ member)

 	lightScene (C++ function), [1]

 	listGFXResources (C++ function)

 	loadObject (C++ function)

 	lockMouse (C++ function)

 	log (C++ function)

 	logError (C++ function)

 	logWarning (C++ function)

 	ltrim (C++ function)

M

 	
 	m2Pi (C++ function)

 	mAbs (C++ function)

 	mAcos (C++ function)

 	makeFullPath (C++ function)

 	makeRelativePath (C++ function)

 	Marker::msToNext (C++ member)

 	Marker::seqNum (C++ member)

 	Marker::smoothingType (C++ member)

 	Marker::type (C++ member)

 	mAsin (C++ function)

 	mAtan (C++ function)

 	Material::alphaRef (C++ member)

 	Material::alphaTest (C++ member)

 	Material::animFlags (C++ member)

 	Material::baseTex (C++ member)

 	Material::bumpAtlas (C++ member)

 	Material::bumpTex (C++ member)

 	Material::castShadows (C++ member)

 	Material::cellIndex (C++ member)

 	Material::cellLayout (C++ member)

 	Material::cellSize (C++ member)

 	Material::colorMultiply (C++ member)

 	Material::cubemap (C++ member)

 	Material::customFootstepSound (C++ member)

 	Material::customImpactSound (C++ member)

 	Material::detailMap (C++ member)

 	Material::detailNormalMap (C++ member)

 	Material::detailNormalMapStrength (C++ member)

 	Material::detailScale (C++ member)

 	Material::detailTex (C++ member)

 	Material::diffuseColor (C++ member)

 	Material::diffuseMap (C++ member)

 	Material::doubleSided (C++ member)

 	Material::dumpInstances (C++ member)

 	Material::dynamicCubemap (C++ member)

 	Material::effectColor (C++ member)

 	Material::emissive (C++ member)

 	Material::envMap (C++ member)

 	Material::envTex (C++ member)

 	Material::flush (C++ member)

 	Material::footstepSoundId (C++ member)

 	Material::getAnimFlags (C++ member)

 	Material::getFilename (C++ member)

 	Material::glow (C++ member)

 	Material::impactSoundId (C++ member)

 	Material::isAutoGenerated (C++ member)

 	Material::lightMap (C++ member)

 	Material::mapTo (C++ member)

 	Material::minnaertConstant (C++ member)

 	Material::normalMap (C++ member)

 	Material::overlayMap (C++ member)

 	Material::overlayTex (C++ member)

 	Material::parallaxScale (C++ member)

 	Material::pixelSpecular (C++ member)

 	Material::planarReflection (C++ member)

 	Material::reload (C++ member)

 	Material::rotPivotOffset (C++ member)

 	Material::rotSpeed (C++ member)

 	Material::scrollDir (C++ member)

 	Material::scrollSpeed (C++ member)

 	Material::sequenceFramePerSec (C++ member)

 	Material::sequenceSegmentSize (C++ member)

 	Material::setAutoGenerated (C++ member)

 	Material::showDust (C++ member)

 	Material::showFootprints (C++ member)

 	Material::specular (C++ member)

 	Material::specularMap (C++ member)

 	Material::specularPower (C++ member)

 	Material::specularStrength (C++ member)

 	Material::subSurface (C++ member)

 	Material::subSurfaceColor (C++ member)

 	Material::subSurfaceRolloff (C++ member)

 	Material::toneMap (C++ member)

 	Material::translucent (C++ member)

 	Material::translucentBlendOp (C++ member)

 	
 	Material::translucentZWrite (C++ member)

 	Material::useAnisotropic (C++ member)

 	Material::vertColor (C++ member)

 	Material::vertLit (C++ member)

 	Material::waveAmp (C++ member)

 	Material::waveFreq (C++ member)

 	Material::waveType (C++ member)

 	mathInit (C++ function)

 	MatrixCreate (C++ function)

 	MatrixCreateFromEuler (C++ function)

 	MatrixMulPoint (C++ function)

 	MatrixMultiply (C++ function)

 	MatrixMulVector (C++ function)

 	mCeil (C++ function)

 	mClamp (C++ function)

 	mCos (C++ function)

 	mDegToRad (C++ function)

 	MeshRoad::bottomMaterial (C++ member)

 	MeshRoad::breakAngle (C++ member)

 	MeshRoad::EditorOpen (C++ member)

 	MeshRoad::Node (C++ member)

 	MeshRoad::postApply (C++ function)

 	MeshRoad::regenerate (C++ function)

 	MeshRoad::setNodeDepth (C++ function)

 	MeshRoad::showBatches (C++ member)

 	MeshRoad::showRoad (C++ member)

 	MeshRoad::showSpline (C++ member)

 	MeshRoad::sideMaterial (C++ member)

 	MeshRoad::textureLength (C++ member)

 	MeshRoad::topMaterial (C++ member)

 	MeshRoad::widthSubdivisions (C++ member)

 	MeshRoad::wireframe (C++ member)

 	Message::addReference (C++ function)

 	Message::freeReference (C++ function)

 	Message::getType (C++ function)

 	Message::onAdd (C++ function)

 	Message::onRemove (C++ function)

 	messageBox (C++ function)

 	MessageForwarder::toQueue (C++ member)

 	MessageVector::clear (C++ function)

 	MessageVector::deleteLine (C++ function)

 	MessageVector::dump (C++ function), [1]

 	MessageVector::getLineIndexByTag (C++ function)

 	MessageVector::getLineTag (C++ function)

 	MessageVector::getLineText (C++ function)

 	MessageVector::getLineTextByTag (C++ function)

 	MessageVector::getNumLines (C++ function)

 	MessageVector::insertLine (C++ function)

 	MessageVector::popBackLine (C++ function)

 	MessageVector::popFrontLine (C++ function)

 	MessageVector::pushBackLine (C++ function)

 	MessageVector::pushFrontLine (C++ function)

 	mFloatLength (C++ function)

 	mFloor (C++ function)

 	mFMod (C++ function)

 	mIsPow2 (C++ function)

 	MissionArea::area (C++ member)

 	MissionArea::flightCeiling (C++ member)

 	MissionArea::flightCeilingRange (C++ member)

 	MissionArea::getArea (C++ function)

 	MissionArea::postApply (C++ function)

 	MissionArea::setArea (C++ function)

 	mLerp (C++ function)

 	mLog (C++ function)

 	mPi (C++ function)

 	mPow (C++ function)

 	mRadToDeg (C++ function)

 	mRound (C++ function)

 	mSaturate (C++ function)

 	mSin (C++ function)

 	mSolveCubic (C++ function)

 	mSolveQuadratic (C++ function)

 	mSolveQuartic (C++ function)

 	mSqrt (C++ function)

 	mTan (C++ function)

N

 	
 	NavMesh::actorClimb (C++ member)

 	NavMesh::actorHeight (C++ member)

 	NavMesh::actorRadius (C++ member)

 	NavMesh::alwaysRender (C++ member)

 	NavMesh::borderSize (C++ member)

 	NavMesh::build (C++ function)

 	NavMesh::buildTiles (C++ function)

 	NavMesh::cancelBuild (C++ function)

 	NavMesh::cellHeight (C++ member)

 	NavMesh::cellSize (C++ member)

 	NavMesh::detailSampleDist (C++ member)

 	NavMesh::detailSampleError (C++ member)

 	NavMesh::fileName (C++ member)

 	NavMesh::load (C++ function)

 	NavMesh::maxEdgeLen (C++ member)

 	NavMesh::maxPolysPerTile (C++ member)

 	NavMesh::mergeRegionArea (C++ member)

 	NavMesh::minRegionArea (C++ member)

 	NavMesh::save (C++ function)

 	NavMesh::simplificationError (C++ member)

 	NavMesh::tileSize (C++ member)

 	NavMesh::walkableSlope (C++ member)

 	NavPath::alwaysRender (C++ member)

 	NavPath::from (C++ member)

 	NavPath::getCount (C++ function)

 	NavPath::getLength (C++ function)

 	NavPath::getNode (C++ function)

 	
 	NavPath::isLooping (C++ member)

 	NavPath::mesh (C++ member)

 	NavPath::replan (C++ function)

 	NavPath::to (C++ member)

 	NavPath::waypoints (C++ member)

 	NavPath::xray (C++ member)

 	NetConnection::checkMaxRate (C++ function)

 	NetConnection::clearPaths (C++ function)

 	NetConnection::connect (C++ function)

 	NetConnection::connectLocal (C++ function)

 	NetConnection::getAddress (C++ function)

 	NetConnection::getGhostID (C++ function)

 	NetConnection::getGhostsActive (C++ function)

 	NetConnection::getPacketLoss (C++ function)

 	NetConnection::getPing (C++ function)

 	NetConnection::resolveGhostID (C++ function)

 	NetConnection::resolveObjectFromGhostIndex (C++ function)

 	NetConnection::setSimulatedNetParams (C++ function)

 	NetConnection::transmitPaths (C++ function)

 	NetObject::clearScopeToClient (C++ function)

 	NetObject::getClientObject (C++ function)

 	NetObject::getGhostID (C++ function)

 	NetObject::getServerObject (C++ function)

 	NetObject::isClientObject (C++ function)

 	NetObject::isServerObject (C++ function)

 	NetObject::scopeToClient (C++ function)

 	NetObject::setScopeAlways (C++ function)

 	nextToken (C++ function)

O

 	
 	OcclusionVolume::edge (C++ member)

 	OcclusionVolume::plane (C++ member)

 	OcclusionVolume::point (C++ member)

 	onDataBlockObjectReceived (C++ function)

 	onLightManagerActivate (C++ function), [1]

 	onLightManagerDeactivate (C++ function), [1]

 	
 	openFile (C++ function)

 	OpenFileDialog::MultipleFiles (C++ member)

 	OpenFileDialog::MustExist (C++ member)

 	openFolder (C++ function)

 	OpenFolderDialog::fileMustExist (C++ member)

 	ovrResetAllSensors (C++ function)

P

 	
 	packExtended (C++ function), [1]

 	ParticleData::animateTexture (C++ member)

 	ParticleData::animTexFrames (C++ member)

 	ParticleData::animTexName (C++ member)

 	ParticleData::animTexTiling (C++ member)

 	ParticleData::colors (C++ member)

 	ParticleData::constantAcceleration (C++ member)

 	ParticleData::dragCoefficient (C++ member)

 	ParticleData::framesPerSec (C++ member)

 	ParticleData::gravityCoefficient (C++ member)

 	ParticleData::inheritedVelFactor (C++ member)

 	ParticleData::lifetimeMS (C++ member)

 	ParticleData::lifetimeVarianceMS (C++ member)

 	ParticleData::reload (C++ function)

 	ParticleData::sizes (C++ member)

 	ParticleData::spinRandomMax (C++ member)

 	ParticleData::spinRandomMin (C++ member)

 	ParticleData::spinSpeed (C++ member)

 	ParticleData::textureCoords (C++ member)

 	ParticleData::textureName (C++ member)

 	ParticleData::times (C++ member)

 	ParticleData::useInvAlpha (C++ member)

 	ParticleData::windCoefficient (C++ member)

 	ParticleEmitterData::alignDirection (C++ member)

 	ParticleEmitterData::alignParticles (C++ member)

 	ParticleEmitterData::ambientFactor (C++ member)

 	ParticleEmitterData::blendStyle (C++ member)

 	ParticleEmitterData::ejectionOffset (C++ member)

 	ParticleEmitterData::ejectionOffsetVariance (C++ member)

 	ParticleEmitterData::ejectionPeriodMS (C++ member)

 	ParticleEmitterData::ejectionVelocity (C++ member)

 	ParticleEmitterData::highResOnly (C++ member)

 	ParticleEmitterData::lifetimeMS (C++ member)

 	ParticleEmitterData::lifetimeVarianceMS (C++ member)

 	ParticleEmitterData::orientOnVelocity (C++ member)

 	ParticleEmitterData::orientParticles (C++ member)

 	ParticleEmitterData::overrideAdvance (C++ member)

 	ParticleEmitterData::particles (C++ member)

 	ParticleEmitterData::periodVarianceMS (C++ member)

 	ParticleEmitterData::phiReferenceVel (C++ member)

 	ParticleEmitterData::phiVariance (C++ member)

 	ParticleEmitterData::reload (C++ function)

 	ParticleEmitterData::renderReflection (C++ member)

 	ParticleEmitterData::reverseOrder (C++ member)

 	ParticleEmitterData::softnessDistance (C++ member)

 	ParticleEmitterData::sortParticles (C++ member)

 	ParticleEmitterData::textureName (C++ member)

 	ParticleEmitterData::thetaMax (C++ member)

 	ParticleEmitterData::thetaMin (C++ member)

 	ParticleEmitterData::useEmitterColors (C++ member)

 	ParticleEmitterData::useEmitterSizes (C++ member)

 	ParticleEmitterData::velocityVariance (C++ member)

 	ParticleEmitterNode::active (C++ member)

 	ParticleEmitterNode::emitter (C++ member)

 	ParticleEmitterNode::setActive (C++ function)

 	ParticleEmitterNode::setEmitterDataBlock (C++ function)

 	ParticleEmitterNode::velocity (C++ member)

 	ParticleEmitterNodeData::timeMultiple (C++ member)

 	Path::getPathId (C++ function)

 	Path::isLooping (C++ member)

 	PathCamera::onNode (C++ function)

 	PathCamera::popFront (C++ function)

 	PathCamera::pushBack (C++ function)

 	PathCamera::pushFront (C++ function)

 	PathCamera::reset (C++ function)

 	PathCamera::setPosition (C++ function)

 	PathCamera::setState (C++ function)

 	PathCamera::setTarget (C++ function)

 	pathConcat (C++ function)

 	pathCopy (C++ function)

 	pathOnMissionLoadDone (C++ function)

 	PfxVis::clear (C++ function)

 	PfxVis::hide (C++ function)

 	PfxVis::onWindowClosed (C++ function)

 	PfxVis::open (C++ function)

 	PfxVis::show (C++ function)

 	PhysicalZone::activate (C++ function)

 	PhysicalZone::appliedForce (C++ member)

 	PhysicalZone::deactivate (C++ function)

 	PhysicalZone::gravityMod (C++ member)

 	PhysicalZone::polyhedron (C++ member)

 	PhysicalZone::renderZones (C++ member)

 	PhysicalZone::velocityMod (C++ member)

 	PhysicsDebrisData::angularDamping (C++ member)

 	PhysicsDebrisData::angularSleepThreshold (C++ member)

 	PhysicsDebrisData::buoyancyDensity (C++ member)

 	PhysicsDebrisData::castShadows (C++ member)

 	PhysicsDebrisData::friction (C++ member)

 	PhysicsDebrisData::lifetime (C++ member)

 	PhysicsDebrisData::lifetimeVariance (C++ member)

 	PhysicsDebrisData::linearDamping (C++ member)

 	PhysicsDebrisData::linearSleepThreshold (C++ member)

 	PhysicsDebrisData::mass (C++ member)

 	PhysicsDebrisData::preload (C++ member)

 	PhysicsDebrisData::restitution (C++ member)

 	PhysicsDebrisData::shapeFile (C++ member)

 	PhysicsDebrisData::staticFriction (C++ member)

 	PhysicsDebrisData::waterDampingScale (C++ member)

 	PhysicsForce::attach (C++ function)

 	PhysicsForce::detach (C++ function)

 	PhysicsForce::isAttached (C++ function)

 	physicsPluginPresent (C++ member)

 	PhysicsShape::destroy (C++ function)

 	PhysicsShape::isDestroyed (C++ function)

 	PhysicsShape::playAmbient (C++ member)

 	PhysicsShape::restore (C++ function)

 	PhysicsShapeData::angularDamping (C++ member)

 	PhysicsShapeData::angularSleepThreshold (C++ member)

 	PhysicsShapeData::buoyancyDensity (C++ member)

 	PhysicsShapeData::Debris (C++ member)

 	PhysicsShapeData::destroyedShape (C++ member)

 	PhysicsShapeData::Explosion (C++ member)

 	PhysicsShapeData::friction (C++ member)

 	PhysicsShapeData::linearDamping (C++ member)

 	PhysicsShapeData::linearSleepThreshold (C++ member)

 	PhysicsShapeData::mass (C++ member)

 	PhysicsShapeData::restitution (C++ member)

 	PhysicsShapeData::shapeName (C++ member)

 	PhysicsShapeData::simType (C++ member)

 	PhysicsShapeData::staticFriction (C++ member)

 	PhysicsShapeData::waterDampingScale (C++ member)

 	Player::allowAllPoses (C++ function), [1]

 	Player::allowCrouching (C++ function), [1]

 	Player::allowJetJumping (C++ function), [1]

 	Player::allowJumping (C++ function), [1]

 	Player::allowProne (C++ function), [1]

 	Player::allowSprinting (C++ function), [1]

 	Player::allowSwimming (C++ function), [1]

 	Player::checkDismountPoint (C++ function), [1]

 	Player::clearControlObject (C++ function), [1]

 	Player::crouchTrigger (C++ member)

 	Player::extendedMoveHeadPosRotIndex (C++ member)

 	Player::getControlObject (C++ function), [1]

 	Player::getDamageLocation (C++ function), [1]

 	Player::getNumDeathAnimations (C++ function), [1]

 	Player::getPose (C++ function), [1]

 	Player::getState (C++ function), [1]

 	Player::imageTrigger0 (C++ member)

 	Player::imageTrigger1 (C++ member)

 	Player::jumpJetTrigger (C++ member)

 	Player::jumpTrigger (C++ member)

 	Player::maxImpulseVelocity (C++ member)

 	Player::maxPredictionTicks (C++ member)

 	Player::maxWarpTicks (C++ member)

 	Player::minWarpTicks (C++ member)

 	Player::proneTrigger (C++ member)

 	Player::renderCollision (C++ member)

 	Player::renderMyItems (C++ member)

 	Player::renderMyPlayer (C++ member)

 	Player::setActionThread (C++ function), [1]

 	Player::setArmThread (C++ function), [1]

 	Player::setControlObject (C++ function), [1]

 	Player::sprintTrigger (C++ member)

 	Player::vehicleDismountTrigger (C++ member)

 	PlayerData::airControl (C++ member)

 	PlayerData::allowImageStateAnimation (C++ member)

 	PlayerData::animationDone (C++ function)

 	PlayerData::boundingBox (C++ member)

 	PlayerData::boxHeadBackPercentage (C++ member)

 	PlayerData::boxHeadFrontPercentage (C++ member)

 	PlayerData::boxHeadLeftPercentage (C++ member)

 	PlayerData::boxHeadPercentage (C++ member)

 	PlayerData::boxHeadRightPercentage (C++ member)

 	PlayerData::boxTorsoPercentage (C++ member)

 	PlayerData::bubbleEmitTime (C++ member)

 	PlayerData::crouchBoundingBox (C++ member)

 	PlayerData::crouchForce (C++ member)

 	PlayerData::DecalData (C++ member)

 	PlayerData::decalOffset (C++ member)

 	PlayerData::doDismount (C++ function)

 	PlayerData::dustEmitter (C++ member)

 	PlayerData::exitingWater (C++ member)

 	PlayerData::exitSplashSoundVelocity (C++ member)

 	PlayerData::fallingSpeedThreshold (C++ member)

 	PlayerData::firstPersonShadows (C++ member)

 	PlayerData::FootBubblesSound (C++ member)

 	PlayerData::FootHardSound (C++ member)

 	PlayerData::FootMetalSound (C++ member)

 	PlayerData::footPuffEmitter (C++ member)

 	PlayerData::footPuffNumParts (C++ member)

 	PlayerData::footPuffRadius (C++ member)

 	PlayerData::FootShallowSound (C++ member)

 	PlayerData::FootSnowSound (C++ member)

 	PlayerData::FootSoftSound (C++ member)

 	PlayerData::footstepSplashHeight (C++ member)

 	PlayerData::FootUnderwaterSound (C++ member)

 	PlayerData::FootWadingSound (C++ member)

 	PlayerData::groundImpactMinSpeed (C++ member)

 	PlayerData::groundImpactShakeAmp (C++ member)

 	PlayerData::groundImpactShakeDuration (C++ member)

 	PlayerData::groundImpactShakeFalloff (C++ member)

 	PlayerData::groundImpactShakeFreq (C++ member)

 	PlayerData::hardSplashSoundVelocity (C++ member)

 	PlayerData::horizMaxSpeed (C++ member)

 	PlayerData::horizResistFactor (C++ member)

 	PlayerData::horizResistSpeed (C++ member)

 	PlayerData::imageAnimPrefix (C++ member)

 	PlayerData::imageAnimPrefixFP (C++ member)

 	PlayerData::impactHardSound (C++ member)

 	PlayerData::impactMetalSound (C++ member)

 	PlayerData::impactSnowSound (C++ member)

 	PlayerData::impactSoftSound (C++ member)

 	PlayerData::impactWaterEasy (C++ member)

 	PlayerData::impactWaterHard (C++ member)

 	PlayerData::impactWaterMedium (C++ member)

 	PlayerData::jetJumpEnergyDrain (C++ member)

 	PlayerData::jetJumpForce (C++ member)

 	PlayerData::jetJumpSurfaceAngle (C++ member)

 	PlayerData::jetMaxJumpSpeed (C++ member)

 	PlayerData::jetMinJumpEnergy (C++ member)

 	PlayerData::jetMinJumpSpeed (C++ member)

 	PlayerData::jumpDelay (C++ member)

 	PlayerData::jumpEnergyDrain (C++ member)

 	PlayerData::jumpForce (C++ member)

 	PlayerData::jumpSurfaceAngle (C++ member)

 	PlayerData::jumpTowardsNormal (C++ member)

 	PlayerData::landSequenceTime (C++ member)

 	PlayerData::maxBackwardSpeed (C++ member)

 	PlayerData::maxCrouchBackwardSpeed (C++ member)

 	PlayerData::maxCrouchForwardSpeed (C++ member)

 	PlayerData::maxCrouchSideSpeed (C++ member)

 	PlayerData::maxForwardSpeed (C++ member)

 	PlayerData::maxFreelookAngle (C++ member)

 	PlayerData::maxJumpSpeed (C++ member)

 	PlayerData::maxLookAngle (C++ member)

 	
 	PlayerData::maxProneBackwardSpeed (C++ member)

 	PlayerData::maxProneForwardSpeed (C++ member)

 	PlayerData::maxProneSideSpeed (C++ member)

 	PlayerData::maxSideSpeed (C++ member)

 	PlayerData::maxSprintBackwardSpeed (C++ member)

 	PlayerData::maxSprintForwardSpeed (C++ member)

 	PlayerData::maxSprintSideSpeed (C++ member)

 	PlayerData::maxStepHeight (C++ member)

 	PlayerData::maxTimeScale (C++ member)

 	PlayerData::maxUnderwaterBackwardSpeed (C++ member)

 	PlayerData::maxUnderwaterForwardSpeed (C++ member)

 	PlayerData::maxUnderwaterSideSpeed (C++ member)

 	PlayerData::mediumSplashSoundVelocity (C++ member)

 	PlayerData::minImpactSpeed (C++ member)

 	PlayerData::minJumpEnergy (C++ member)

 	PlayerData::minJumpSpeed (C++ member)

 	PlayerData::minLateralImpactSpeed (C++ member)

 	PlayerData::minLookAngle (C++ member)

 	PlayerData::minRunEnergy (C++ member)

 	PlayerData::minSprintEnergy (C++ member)

 	PlayerData::movingBubblesSound (C++ member)

 	PlayerData::onEnterLiquid (C++ function), [1]

 	PlayerData::onEnterMissionArea (C++ function), [1]

 	PlayerData::onLeaveLiquid (C++ function), [1]

 	PlayerData::onLeaveMissionArea (C++ function), [1]

 	PlayerData::onPoseChange (C++ function), [1]

 	PlayerData::onStartSprintMotion (C++ function), [1]

 	PlayerData::onStartSwim (C++ function), [1]

 	PlayerData::onStopSprintMotion (C++ function), [1]

 	PlayerData::onStopSwim (C++ function), [1]

 	PlayerData::physicsPlayerType (C++ member)

 	PlayerData::pickupRadius (C++ member)

 	PlayerData::proneBoundingBox (C++ member)

 	PlayerData::proneForce (C++ member)

 	PlayerData::recoverDelay (C++ member)

 	PlayerData::recoverRunForceScale (C++ member)

 	PlayerData::renderFirstPerson (C++ member)

 	PlayerData::runEnergyDrain (C++ member)

 	PlayerData::runForce (C++ member)

 	PlayerData::runSurfaceAngle (C++ member)

 	PlayerData::shapeNameFP (C++ member)

 	PlayerData::Splash (C++ member)

 	PlayerData::splashAngle (C++ member)

 	PlayerData::splashEmitter (C++ member)

 	PlayerData::splashFreqMod (C++ member)

 	PlayerData::splashVelEpsilon (C++ member)

 	PlayerData::splashVelocity (C++ member)

 	PlayerData::sprintCanJump (C++ member)

 	PlayerData::sprintEnergyDrain (C++ member)

 	PlayerData::sprintForce (C++ member)

 	PlayerData::sprintPitchScale (C++ member)

 	PlayerData::sprintStrafeScale (C++ member)

 	PlayerData::sprintYawScale (C++ member)

 	PlayerData::swimBoundingBox (C++ member)

 	PlayerData::swimForce (C++ member)

 	PlayerData::transitionToLand (C++ member)

 	PlayerData::upMaxSpeed (C++ member)

 	PlayerData::upResistFactor (C++ member)

 	PlayerData::upResistSpeed (C++ member)

 	PlayerData::waterBreathSound (C++ member)

 	playJournal (C++ function)

 	playJournalToVideo (C++ function)

 	PointLight::radius (C++ member)

 	populateAllFontCacheRange (C++ function)

 	populateAllFontCacheString (C++ function)

 	populateFontCacheRange (C++ function)

 	populateFontCacheString (C++ function)

 	Portal::backSidePassable (C++ member)

 	Portal::frontSidePassable (C++ member)

 	Portal::isExteriorPortal (C++ function)

 	Portal::isInteriorPortal (C++ function)

 	PostEffect::allowReflectPass (C++ member)

 	PostEffect::clearShaderMacros (C++ function)

 	PostEffect::disable (C++ function)

 	PostEffect::dumpShaderDisassembly (C++ function)

 	PostEffect::enable (C++ function)

 	PostEffect::getAspectRatio (C++ function)

 	PostEffect::isEnabled (C++ function)

 	(C++ member)

 	PostEffect::onAdd (C++ function)

 	PostEffect::onDisabled (C++ function)

 	PostEffect::oneFrameOnly (C++ member)

 	PostEffect::onEnabled (C++ function)

 	PostEffect::onThisFrame (C++ member)

 	PostEffect::preProcess (C++ function)

 	PostEffect::reload (C++ function)

 	PostEffect::removeShaderMacro (C++ function)

 	PostEffect::renderBin (C++ member)

 	PostEffect::renderPriority (C++ member)

 	PostEffect::renderTime (C++ member)

 	PostEffect::setShaderConst (C++ function)

 	PostEffect::setShaderConsts (C++ function)

 	PostEffect::setShaderMacro (C++ function)

 	PostEffect::setTexture (C++ function)

 	PostEffect::shader (C++ member)

 	PostEffect::skip (C++ member)

 	PostEffect::stateBlock (C++ member)

 	PostEffect::target (C++ member)

 	PostEffect::targetClear (C++ member)

 	PostEffect::targetClearColor (C++ member)

 	PostEffect::targetDepthStencil (C++ member)

 	PostEffect::targetFormat (C++ member)

 	PostEffect::targetScale (C++ member)

 	PostEffect::targetSize (C++ member)

 	PostEffect::targetViewport (C++ member)

 	PostEffect::texture (C++ member)

 	PostEffect::toggle (C++ function)

 	Precipitation::animateSplashes (C++ member)

 	Precipitation::boxHeight (C++ member)

 	Precipitation::boxWidth (C++ member)

 	Precipitation::doCollision (C++ member)

 	Precipitation::dropAnimateMS (C++ member)

 	Precipitation::dropSize (C++ member)

 	Precipitation::fadeDist (C++ member)

 	Precipitation::fadeDistEnd (C++ member)

 	Precipitation::followCam (C++ member)

 	Precipitation::glowIntensity (C++ member)

 	Precipitation::hitPlayers (C++ member)

 	Precipitation::hitVehicles (C++ member)

 	Precipitation::maxMass (C++ member)

 	Precipitation::maxSpeed (C++ member)

 	Precipitation::maxTurbulence (C++ member)

 	Precipitation::minMass (C++ member)

 	Precipitation::minSpeed (C++ member)

 	Precipitation::modifyStorm (C++ function)

 	Precipitation::numDrops (C++ member)

 	Precipitation::reflect (C++ member)

 	Precipitation::rotateWithCamVel (C++ member)

 	Precipitation::setPercentage (C++ function)

 	Precipitation::setTurbulence (C++ function)

 	Precipitation::splashMS (C++ member)

 	Precipitation::splashSize (C++ member)

 	Precipitation::turbulenceSpeed (C++ member)

 	Precipitation::useLighting (C++ member)

 	Precipitation::useTrueBillboards (C++ member)

 	Precipitation::useTurbulence (C++ member)

 	Precipitation::useWind (C++ member)

 	PrecipitationData::dropShader (C++ member)

 	PrecipitationData::dropsPerSide (C++ member)

 	PrecipitationData::dropTexture (C++ member)

 	PrecipitationData::soundProfile (C++ member)

 	PrecipitationData::splashesPerSide (C++ member)

 	PrecipitationData::splashShader (C++ member)

 	PrecipitationData::splashTexture (C++ member)

 	Prefab::fileName (C++ member)

 	Prefab::onLoad (C++ function)

 	profilerDump (C++ function)

 	profilerDumpToFile (C++ function)

 	profilerEnable (C++ function)

 	profilerMarkerEnable (C++ function)

 	profilerReset (C++ function)

 	Projectile::initialPosition (C++ member)

 	Projectile::initialVelocity (C++ member)

 	Projectile::presimulate (C++ function)

 	Projectile::sourceObject (C++ member)

 	Projectile::sourceSlot (C++ member)

 	ProjectileData::armingDelay (C++ member)

 	ProjectileData::bounceElasticity (C++ member)

 	ProjectileData::bounceFriction (C++ member)

 	ProjectileData::decal (C++ member)

 	ProjectileData::Explosion (C++ member)

 	ProjectileData::fadeDelay (C++ member)

 	ProjectileData::gravityMod (C++ member)

 	ProjectileData::impactForce (C++ member)

 	ProjectileData::isBallistic (C++ member)

 	ProjectileData::lifetime (C++ member)

 	ProjectileData::lightDesc (C++ member)

 	ProjectileData::muzzleVelocity (C++ member)

 	ProjectileData::onCollision (C++ function)

 	ProjectileData::onExplode (C++ function)

 	ProjectileData::ParticleEmitter (C++ member)

 	ProjectileData::particleWaterEmitter (C++ member)

 	ProjectileData::projectileShapeName (C++ member)

 	ProjectileData::scale (C++ member)

 	ProjectileData::sound (C++ member)

 	ProjectileData::Splash (C++ member)

 	ProjectileData::velInheritFactor (C++ member)

 	ProjectileData::waterExplosion (C++ member)

 	ProximityMine::explode (C++ function), [1]

 	ProximityMineData::armingDelay (C++ member)

 	ProximityMineData::armingSound (C++ member)

 	ProximityMineData::autoTriggerDelay (C++ member)

 	ProximityMineData::explosionOffset (C++ member)

 	ProximityMineData::onExplode (C++ function)

 	ProximityMineData::onTriggered (C++ function)

 	ProximityMineData::triggerDelay (C++ member)

 	ProximityMineData::triggerOnOwner (C++ member)

 	ProximityMineData::triggerRadius (C++ member)

 	ProximityMineData::triggerSound (C++ member)

 	ProximityMineData::triggerSpeed (C++ member)

 	PxCloth::attachments (C++ member)

 	PxCloth::bending (C++ member)

 	PxCloth::bendingStiffness (C++ member)

 	PxCloth::damping (C++ member)

 	PxCloth::dampingCoefficient (C++ member)

 	PxCloth::density (C++ member)

 	PxCloth::friction (C++ member)

 	PxCloth::Material (C++ member)

 	PxCloth::samples (C++ member)

 	PxCloth::selfCollision (C++ member)

 	PxCloth::size (C++ member)

 	PxCloth::thickness (C++ member)

 	PxCloth::triangleCollision (C++ member)

 	PxMaterial::dynamicFriction (C++ member)

 	PxMaterial::restitution (C++ member)

 	PxMaterial::staticFriction (C++ member)

 	PxMultiActor::broken (C++ member)

 	PxMultiActor::debugRender (C++ member)

 	PxMultiActor::listMeshes (C++ function)

 	PxMultiActor::setAllHidden (C++ function)

 	PxMultiActor::setBroken (C++ function)

 	PxMultiActor::setMeshHidden (C++ function)

 	PxMultiActorData::angularDrag (C++ member)

 	PxMultiActorData::breakForce (C++ member)

 	PxMultiActorData::buoyancyDensity (C++ member)

 	PxMultiActorData::clientOnly (C++ member)

 	PxMultiActorData::dumpModel (C++ member)

 	PxMultiActorData::linearDrag (C++ member)

 	PxMultiActorData::Material (C++ member)

 	PxMultiActorData::noCorrection (C++ member)

 	PxMultiActorData::physXStream (C++ member)

 	PxMultiActorData::reload (C++ member)

 	PxMultiActorData::shapeName (C++ member)

 	PxMultiActorData::singlePlayerOnly (C++ member)

 	PxMultiActorData::string (C++ member)

 	PxMultiActorData::waterDragScale (C++ member)

Q

 	
 	quit (C++ function)

 	
 	quitWithErrorMessage (C++ function)

R

 	
 	RadialImpulseEvent::send (C++ function)

 	RazerHydraFrame::getControllerButton1 (C++ function)

 	RazerHydraFrame::getControllerButton2 (C++ function)

 	RazerHydraFrame::getControllerButton3 (C++ function)

 	RazerHydraFrame::getControllerButton4 (C++ function)

 	RazerHydraFrame::getControllerCount (C++ function)

 	RazerHydraFrame::getControllerDocked (C++ function)

 	RazerHydraFrame::getControllerEnabled (C++ function)

 	RazerHydraFrame::getControllerPos (C++ function)

 	RazerHydraFrame::getControllerRawPos (C++ function)

 	RazerHydraFrame::getControllerRawTransform (C++ function)

 	RazerHydraFrame::getControllerRot (C++ function)

 	RazerHydraFrame::getControllerRotAxis (C++ function)

 	RazerHydraFrame::getControllerSequenceNum (C++ function)

 	RazerHydraFrame::getControllerShoulderButton (C++ function)

 	RazerHydraFrame::getControllerStartButton (C++ function)

 	RazerHydraFrame::getControllerThumbButton (C++ function)

 	RazerHydraFrame::getControllerThumbStick (C++ function)

 	RazerHydraFrame::getControllerTransform (C++ function)

 	RazerHydraFrame::getControllerTrigger (C++ function)

 	RazerHydraFrame::getFrameInternalId (C++ function)

 	RazerHydraFrame::getFrameRealTime (C++ function)

 	RazerHydraFrame::getFrameSimTime (C++ function)

 	RazerHydraFrame::isFrameValid (C++ function)

 	ReflectorDesc::detailAdjust (C++ member)

 	ReflectorDesc::farDist (C++ member)

 	ReflectorDesc::maxRateMs (C++ member)

 	ReflectorDesc::nearDist (C++ member)

 	ReflectorDesc::objectTypeMask (C++ member)

 	ReflectorDesc::priority (C++ member)

 	ReflectorDesc::texSize (C++ member)

 	ReflectorDesc::useOcclusionQuery (C++ member)

 	registerGlobalLight (C++ function), [1]

 	registerGlobalLights (C++ function)

 	registerLocalLight (C++ function)

 	registerMessageListener (C++ function)

 	registerMessageQueue (C++ function)

 	reInitMaterials (C++ member)

 	reloadTextures (C++ function)

 	removeField (C++ function)

 	removeGlobalShaderMacro (C++ function)

 	removeRecord (C++ function)

 	removeTaggedString (C++ function)

 	removeWord (C++ function)

 	RenderBinManager::binType (C++ member)

 	RenderBinManager::getBinType (C++ function)

 	RenderBinManager::processAddOrder (C++ member)

 	RenderBinManager::renderOrder (C++ member)

 	RenderFormatToken::aaLevel (C++ member)

 	RenderFormatToken::copyEffect (C++ member)

 	RenderFormatToken::depthFormat (C++ member)

 	RenderFormatToken::format (C++ member)

 	RenderFormatToken::resolveEffect (C++ member)

 	RenderMeshExample::Material (C++ member)

 	RenderMeshExample::postApply (C++ function)

 	RenderOcclusionMgr::debugRender (C++ member)

 	RenderPassManager::addManager (C++ function)

 	RenderPassManager::getManager (C++ function)

 	RenderPassManager::getManagerCount (C++ function)

 	RenderPassManager::removeManager (C++ function)

 	RenderPassStateBin::stateToken (C++ member)

 	RenderPassStateToken::disable (C++ function)

 	RenderPassStateToken::enable (C++ function)

 	RenderPassStateToken::enabled (C++ member)

 	RenderPassStateToken::toggle (C++ function)

 	
 	RenderShapeExample::shapeFile (C++ member)

 	RenderTerrainMgr::renderWireframe (C++ member)

 	resetFPSTracker (C++ function)

 	resetLightManager (C++ function)

 	resetXInput (C++ function)

 	restWords (C++ function)

 	RigidShape::forceClientTransform (C++ function)

 	RigidShape::freezeSim (C++ function)

 	RigidShape::onEnterLiquid (C++ function)

 	RigidShape::onLeaveLiquid (C++ function)

 	RigidShape::reset (C++ function)

 	RigidShapeData::bodyFriction (C++ member)

 	RigidShapeData::bodyRestitution (C++ member)

 	RigidShapeData::cameraDecay (C++ member)

 	RigidShapeData::cameraLag (C++ member)

 	RigidShapeData::cameraOffset (C++ member)

 	RigidShapeData::cameraRoll (C++ member)

 	RigidShapeData::collisionTol (C++ member)

 	RigidShapeData::contactTol (C++ member)

 	RigidShapeData::dragForce (C++ member)

 	RigidShapeData::dustEmitter (C++ member)

 	RigidShapeData::dustHeight (C++ member)

 	RigidShapeData::dustTrailEmitter (C++ member)

 	RigidShapeData::exitingWater (C++ member)

 	RigidShapeData::exitSplashSoundVelocity (C++ member)

 	RigidShapeData::hardImpactSound (C++ member)

 	RigidShapeData::hardImpactSpeed (C++ member)

 	RigidShapeData::hardSplashSoundVelocity (C++ member)

 	RigidShapeData::impactWaterEasy (C++ member)

 	RigidShapeData::impactWaterHard (C++ member)

 	RigidShapeData::impactWaterMedium (C++ member)

 	RigidShapeData::integration (C++ member)

 	RigidShapeData::massBox (C++ member)

 	RigidShapeData::massCenter (C++ member)

 	RigidShapeData::maxDrag (C++ member)

 	RigidShapeData::mediumSplashSoundVelocity (C++ member)

 	RigidShapeData::minDrag (C++ member)

 	RigidShapeData::minImpactSpeed (C++ member)

 	RigidShapeData::minRollSpeed (C++ member)

 	RigidShapeData::softImpactSound (C++ member)

 	RigidShapeData::softImpactSpeed (C++ member)

 	RigidShapeData::softSplashSoundVelocity (C++ member)

 	RigidShapeData::splashEmitter (C++ member)

 	RigidShapeData::splashFreqMod (C++ member)

 	RigidShapeData::splashVelEpsilon (C++ member)

 	RigidShapeData::triggerDustHeight (C++ member)

 	RigidShapeData::vertFactor (C++ member)

 	RigidShapeData::waterWakeSound (C++ member)

 	River::EditorOpen (C++ member)

 	River::FlowMagnitude (C++ member)

 	River::LowLODDistance (C++ member)

 	River::Node (C++ member)

 	River::regenerate (C++ function)

 	River::SegmentLength (C++ member)

 	River::setBatchSize (C++ function)

 	River::setMaxDivisionSize (C++ function)

 	River::setMetersPerSegment (C++ function)

 	River::setNodeDepth (C++ function)

 	River::showNodes (C++ member)

 	River::showRiver (C++ member)

 	River::showSpline (C++ member)

 	River::showWalls (C++ member)

 	River::showWireframe (C++ member)

 	River::SubdivideLength (C++ member)

 	rtrim (C++ function)

 	rumble (C++ function)

S

 	
 	SaveFileDialog::OverwritePrompt (C++ member)

 	saveJournal (C++ function)

 	saveObject (C++ function)

 	ScatterSky::ambientScale (C++ member)

 	ScatterSky::applyChanges (C++ function)

 	ScatterSky::attenuationRatio (C++ member)

 	ScatterSky::azimuth (C++ member)

 	ScatterSky::brightness (C++ member)

 	ScatterSky::castShadows (C++ member)

 	ScatterSky::colorize (C++ member)

 	ScatterSky::colorizeAmount (C++ member)

 	ScatterSky::cookie (C++ member)

 	ScatterSky::elevation (C++ member)

 	ScatterSky::exposure (C++ member)

 	ScatterSky::fadeStartDistance (C++ member)

 	ScatterSky::flareScale (C++ member)

 	ScatterSky::flareType (C++ member)

 	ScatterSky::fogScale (C++ member)

 	ScatterSky::includeLightmappedGeometryInShadow (C++ member)

 	ScatterSky::lastSplitTerrainOnly (C++ member)

 	ScatterSky::logWeight (C++ member)

 	ScatterSky::moonAzimuth (C++ member)

 	ScatterSky::moonElevation (C++ member)

 	ScatterSky::moonEnabled (C++ member)

 	ScatterSky::moonLightColor (C++ member)

 	ScatterSky::moonMat (C++ member)

 	ScatterSky::moonScale (C++ member)

 	ScatterSky::nightColor (C++ member)

 	ScatterSky::nightCubemap (C++ member)

 	ScatterSky::nightFogColor (C++ member)

 	ScatterSky::numSplits (C++ member)

 	ScatterSky::overDarkFactor (C++ member)

 	ScatterSky::rayleighScattering (C++ member)

 	ScatterSky::representedInLightmap (C++ member)

 	ScatterSky::shadowDarkenColor (C++ member)

 	ScatterSky::shadowDistance (C++ member)

 	ScatterSky::shadowSoftness (C++ member)

 	ScatterSky::shadowType (C++ member)

 	ScatterSky::skyBrightness (C++ member)

 	ScatterSky::sunScale (C++ member)

 	ScatterSky::sunSize (C++ member)

 	ScatterSky::texSize (C++ member)

 	ScatterSky::useNightCubemap (C++ member)

 	sceneDumpZoneStates (C++ function)

 	sceneGetZoneOwner (C++ function)

 	SceneObject::getEulerRotation (C++ function)

 	SceneObject::getForwardVector (C++ function)

 	SceneObject::getInverseTransform (C++ function)

 	SceneObject::getMountedObject (C++ function)

 	SceneObject::getMountedObjectCount (C++ function)

 	SceneObject::getMountedObjectNode (C++ function)

 	SceneObject::getMountNodeObject (C++ function)

 	SceneObject::getObjectBox (C++ function)

 	SceneObject::getObjectMount (C++ function)

 	SceneObject::getPosition (C++ function)

 	SceneObject::getRightVector (C++ function)

 	SceneObject::getScale (C++ function)

 	SceneObject::getTransform (C++ function)

 	SceneObject::getType (C++ function)

 	SceneObject::getUpVector (C++ function)

 	SceneObject::getWorldBox (C++ function)

 	SceneObject::getWorldBoxCenter (C++ function)

 	SceneObject::isGlobalBounds (C++ function)

 	SceneObject::isMounted (C++ function)

 	SceneObject::isRenderEnabled (C++ member)

 	SceneObject::isSelectionEnabled (C++ member)

 	SceneObject::mountNode (C++ member)

 	SceneObject::mountObject (C++ function)

 	SceneObject::mountPID (C++ member)

 	SceneObject::mountPos (C++ member)

 	SceneObject::mountRot (C++ member)

 	SceneObject::position (C++ member)

 	SceneObject::rotation (C++ member)

 	SceneObject::scale (C++ member)

 	SceneObject::setScale (C++ function)

 	SceneObject::setTransform (C++ function)

 	SceneObject::unmount (C++ function)

 	SceneObject::unmountObject (C++ function)

 	screenShot (C++ function)

 	ScriptGroup::onAdd (C++ function)

 	ScriptGroup::onRemove (C++ function)

 	ScriptMsgListener::onAdd (C++ function)

 	ScriptMsgListener::onAddToQueue (C++ function)

 	ScriptMsgListener::onMessageObjectReceived (C++ function)

 	ScriptMsgListener::onMessageReceived (C++ function)

 	ScriptMsgListener::onRemove (C++ function)

 	ScriptMsgListener::onRemoveFromQueue (C++ function)

 	ScriptObject::onAdd (C++ function)

 	ScriptObject::onRemove (C++ function)

 	ScriptTickObject::callOnAdvanceTime (C++ member)

 	ScriptTickObject::isProcessingTicks (C++ function)

 	ScriptTickObject::onAdvanceTime (C++ function)

 	ScriptTickObject::onInterpolateTick (C++ function)

 	ScriptTickObject::onProcessTick (C++ function)

 	ScriptTickObject::setProcessTicks (C++ function)

 	set (C++ function)

 	setAllSensorPredictionTime (C++ function)

 	setCoreLangTable (C++ function)

 	setCurrentDirectory (C++ function)

 	setDefaultFov (C++ function)

 	setField (C++ function)

 	setFov (C++ function)

 	setGFXLight (C++ function)

 	setLightInfo (C++ function), [1]

 	setLightManager (C++ function)

 	setLightShadowMap (C++ function)

 	setLightShadowMapForLight (C++ function)

 	setLogMode (C++ function)

 	setNetPort (C++ function)

 	setOVRHMDAsGameConnectionDisplayDevice (C++ function)

 	setOVRHMDCurrentIPD (C++ function)

 	setOVRSensorGravityCorrection (C++ function)

 	setOVRSensorYawCorrection (C++ function)

 	setPixelShaderVersion (C++ function)

 	setRandomSeed (C++ function)

 	setRecord (C++ function)

 	setReflectFormat (C++ function)

 	setSensorPredictionTime (C++ function)

 	setSpecialLight (C++ function)

 	setTextureStage (C++ function), [1]

 	setVariable (C++ function)

 	setWord (C++ function)

 	setZoomSpeed (C++ function)

 	SFXAmbience::dopplerFactor (C++ member)

 	SFXAmbience::environment (C++ member)

 	SFXAmbience::rolloffFactor (C++ member)

 	SFXAmbience::soundTrack (C++ member)

 	SFXAmbience::states (C++ member)

 	SFXController::getCurrentSlot (C++ function)

 	SFXController::setCurrentSlot (C++ function)

 	SFXController::trace (C++ member)

 	sfxCreateDevice (C++ function)

 	sfxCreateSource (C++ function), [1], [2], [3]

 	sfxDeleteDevice (C++ function)

 	sfxDeleteWhenStopped (C++ function)

 	SFXDescription::coneInsideAngle (C++ member)

 	SFXDescription::coneOutsideAngle (C++ member)

 	SFXDescription::coneOutsideVolume (C++ member)

 	SFXDescription::fadeInEase (C++ member)

 	SFXDescription::fadeInTime (C++ member)

 	SFXDescription::fadeLoops (C++ member)

 	SFXDescription::fadeOutEase (C++ member)

 	SFXDescription::fadeOutTime (C++ member)

 	SFXDescription::is3D (C++ member)

 	SFXDescription::isLooping (C++ member)

 	SFXDescription::isStreaming (C++ member)

 	SFXDescription::maxDistance (C++ member)

 	SFXDescription::parameters (C++ member)

 	SFXDescription::pitch (C++ member)

 	SFXDescription::priority (C++ member)

 	SFXDescription::referenceDistance (C++ member)

 	SFXDescription::REVERB_DIRECTHFAUTO (C++ member)

 	SFXDescription::REVERB_INSTANCE0 (C++ member)

 	SFXDescription::REVERB_INSTANCE1 (C++ member)

 	SFXDescription::REVERB_INSTANCE2 (C++ member)

 	SFXDescription::REVERB_INSTANCE3 (C++ member)

 	SFXDescription::REVERB_ROOMAUTO (C++ member)

 	SFXDescription::REVERB_ROOMHFAUTO (C++ member)

 	SFXDescription::reverbAirAbsorptionFactor (C++ member)

 	SFXDescription::reverbDirect (C++ member)

 	SFXDescription::reverbDirectHF (C++ member)

 	SFXDescription::reverbDopplerFactor (C++ member)

 	SFXDescription::reverbExclusion (C++ member)

 	SFXDescription::reverbExclusionLFRatio (C++ member)

 	SFXDescription::reverbFlags (C++ member)

 	SFXDescription::reverbObstruction (C++ member)

 	SFXDescription::reverbObstructionLFRatio (C++ member)

 	SFXDescription::reverbOcclusion (C++ member)

 	SFXDescription::reverbOcclusionDirectRatio (C++ member)

 	SFXDescription::reverbOcclusionLFRatio (C++ member)

 	SFXDescription::reverbOcclusionRoomRatio (C++ member)

 	SFXDescription::reverbOutsideVolumeHF (C++ member)

 	SFXDescription::reverbReverbRolloffFactor (C++ member)

 	SFXDescription::reverbRoom (C++ member)

 	SFXDescription::reverbRoomHF (C++ member)

 	SFXDescription::reverbRoomRolloffFactor (C++ member)

 	SFXDescription::rolloffFactor (C++ member)

 	SFXDescription::scatterDistance (C++ member)

 	SFXDescription::sourceGroup (C++ member)

 	SFXDescription::streamPacketSize (C++ member)

 	SFXDescription::streamReadAhead (C++ member)

 	SFXDescription::useCustomReverb (C++ member)

 	SFXDescription::useHardware (C++ member)

 	SFXDescription::volume (C++ member)

 	sfxDumpSources (C++ function)

 	sfxDumpSourcesToString (C++ function)

 	SFXEmitter::coneInsideAngle (C++ member)

 	SFXEmitter::coneOutsideAngle (C++ member)

 	SFXEmitter::coneOutsideVolume (C++ member)

 	SFXEmitter::fadeInTime (C++ member)

 	SFXEmitter::fadeOutTime (C++ member)

 	SFXEmitter::fileName (C++ member)

 	SFXEmitter::getSource (C++ function)

 	SFXEmitter::is3D (C++ member)

 	SFXEmitter::isLooping (C++ member)

 	SFXEmitter::isStreaming (C++ member)

 	SFXEmitter::maxDistance (C++ member)

 	SFXEmitter::pitch (C++ member)

 	SFXEmitter::play (C++ function)

 	SFXEmitter::playOnAdd (C++ member)

 	SFXEmitter::referenceDistance (C++ member)

 	SFXEmitter::renderColorInnerCone (C++ member)

 	SFXEmitter::renderColorOuterCone (C++ member)

 	SFXEmitter::renderColorOutsideVolume (C++ member)

 	SFXEmitter::renderColorPlayingInRange (C++ member)

 	SFXEmitter::renderColorPlayingOutOfRange (C++ member)

 	SFXEmitter::renderColorRangeSphere (C++ member)

 	SFXEmitter::renderColorStoppedInRange (C++ member)

 	SFXEmitter::renderColorStoppedOutOfRange (C++ member)

 	SFXEmitter::renderEmitters (C++ member)

 	SFXEmitter::renderPointDistance (C++ member)

 	SFXEmitter::renderRadialIncrements (C++ member)

 	SFXEmitter::renderSweepIncrements (C++ member)

 	SFXEmitter::scatterDistance (C++ member)

 	SFXEmitter::sourceGroup (C++ member)

 	SFXEmitter::stop (C++ function)

 	SFXEmitter::track (C++ member)

 	SFXEmitter::useTrackDescriptionOnly (C++ member)

 	SFXEmitter::volume (C++ member)

 	SFXEnvironment::airAbsorptionHF (C++ member)

 	SFXEnvironment::decayHFRatio (C++ member)

 	SFXEnvironment::decayLFRatio (C++ member)

 	SFXEnvironment::decayTime (C++ member)

 	SFXEnvironment::density (C++ member)

 	SFXEnvironment::diffusion (C++ member)

 	SFXEnvironment::echoDepth (C++ member)

 	SFXEnvironment::echoTime (C++ member)

 	SFXEnvironment::envDiffusion (C++ member)

 	SFXEnvironment::envSize (C++ member)

 	SFXEnvironment::flags (C++ member)

 	SFXEnvironment::HFReference (C++ member)

 	SFXEnvironment::LFReference (C++ member)

 	SFXEnvironment::modulationDepth (C++ member)

 	SFXEnvironment::modulationTime (C++ member)

 	SFXEnvironment::reflections (C++ member)

 	SFXEnvironment::reflectionsDelay (C++ member)

 	SFXEnvironment::reflectionsPan (C++ member)

 	SFXEnvironment::reverb (C++ member)

 	SFXEnvironment::REVERB_CORE0 (C++ member)

 	SFXEnvironment::REVERB_CORE1 (C++ member)

 	SFXEnvironment::REVERB_DECAYHFLIMIT (C++ member)

 	SFXEnvironment::REVERB_DECAYTIMESCALE (C++ member)

 	SFXEnvironment::REVERB_ECHOTIMESCALE (C++ member)

 	SFXEnvironment::REVERB_HIGHQUALITYDPL2REVERB (C++ member)

 	SFXEnvironment::REVERB_HIGHQUALITYREVERB (C++ member)

 	SFXEnvironment::REVERB_MODULATIONTIMESCALE (C++ member)

 	SFXEnvironment::REVERB_REFLECTIONSDELAYSCALE (C++ member)

 	SFXEnvironment::REVERB_REFLECTIONSSCALE (C++ member)

 	SFXEnvironment::REVERB_REVERBDELAYSCALE (C++ member)

 	SFXEnvironment::REVERB_REVERBSCALE (C++ member)

 	SFXEnvironment::reverbDelay (C++ member)

 	SFXEnvironment::reverbPan (C++ member)

 	SFXEnvironment::room (C++ member)

 	SFXEnvironment::roomHF (C++ member)

 	SFXEnvironment::roomLF (C++ member)

 	SFXEnvironment::roomRolloffFactor (C++ member)

 	SFXFMODEvent::fmodGroup (C++ member)

 	SFXFMODEvent::fmodName (C++ member)

 	SFXFMODEvent::fmodParameterRanges (C++ member)

 	SFXFMODEvent::fmodParameterValues (C++ member)

 	SFXFMODEventGroup::fmodGroup (C++ member)

 	SFXFMODEventGroup::fmodName (C++ member)

 	SFXFMODEventGroup::fmodProject (C++ member)

 	SFXFMODEventGroup::freeData (C++ function)

 	SFXFMODEventGroup::isDataLoaded (C++ function)

 	SFXFMODEventGroup::loadData (C++ function)

 	SFXFMODProject::fileName (C++ member)

 	SFXFMODProject::mediaPath (C++ member)

 	sfxGetActiveStates (C++ function)

 	sfxGetAvailableDevices (C++ function)

 	sfxGetDeviceInfo (C++ function)

 	sfxGetDistanceModel (C++ function)

 	sfxGetDopplerFactor (C++ function)

 	sfxGetRolloffFactor (C++ function)

 	SFXParameter::channel (C++ member)

 	SFXParameter::defaultValue (C++ member)

 	SFXParameter::description (C++ member)

 	SFXParameter::getParameterName (C++ function)

 	SFXParameter::onUpdate (C++ function)

 	SFXParameter::range (C++ member)

 	SFXParameter::reset (C++ function)

 	SFXParameter::value (C++ member)

 	sfxPlay (C++ function), [1], [2]

 	SFXPlayList::delayTimeIn (C++ member)

 	SFXPlayList::delayTimeInVariance (C++ member)

 	SFXPlayList::delayTimeOut (C++ member)

 	SFXPlayList::delayTimeOutVariance (C++ member)

 	SFXPlayList::fadeTimeIn (C++ member)

 	SFXPlayList::fadeTimeInVariance (C++ member)

 	SFXPlayList::fadeTimeOut (C++ member)

 	SFXPlayList::fadeTimeOutVariance (C++ member)

 	SFXPlayList::loopMode (C++ member)

 	SFXPlayList::maxDistance (C++ member)

 	SFXPlayList::maxDistanceVariance (C++ member)

 	SFXPlayList::numSlotsToPlay (C++ member)

 	SFXPlayList::pitchScale (C++ member)

 	SFXPlayList::pitchScaleVariance (C++ member)

 	SFXPlayList::random (C++ member)

 	SFXPlayList::referenceDistance (C++ member)

 	SFXPlayList::referenceDistanceVariance (C++ member)

 	SFXPlayList::repeatCount (C++ member)

 	SFXPlayList::replay (C++ member)

 	SFXPlayList::state (C++ member)

 	SFXPlayList::stateMode (C++ member)

 	SFXPlayList::trace (C++ member)

 	SFXPlayList::track (C++ member)

 	SFXPlayList::transitionIn (C++ member)

 	SFXPlayList::transitionOut (C++ member)

 	SFXPlayList::volumeScale (C++ member)

 	SFXPlayList::volumeScaleVariance (C++ member)

 	sfxPlayOnce (C++ function), [1], [2], [3]

 	SFXProfile::fileName (C++ member)

 	SFXProfile::getSoundDuration (C++ function)

 	SFXProfile::preload (C++ member)

 	sfxSetDistanceModel (C++ function)

 	sfxSetDopplerFactor (C++ function)

 	sfxSetRolloffFactor (C++ function)

 	SFXSound::getDuration (C++ function)

 	SFXSound::getPosition (C++ function)

 	SFXSound::isReady (C++ function)

 	SFXSound::setPosition (C++ function)

 	SFXSource::addMarker (C++ function)

 	SFXSource::addParameter (C++ function)

 	SFXSource::description (C++ member)

 	SFXSource::getAttenuatedVolume (C++ function)

 	SFXSource::getFadeInTime (C++ function)

 	SFXSource::getFadeOutTime (C++ function)

 	SFXSource::getParameter (C++ function)

 	SFXSource::getParameterCount (C++ function)

 	SFXSource::getPitch (C++ function)

 	SFXSource::getStatus (C++ function)

 	SFXSource::getVolume (C++ function)

 	SFXSource::isPaused (C++ function)

 	SFXSource::isPlaying (C++ function)

 	SFXSource::isStopped (C++ function)

 	SFXSource::onParameterValueChange (C++ function)

 	SFXSource::onStatusChange (C++ function)

 	SFXSource::pause (C++ function)

 	SFXSource::removeParameter (C++ function)

 	SFXSource::setCone (C++ function)

 	SFXSource::setFadeTimes (C++ function)

 	SFXSource::setPitch (C++ function)

 	SFXSource::setTransform (C++ function)

 	SFXSource::setVolume (C++ function)

 	SFXSource::statusCallback (C++ member)

 	SFXSource::stop (C++ function)

 	SFXSpace::edge (C++ member)

 	SFXSpace::plane (C++ member)

 	SFXSpace::point (C++ member)

 	SFXSpace::soundAmbience (C++ member)

 	SFXState::activate (C++ function)

 	SFXState::deactivate (C++ function)

 	SFXState::disable (C++ function)

 	SFXState::enable (C++ function)

 	SFXState::excludedStates (C++ member)

 	SFXState::includedStates (C++ member)

 	SFXState::isActive (C++ function)

 	SFXState::isDisabled (C++ function)

 	SFXState::onActivate (C++ function)

 	SFXState::onDeactivate (C++ function)

 	sfxStop (C++ function)

 	sfxStopAndDelete (C++ function)

 	SFXTrack::description (C++ member)

 	SFXTrack::parameters (C++ member)

 	ShaderData::defines (C++ member)

 	ShaderData::DXPixelShaderFile (C++ member)

 	ShaderData::DXVertexShaderFile (C++ member)

 	ShaderData::OGLPixelShaderFile (C++ member)

 	ShaderData::OGLVertexShaderFile (C++ member)

 	ShaderData::pixVersion (C++ member)

 	ShaderData::reload (C++ function)

 	ShaderData::useDevicePixVersion (C++ member)

 	ShapeBase::applyDamage (C++ function)

 	ShapeBase::applyImpulse (C++ function)

 	ShapeBase::applyRepair (C++ function)

 	ShapeBase::blowUp (C++ function)

 	ShapeBase::canCloak (C++ function)

 	ShapeBase::changeMaterial (C++ function)

 	ShapeBase::destroyThread (C++ function)

 	ShapeBase::dumpMeshVisibility (C++ function)

 	ShapeBase::getAIRepairPoint (C++ function)

 	ShapeBase::getCameraFov (C++ function)

 	ShapeBase::getControllingClient (C++ function)

 	ShapeBase::getControllingObject (C++ function)

 	ShapeBase::getDamageFlash (C++ function)

 	ShapeBase::getDamageLevel (C++ function)

 	ShapeBase::getDamagePercent (C++ function)

 	ShapeBase::getDamageState (C++ function)

 	ShapeBase::getDefaultCameraFov (C++ function)

 	ShapeBase::getEnergyLevel (C++ function)

 	ShapeBase::getEnergyPercent (C++ function)

 	ShapeBase::getEyePoint (C++ function)

 	ShapeBase::getEyeTransform (C++ function)

 	ShapeBase::getEyeVector (C++ function)

 	ShapeBase::getImageAltTrigger (C++ function)

 	ShapeBase::getImageAmmo (C++ function)

 	ShapeBase::getImageGenericTrigger (C++ function)

 	ShapeBase::getImageLoaded (C++ function)

 	ShapeBase::getImageScriptAnimPrefix (C++ function)

 	ShapeBase::getImageSkinTag (C++ function)

 	ShapeBase::getImageState (C++ function)

 	ShapeBase::getImageTarget (C++ function)

 	ShapeBase::getImageTrigger (C++ function)

 	ShapeBase::getLookAtPoint (C++ function)

 	ShapeBase::getMaxDamage (C++ function)

 	ShapeBase::getModelFile (C++ function)

 	ShapeBase::getMountedImage (C++ function)

 	ShapeBase::getMountSlot (C++ function)

 	ShapeBase::getMuzzlePoint (C++ function)

 	ShapeBase::getMuzzleVector (C++ function)

 	ShapeBase::getPendingImage (C++ function)

 	ShapeBase::getRechargeRate (C++ function)

 	ShapeBase::getRepairRate (C++ function)

 	ShapeBase::getShapeName (C++ function)

 	ShapeBase::getSkinName (C++ function)

 	ShapeBase::getSlotTransform (C++ function)

 	ShapeBase::getTargetCount (C++ function)

 	ShapeBase::getTargetName (C++ function)

 	
 	ShapeBase::getVelocity (C++ function)

 	ShapeBase::getWhiteOut (C++ function)

 	ShapeBase::hasImageState (C++ function)

 	ShapeBase::isAIControlled (C++ member)

 	ShapeBase::isCloaked (C++ function)

 	ShapeBase::isDestroyed (C++ function)

 	ShapeBase::isDisabled (C++ function)

 	ShapeBase::isEnabled (C++ function)

 	ShapeBase::isHidden (C++ function)

 	ShapeBase::isImageFiring (C++ function)

 	ShapeBase::isImageMounted (C++ function)

 	ShapeBase::mountImage (C++ function)

 	ShapeBase::pauseThread (C++ function)

 	ShapeBase::playAudio (C++ function)

 	ShapeBase::playThread (C++ function)

 	ShapeBase::setAllMeshesHidden (C++ function)

 	ShapeBase::setCameraFov (C++ function)

 	ShapeBase::setCloaked (C++ function)

 	ShapeBase::setDamageFlash (C++ function)

 	ShapeBase::setDamageLevel (C++ function)

 	ShapeBase::setDamageState (C++ function)

 	ShapeBase::setDamageVector (C++ function)

 	ShapeBase::setEnergyLevel (C++ function)

 	ShapeBase::setHidden (C++ function)

 	ShapeBase::setImageAltTrigger (C++ function)

 	ShapeBase::setImageAmmo (C++ function)

 	ShapeBase::setImageGenericTrigger (C++ function)

 	ShapeBase::setImageLoaded (C++ function)

 	ShapeBase::setImageScriptAnimPrefix (C++ function)

 	ShapeBase::setImageTarget (C++ function)

 	ShapeBase::setImageTrigger (C++ function)

 	ShapeBase::setInvincibleMode (C++ function)

 	ShapeBase::setMeshHidden (C++ function)

 	ShapeBase::setRechargeRate (C++ function)

 	ShapeBase::setRepairRate (C++ function)

 	ShapeBase::setShapeName (C++ function)

 	ShapeBase::setSkinName (C++ function)

 	ShapeBase::setThreadDir (C++ function)

 	ShapeBase::setThreadPosition (C++ function)

 	ShapeBase::setThreadTimeScale (C++ function)

 	ShapeBase::setVelocity (C++ function)

 	ShapeBase::setWhiteOut (C++ function)

 	ShapeBase::skin (C++ member)

 	ShapeBase::startFade (C++ function)

 	ShapeBase::stopAudio (C++ function)

 	ShapeBase::stopThread (C++ function)

 	ShapeBase::unmountImage (C++ function)

 	ShapeBase::validateCameraFov (C++ function)

 	ShapeBaseData::cameraCanBank (C++ member)

 	ShapeBaseData::cameraDefaultFov (C++ member)

 	ShapeBaseData::cameraMaxDist (C++ member)

 	ShapeBaseData::cameraMaxFov (C++ member)

 	ShapeBaseData::cameraMinDist (C++ member)

 	ShapeBaseData::cameraMinFov (C++ member)

 	ShapeBaseData::checkDeployPos (C++ function)

 	ShapeBaseData::computeCRC (C++ member)

 	ShapeBaseData::cubeReflectorDesc (C++ member)

 	ShapeBaseData::Debris (C++ member)

 	ShapeBaseData::debrisShapeName (C++ member)

 	ShapeBaseData::density (C++ member)

 	ShapeBaseData::destroyedLevel (C++ member)

 	ShapeBaseData::disabledLevel (C++ member)

 	ShapeBaseData::drag (C++ member)

 	ShapeBaseData::Explosion (C++ member)

 	ShapeBaseData::firstPersonOnly (C++ member)

 	ShapeBaseData::getDeployTransform (C++ function)

 	ShapeBaseData::inheritEnergyFromMount (C++ member)

 	ShapeBaseData::isInvincible (C++ member)

 	ShapeBaseData::mass (C++ member)

 	ShapeBaseData::maxDamage (C++ member)

 	ShapeBaseData::maxEnergy (C++ member)

 	ShapeBaseData::mountedImagesBank (C++ member)

 	ShapeBaseData::observeThroughObject (C++ member)

 	ShapeBaseData::onCollision (C++ function)

 	ShapeBaseData::onDamage (C++ function)

 	ShapeBaseData::onDestroyed (C++ function)

 	ShapeBaseData::onDisabled (C++ function)

 	ShapeBaseData::onEnabled (C++ function)

 	ShapeBaseData::onEndSequence (C++ function)

 	ShapeBaseData::onForceUncloak (C++ function)

 	ShapeBaseData::onImpact (C++ function)

 	ShapeBaseData::onTrigger (C++ function)

 	ShapeBaseData::renderWhenDestroyed (C++ member)

 	ShapeBaseData::repairRate (C++ member)

 	ShapeBaseData::shadowEnable (C++ member)

 	ShapeBaseData::shadowMaxVisibleDistance (C++ member)

 	ShapeBaseData::shadowProjectionDistance (C++ member)

 	ShapeBaseData::shadowSize (C++ member)

 	ShapeBaseData::shadowSphereAdjust (C++ member)

 	ShapeBaseData::shapeFile (C++ member)

 	ShapeBaseData::underwaterExplosion (C++ member)

 	ShapeBaseData::useEyePoint (C++ member)

 	ShapeBaseImageData::accuFire (C++ member)

 	ShapeBaseImageData::animateAllShapes (C++ member)

 	ShapeBaseImageData::animateOnServer (C++ member)

 	ShapeBaseImageData::camShakeAmp (C++ member)

 	ShapeBaseImageData::camShakeFreq (C++ member)

 	ShapeBaseImageData::casing (C++ member)

 	ShapeBaseImageData::cloakable (C++ member)

 	ShapeBaseImageData::computeCRC (C++ member)

 	ShapeBaseImageData::correctMuzzleVector (C++ member)

 	ShapeBaseImageData::correctMuzzleVectorTP (C++ member)

 	ShapeBaseImageData::emap (C++ member)

 	ShapeBaseImageData::eyeOffset (C++ member)

 	ShapeBaseImageData::eyeRotation (C++ member)

 	ShapeBaseImageData::firstPerson (C++ member)

 	ShapeBaseImageData::imageAnimPrefix (C++ member)

 	ShapeBaseImageData::imageAnimPrefixFP (C++ member)

 	ShapeBaseImageData::lightBrightness (C++ member)

 	ShapeBaseImageData::lightColor (C++ member)

 	ShapeBaseImageData::lightDuration (C++ member)

 	ShapeBaseImageData::lightRadius (C++ member)

 	ShapeBaseImageData::lightType (C++ member)

 	ShapeBaseImageData::mass (C++ member)

 	ShapeBaseImageData::maxConcurrentSounds (C++ member)

 	ShapeBaseImageData::minEnergy (C++ member)

 	ShapeBaseImageData::mountPoint (C++ member)

 	ShapeBaseImageData::offset (C++ member)

 	ShapeBaseImageData::onMount (C++ function)

 	ShapeBaseImageData::onUnmount (C++ function)

 	ShapeBaseImageData::Projectile (C++ member)

 	ShapeBaseImageData::rotation (C++ member)

 	ShapeBaseImageData::scriptAnimTransitionTime (C++ member)

 	ShapeBaseImageData::shakeCamera (C++ member)

 	ShapeBaseImageData::shapeFile (C++ member)

 	ShapeBaseImageData::shapeFileFP (C++ member)

 	ShapeBaseImageData::shellExitDir (C++ member)

 	ShapeBaseImageData::shellExitVariance (C++ member)

 	ShapeBaseImageData::shellVelocity (C++ member)

 	ShapeBaseImageData::stateAllowImageChange (C++ member)

 	ShapeBaseImageData::stateAlternateFire (C++ member)

 	ShapeBaseImageData::stateDirection (C++ member)

 	ShapeBaseImageData::stateEjectShell (C++ member)

 	ShapeBaseImageData::stateEmitter (C++ member)

 	ShapeBaseImageData::stateEmitterNode (C++ member)

 	ShapeBaseImageData::stateEmitterTime (C++ member)

 	ShapeBaseImageData::stateEnergyDrain (C++ member)

 	ShapeBaseImageData::stateFire (C++ member)

 	ShapeBaseImageData::stateIgnoreLoadedForReady (C++ member)

 	ShapeBaseImageData::stateLoadedFlag (C++ member)

 	ShapeBaseImageData::stateName (C++ member)

 	ShapeBaseImageData::stateRecoil (C++ member)

 	ShapeBaseImageData::stateReload (C++ member)

 	ShapeBaseImageData::stateScaleAnimation (C++ member)

 	ShapeBaseImageData::stateScaleAnimationFP (C++ member)

 	ShapeBaseImageData::stateScaleShapeSequence (C++ member)

 	ShapeBaseImageData::stateScript (C++ member)

 	ShapeBaseImageData::stateSequence (C++ member)

 	ShapeBaseImageData::stateSequenceNeverTransition (C++ member)

 	ShapeBaseImageData::stateSequenceRandomFlash (C++ member)

 	ShapeBaseImageData::stateSequenceTransitionIn (C++ member)

 	ShapeBaseImageData::stateSequenceTransitionOut (C++ member)

 	ShapeBaseImageData::stateSequenceTransitionTime (C++ member)

 	ShapeBaseImageData::stateShapeSequence (C++ member)

 	ShapeBaseImageData::stateSound (C++ member)

 	ShapeBaseImageData::stateSpinThread (C++ member)

 	ShapeBaseImageData::stateTimeoutValue (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric0In (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric0Out (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric1In (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric1Out (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric2In (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric2Out (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric3In (C++ member)

 	ShapeBaseImageData::stateTransitionGeneric3Out (C++ member)

 	ShapeBaseImageData::stateTransitionOnAltTriggerDown (C++ member)

 	ShapeBaseImageData::stateTransitionOnAltTriggerUp (C++ member)

 	ShapeBaseImageData::stateTransitionOnAmmo (C++ member)

 	ShapeBaseImageData::stateTransitionOnLoaded (C++ member)

 	ShapeBaseImageData::stateTransitionOnMotion (C++ member)

 	ShapeBaseImageData::stateTransitionOnNoAmmo (C++ member)

 	ShapeBaseImageData::stateTransitionOnNoMotion (C++ member)

 	ShapeBaseImageData::stateTransitionOnNoTarget (C++ member)

 	ShapeBaseImageData::stateTransitionOnNotLoaded (C++ member)

 	ShapeBaseImageData::stateTransitionOnNotWet (C++ member)

 	ShapeBaseImageData::stateTransitionOnTarget (C++ member)

 	ShapeBaseImageData::stateTransitionOnTimeout (C++ member)

 	ShapeBaseImageData::stateTransitionOnTriggerDown (C++ member)

 	ShapeBaseImageData::stateTransitionOnTriggerUp (C++ member)

 	ShapeBaseImageData::stateTransitionOnWet (C++ member)

 	ShapeBaseImageData::stateWaitForTimeout (C++ member)

 	ShapeBaseImageData::useEyeNode (C++ member)

 	ShapeBaseImageData::useRemainderDT (C++ member)

 	ShapeBaseImageData::usesEnergy (C++ member)

 	shellExecute (C++ function)

 	SimDataBlock::reloadOnLocalClient (C++ function)

 	SimObject::assignFieldsFrom (C++ function)

 	SimObject::assignPersistentId (C++ function)

 	SimObject::call (C++ function)

 	SimObject::canSave (C++ member)

 	SimObject::canSaveDynamicFields (C++ member)

 	SimObject::className (C++ member)

 	SimObject::clone (C++ function)

 	SimObject::deepClone (C++ function)

 	SimObject::dump (C++ function)

 	SimObject::dumpClassHierarchy (C++ function)

 	SimObject::dumpGroupHierarchy (C++ function)

 	SimObject::dumpMethods (C++ function)

 	SimObject::getCanSave (C++ function)

 	SimObject::getClassName (C++ function)

 	SimObject::getClassNamespace (C++ function)

 	SimObject::getDebugInfo (C++ function)

 	SimObject::getDeclarationLine (C++ function)

 	SimObject::getDynamicField (C++ function)

 	SimObject::getDynamicFieldCount (C++ function)

 	SimObject::getField (C++ function)

 	SimObject::getFieldCount (C++ function)

 	SimObject::getFieldType (C++ function)

 	SimObject::getFieldValue (C++ function)

 	SimObject::getFilename (C++ function)

 	SimObject::getGroup (C++ function)

 	SimObject::getId (C++ function)

 	SimObject::getInternalName (C++ function)

 	SimObject::getName (C++ function)

 	SimObject::getSuperClassNamespace (C++ function)

 	SimObject::hidden (C++ member)

 	SimObject::internalName (C++ member)

 	SimObject::isChildOfGroup (C++ function)

 	SimObject::isEditorOnly (C++ function)

 	SimObject::isExpanded (C++ function)

 	SimObject::isField (C++ function)

 	SimObject::isInNamespaceHierarchy (C++ function)

 	SimObject::isMemberOfClass (C++ function)

 	SimObject::isMethod (C++ function)

 	SimObject::isNameChangeAllowed (C++ function)

 	SimObject::isSelected (C++ function)

 	SimObject::locked (C++ member)

 	SimObject::name (C++ member)

 	SimObject::parentGroup (C++ member)

 	SimObject::persistentId (C++ member)

 	SimObject::save (C++ function)

 	SimObject::schedule (C++ function)

 	SimObject::setCanSave (C++ function)

 	SimObject::setClassNamespace (C++ function)

 	SimObject::setEditorOnly (C++ function)

 	SimObject::setFieldType (C++ function)

 	SimObject::setFieldValue (C++ function)

 	SimObject::setFilename (C++ function)

 	SimObject::setHidden (C++ function)

 	SimObject::setInternalName (C++ function)

 	SimObject::setIsExpanded (C++ function)

 	SimObject::setIsSelected (C++ function)

 	SimObject::setLocked (C++ function)

 	SimObject::setName (C++ function)

 	SimObject::setNameChangeAllowed (C++ function)

 	SimObject::setSuperClassNamespace (C++ function)

 	SimObject::superClass (C++ member)

 	SimpleMessageEvent::msg (C++ function)

 	SimpleNetObject::setMessage (C++ function)

 	SimSet::acceptsAsChild (C++ function)

 	SimSet::add (C++ function)

 	SimSet::bringToFront (C++ function)

 	SimSet::callOnChildren (C++ function)

 	SimSet::callOnChildrenNoRecurse (C++ function)

 	SimSet::clear (C++ function)

 	SimSet::deleteAllObjects (C++ function)

 	SimSet::findObjectByInternalName (C++ function)

 	SimSet::getCount (C++ function)

 	SimSet::getFullCount (C++ function)

 	SimSet::getObject (C++ function)

 	SimSet::getObjectIndex (C++ function)

 	SimSet::getRandom (C++ function)

 	SimSet::isMember (C++ function)

 	SimSet::listObjects (C++ function)

 	SimSet::onObjectAdded (C++ function)

 	SimSet::onObjectRemoved (C++ function)

 	SimSet::pushToBack (C++ function)

 	SimSet::remove (C++ function)

 	SimSet::reorderChild (C++ function)

 	SimSet::sort (C++ function)

 	SimXMLDocument::addComment (C++ function)

 	SimXMLDocument::addData (C++ function)

 	SimXMLDocument::addHeader (C++ function)

 	SimXMLDocument::addNewElement (C++ function)

 	SimXMLDocument::addText (C++ function)

 	SimXMLDocument::attribute (C++ function)

 	SimXMLDocument::attributeExists (C++ function)

 	SimXMLDocument::attributeF32 (C++ function)

 	SimXMLDocument::attributeS32 (C++ function)

 	SimXMLDocument::clear (C++ function)

 	SimXMLDocument::clearError (C++ function)

 	SimXMLDocument::elementValue (C++ function)

 	SimXMLDocument::firstAttribute (C++ function)

 	SimXMLDocument::getData (C++ function)

 	SimXMLDocument::getErrorDesc (C++ function)

 	SimXMLDocument::getText (C++ function)

 	SimXMLDocument::lastAttribute (C++ function)

 	SimXMLDocument::loadFile (C++ function)

 	SimXMLDocument::nextAttribute (C++ function)

 	SimXMLDocument::nextSiblingElement (C++ function)

 	SimXMLDocument::parse (C++ function)

 	SimXMLDocument::popElement (C++ function)

 	SimXMLDocument::prevAttribute (C++ function)

 	SimXMLDocument::pushChildElement (C++ function)

 	SimXMLDocument::pushFirstChildElement (C++ function)

 	SimXMLDocument::pushNewElement (C++ function)

 	SimXMLDocument::readComment (C++ function)

 	SimXMLDocument::removeText (C++ function)

 	SimXMLDocument::reset (C++ function)

 	SimXMLDocument::saveFile (C++ function)

 	SimXMLDocument::setAttribute (C++ function)

 	SimXMLDocument::setObjectAttributes (C++ function)

 	SkyBox::drawBottom (C++ member)

 	SkyBox::fogBandHeight (C++ member)

 	SkyBox::Material (C++ member)

 	SkyBox::postApply (C++ member)

 	snapToggle (C++ function)

 	SpawnSphere::autoSpawn (C++ member)

 	SpawnSphere::indoorWeight (C++ member)

 	SpawnSphere::onAdd (C++ function)

 	SpawnSphere::outdoorWeight (C++ member)

 	SpawnSphere::radius (C++ member)

 	SpawnSphere::spawnClass (C++ member)

 	SpawnSphere::spawnDatablock (C++ member)

 	SpawnSphere::spawnObject (C++ function)

 	SpawnSphere::spawnProperties (C++ member)

 	SpawnSphere::spawnScript (C++ member)

 	SpawnSphere::spawnTransform (C++ member)

 	SpawnSphere::sphereWeight (C++ member)

 	SplashData::acceleration (C++ member)

 	SplashData::colors (C++ member)

 	SplashData::delayMS (C++ member)

 	SplashData::delayVariance (C++ member)

 	SplashData::ejectionAngle (C++ member)

 	SplashData::ejectionFreq (C++ member)

 	SplashData::emitter (C++ member)

 	SplashData::Explosion (C++ member)

 	SplashData::height (C++ member)

 	SplashData::lifetimeMS (C++ member)

 	SplashData::lifetimeVariance (C++ member)

 	SplashData::numSegments (C++ member)

 	SplashData::ringLifetime (C++ member)

 	SplashData::scale (C++ member)

 	SplashData::soundProfile (C++ member)

 	SplashData::startRadius (C++ member)

 	SplashData::texFactor (C++ member)

 	SplashData::texture (C++ member)

 	SplashData::texWrap (C++ member)

 	SplashData::times (C++ member)

 	SplashData::velocity (C++ member)

 	SplashData::width (C++ member)

 	SpotLight::innerAngle (C++ member)

 	SpotLight::outerAngle (C++ member)

 	SpotLight::range (C++ member)

 	StartClientReplication (C++ function)

 	startFileChangeNotifications (C++ function)

 	StartFoliageReplication (C++ function)

 	startsWith (C++ function)

 	startVideoCapture (C++ function)

 	StaticShapeData::dynamicType (C++ member)

 	StaticShapeData::noIndividualDamage (C++ member)

 	stopFileChangeNotifications (C++ function)

 	stopSampling (C++ function)

 	stopVideoCapture (C++ function)

 	strasc (C++ function)

 	strchr (C++ function)

 	strchrpos (C++ function)

 	strcmp (C++ function)

 	StreamObject::copyFrom (C++ function)

 	StreamObject::getPosition (C++ function)

 	StreamObject::getStatus (C++ function)

 	StreamObject::getStreamSize (C++ function)

 	StreamObject::isEOF (C++ function)

 	StreamObject::isEOS (C++ function)

 	StreamObject::readLine (C++ function)

 	StreamObject::readLongString (C++ function)

 	StreamObject::readString (C++ function)

 	StreamObject::readSTString (C++ function)

 	StreamObject::setPosition (C++ function)

 	StreamObject::writeLine (C++ function)

 	StreamObject::writeLongString (C++ function)

 	StreamObject::writeString (C++ function)

 	strformat (C++ function)

 	stricmp (C++ function)

 	strinatcmp (C++ function)

 	stripChars (C++ function)

 	StripMLControlChars (C++ function)

 	stripTrailingNumber (C++ function)

 	strIsMatchExpr (C++ function)

 	strIsMatchMultipleExpr (C++ function)

 	strlen (C++ function)

 	strlwr (C++ function)

 	strnatcmp (C++ function)

 	strpos (C++ function)

 	strrchr (C++ function)

 	strrchrpos (C++ function)

 	strrepeat (C++ function)

 	strreplace (C++ function)

 	strstr (C++ function)

 	strupr (C++ function)

 	Sun::ambient (C++ member)

 	Sun::animate (C++ member)

 	Sun::apply (C++ member)

 	Sun::attenuationRatio (C++ member)

 	Sun::azimuth (C++ member)

 	Sun::brightness (C++ member)

 	Sun::castShadows (C++ member)

 	Sun::color (C++ member)

 	Sun::cookie (C++ member)

 	Sun::coronaEnabled (C++ member)

 	Sun::coronaMaterial (C++ member)

 	Sun::coronaScale (C++ member)

 	Sun::coronaTint (C++ member)

 	Sun::coronaUseLightColor (C++ member)

 	Sun::elevation (C++ member)

 	Sun::fadeStartDistance (C++ member)

 	Sun::flareScale (C++ member)

 	Sun::flareType (C++ member)

 	Sun::includeLightmappedGeometryInShadow (C++ member)

 	Sun::lastSplitTerrainOnly (C++ member)

 	Sun::logWeight (C++ member)

 	Sun::numSplits (C++ member)

 	Sun::overDarkFactor (C++ member)

 	Sun::representedInLightmap (C++ member)

 	Sun::shadowDarkenColor (C++ member)

 	Sun::shadowDistance (C++ member)

 	Sun::shadowSoftness (C++ member)

 	Sun::shadowType (C++ member)

 	Sun::texSize (C++ member)

T

 	
 	TCPObject::connect (C++ function)

 	TCPObject::disconnect (C++ function)

 	TCPObject::listen (C++ function)

 	TCPObject::onConnected (C++ function)

 	TCPObject::onConnectFailed (C++ function)

 	TCPObject::onConnectionRequest (C++ function)

 	TCPObject::onDisconnect (C++ function)

 	TCPObject::onDNSFailed (C++ function)

 	TCPObject::onDNSResolved (C++ function)

 	TCPObject::onLine (C++ function)

 	TCPObject::send (C++ function)

 	telnetSetParameters (C++ function)

 	TerrainBlock::baseTexSize (C++ member)

 	TerrainBlock::castShadows (C++ member)

 	TerrainBlock::createNew (C++ member)

 	TerrainBlock::debugRender (C++ member)

 	TerrainBlock::exportHeightMap (C++ function)

 	TerrainBlock::exportLayerMaps (C++ function)

 	TerrainBlock::import (C++ function)

 	TerrainBlock::lightMapSize (C++ member)

 	TerrainBlock::save (C++ function)

 	TerrainBlock::screenError (C++ member)

 	TerrainBlock::squareSize (C++ member)

 	TerrainBlock::terrainFile (C++ member)

 	TerrainMaterial::detailDistance (C++ member)

 	TerrainMaterial::detailMap (C++ member)

 	TerrainMaterial::detailSize (C++ member)

 	TerrainMaterial::detailStrength (C++ member)

 	TerrainMaterial::diffuseMap (C++ member)

 	TerrainMaterial::diffuseSize (C++ member)

 	TerrainMaterial::macroDistance (C++ member)

 	TerrainMaterial::macroMap (C++ member)

 	TerrainMaterial::macroSize (C++ member)

 	TerrainMaterial::macroStrength (C++ member)

 	TerrainMaterial::normalMap (C++ member)

 	TerrainMaterial::parallaxScale (C++ member)

 	TerrainMaterial::useSideProjection (C++ member)

 	TheoraTextureObject::loop (C++ member)

 	TheoraTextureObject::pause (C++ function)

 	TheoraTextureObject::play (C++ function)

 	TheoraTextureObject::SFXDescription (C++ member)

 	TheoraTextureObject::stop (C++ function)

 	TheoraTextureObject::texTargetName (C++ member)

 	TheoraTextureObject::theoraFile (C++ member)

 	TimeOfDay::addTimeOfDayEvent (C++ function)

 	TimeOfDay::animate (C++ function)

 	TimeOfDay::axisTilt (C++ member)

 	TimeOfDay::azimuthOverride (C++ member)

 	TimeOfDay::dayLength (C++ member)

 	TimeOfDay::dayScale (C++ member)

 	TimeOfDay::nightScale (C++ member)

 	TimeOfDay::play (C++ member)

 	TimeOfDay::setDayLength (C++ function)

 	TimeOfDay::setPlay (C++ function)

 	TimeOfDay::setTimeOfDay (C++ function)

 	TimeOfDay::startTime (C++ member)

 	TimeOfDay::time (C++ member)

 	trace (C++ function)

 	Trigger::enterCommand (C++ member)

 	Trigger::getNumObjects (C++ function)

 	Trigger::getObject (C++ function)

 	Trigger::leaveCommand (C++ member)

 	Trigger::onAdd (C++ function)

 	Trigger::onRemove (C++ function)

 	Trigger::polyhedron (C++ member)

 	Trigger::renderTriggers (C++ member)

 	Trigger::tickCommand (C++ member)

 	TriggerData::clientSide (C++ member)

 	TriggerData::onEnterTrigger (C++ function)

 	TriggerData::onLeaveTrigger (C++ function)

 	TriggerData::onTickTrigger (C++ function)

 	TriggerData::tickPeriodMS (C++ member)

 	trim (C++ function)

 	TSShapeConstructor::addCollisionDetail (C++ function)

 	TSShapeConstructor::addImposter (C++ function)

 	TSShapeConstructor::addMesh (C++ function)

 	TSShapeConstructor::addNode (C++ function)

 	TSShapeConstructor::addPrimitive (C++ function)

 	TSShapeConstructor::addSequence (C++ function)

 	TSShapeConstructor::addTrigger (C++ function)

 	TSShapeConstructor::adjustCenter (C++ member)

 	TSShapeConstructor::adjustFloor (C++ member)

 	TSShapeConstructor::alwaysImport (C++ member)

 	TSShapeConstructor::alwaysImportMesh (C++ member)

 	TSShapeConstructor::baseShape (C++ member)

 	TSShapeConstructor::dumpShape (C++ function)

 	TSShapeConstructor::forceUpdateMaterials (C++ member)

 	TSShapeConstructor::getBounds (C++ function)

 	TSShapeConstructor::getDetailLevelCount (C++ function)

 	TSShapeConstructor::getDetailLevelIndex (C++ function)

 	TSShapeConstructor::getDetailLevelName (C++ function)

 	TSShapeConstructor::getDetailLevelSize (C++ function)

 	TSShapeConstructor::getImposterDetailLevel (C++ function)

 	TSShapeConstructor::getImposterSettings (C++ function)

 	TSShapeConstructor::getMeshCount (C++ function)

 	TSShapeConstructor::getMeshMaterial (C++ function)

 	TSShapeConstructor::getMeshName (C++ function)

 	TSShapeConstructor::getMeshSize (C++ function)

 	
 	TSShapeConstructor::getMeshType (C++ function)

 	TSShapeConstructor::getNodeChildCount (C++ function)

 	TSShapeConstructor::getNodeChildName (C++ function)

 	TSShapeConstructor::getNodeCount (C++ function)

 	TSShapeConstructor::getNodeIndex (C++ function)

 	TSShapeConstructor::getNodeName (C++ function)

 	TSShapeConstructor::getNodeObjectCount (C++ function)

 	TSShapeConstructor::getNodeObjectName (C++ function)

 	TSShapeConstructor::getNodeParentName (C++ function)

 	TSShapeConstructor::getNodeTransform (C++ function)

 	TSShapeConstructor::getObjectCount (C++ function)

 	TSShapeConstructor::getObjectIndex (C++ function)

 	TSShapeConstructor::getObjectName (C++ function)

 	TSShapeConstructor::getObjectNode (C++ function)

 	TSShapeConstructor::getSequenceBlend (C++ function)

 	TSShapeConstructor::getSequenceCount (C++ function)

 	TSShapeConstructor::getSequenceCyclic (C++ function)

 	TSShapeConstructor::getSequenceFrameCount (C++ function)

 	TSShapeConstructor::getSequenceGroundSpeed (C++ function)

 	TSShapeConstructor::getSequenceIndex (C++ function)

 	TSShapeConstructor::getSequenceName (C++ function)

 	TSShapeConstructor::getSequencePriority (C++ function)

 	TSShapeConstructor::getSequenceSource (C++ function)

 	TSShapeConstructor::getTargetCount (C++ function)

 	TSShapeConstructor::getTargetName (C++ function)

 	TSShapeConstructor::getTrigger (C++ function)

 	TSShapeConstructor::getTriggerCount (C++ function)

 	TSShapeConstructor::ignoreNodeScale (C++ member)

 	TSShapeConstructor::lodType (C++ member)

 	TSShapeConstructor::matNamePrefix (C++ member)

 	TSShapeConstructor::neverImport (C++ member)

 	TSShapeConstructor::neverImportMesh (C++ member)

 	TSShapeConstructor::notifyShapeChanged (C++ function)

 	TSShapeConstructor::onLoad (C++ function)

 	TSShapeConstructor::onUnload (C++ function)

 	TSShapeConstructor::removeDetailLevel (C++ function)

 	TSShapeConstructor::removeImposter (C++ function)

 	TSShapeConstructor::removeMesh (C++ function)

 	TSShapeConstructor::removeNode (C++ function)

 	TSShapeConstructor::removeObject (C++ function)

 	TSShapeConstructor::removeSequence (C++ function)

 	TSShapeConstructor::removeTrigger (C++ function)

 	TSShapeConstructor::renameDetailLevel (C++ function)

 	TSShapeConstructor::renameNode (C++ function)

 	TSShapeConstructor::renameObject (C++ function)

 	TSShapeConstructor::renameSequence (C++ function)

 	TSShapeConstructor::saveShape (C++ function)

 	TSShapeConstructor::sequence (C++ member)

 	TSShapeConstructor::setBounds (C++ function)

 	TSShapeConstructor::setDetailLevelSize (C++ function)

 	TSShapeConstructor::setMeshMaterial (C++ function)

 	TSShapeConstructor::setMeshSize (C++ function)

 	TSShapeConstructor::setMeshType (C++ function)

 	TSShapeConstructor::setNodeParent (C++ function)

 	TSShapeConstructor::setNodeTransform (C++ function)

 	TSShapeConstructor::setObjectNode (C++ function)

 	TSShapeConstructor::setSequenceBlend (C++ function)

 	TSShapeConstructor::setSequenceCyclic (C++ function)

 	TSShapeConstructor::setSequenceGroundSpeed (C++ function)

 	TSShapeConstructor::setSequencePriority (C++ function)

 	TSShapeConstructor::singleDetailSize (C++ member)

 	TSShapeConstructor::unit (C++ member)

 	TSShapeConstructor::upAxis (C++ member)

 	TSShapeConstructor::writeChangeSet (C++ function)

 	TSStatic::allowPlayerStep (C++ member)

 	TSStatic::changeMaterial (C++ function)

 	TSStatic::collisionType (C++ member)

 	TSStatic::decalType (C++ member)

 	TSStatic::forceDetail (C++ member)

 	TSStatic::getModelFile (C++ function)

 	TSStatic::getTargetCount (C++ function)

 	TSStatic::getTargetName (C++ function)

 	TSStatic::meshCulling (C++ member)

 	TSStatic::originSort (C++ member)

 	TSStatic::playAmbient (C++ member)

 	TSStatic::renderNormals (C++ member)

 	TSStatic::shapeName (C++ member)

 	TSStatic::skin (C++ member)

 	TurretShape::doRespawn (C++ function)

 	TurretShape::getAllowManualFire (C++ function)

 	TurretShape::getAllowManualRotation (C++ function)

 	TurretShape::getState (C++ function)

 	TurretShape::getTurretEulerRotation (C++ function)

 	TurretShape::respawn (C++ member)

 	TurretShape::setAllowManualFire (C++ function)

 	TurretShape::setAllowManualRotation (C++ function)

 	TurretShape::setTurretEulerRotation (C++ function)

 	TurretShapeData::cameraOffset (C++ member)

 	TurretShapeData::headingRate (C++ member)

 	TurretShapeData::maxHeading (C++ member)

 	TurretShapeData::maxPitch (C++ member)

 	TurretShapeData::minPitch (C++ member)

 	TurretShapeData::onMountObject (C++ function)

 	TurretShapeData::onStickyCollision (C++ function)

 	TurretShapeData::onUnmountObject (C++ function)

 	TurretShapeData::pitchRate (C++ member)

 	TurretShapeData::startLoaded (C++ member)

 	TurretShapeData::weaponLinkType (C++ member)

 	TurretShapeData::zRotOnly (C++ member)

U

 	
 	unitTest_runTests (C++ function)

 	unpackExtended (C++ function)

 	unregisterAllLights (C++ function), [1]

 	
 	unregisterGlobalLight (C++ function)

 	unregisterLocalLight (C++ function)

 	unregisterMessageListener (C++ function)

 	unregisterMessageQueue (C++ function)

V

 	
 	validateMemory (C++ function)

 	VectorAdd (C++ function)

 	VectorCross (C++ function)

 	VectorDist (C++ function)

 	VectorDot (C++ function)

 	VectorLen (C++ function)

 	VectorLerp (C++ function)

 	VectorNormalize (C++ function)

 	VectorOrthoBasis (C++ function)

 	VectorScale (C++ function)

 	VectorSub (C++ function)

 	Vehicle::disableMove (C++ member)

 	Vehicle::workingQueryBoxSizeMultiplier (C++ member)

 	Vehicle::workingQueryBoxStaleThreshold (C++ member)

 	VehicleData::bodyFriction (C++ member)

 	VehicleData::bodyRestitution (C++ member)

 	VehicleData::cameraDecay (C++ member)

 	VehicleData::cameraLag (C++ member)

 	VehicleData::cameraOffset (C++ member)

 	VehicleData::cameraRoll (C++ member)

 	VehicleData::collDamageMultiplier (C++ member)

 	VehicleData::collDamageThresholdVel (C++ member)

 	VehicleData::collisionTol (C++ member)

 	VehicleData::contactTol (C++ member)

 	VehicleData::damageEmitter (C++ member)

 	VehicleData::damageEmitterOffset (C++ member)

 	VehicleData::damageLevelTolerance (C++ member)

 	VehicleData::dustEmitter (C++ member)

 	VehicleData::dustHeight (C++ member)

 	VehicleData::exitingWater (C++ member)

 	VehicleData::exitSplashSoundVelocity (C++ member)

 	
 	VehicleData::hardImpactSound (C++ member)

 	VehicleData::hardImpactSpeed (C++ member)

 	VehicleData::hardSplashSoundVelocity (C++ member)

 	VehicleData::impactWaterEasy (C++ member)

 	VehicleData::impactWaterHard (C++ member)

 	VehicleData::impactWaterMedium (C++ member)

 	VehicleData::integration (C++ member)

 	VehicleData::jetEnergyDrain (C++ member)

 	VehicleData::jetForce (C++ member)

 	VehicleData::massBox (C++ member)

 	VehicleData::massCenter (C++ member)

 	VehicleData::maxDrag (C++ member)

 	VehicleData::maxSteeringAngle (C++ member)

 	VehicleData::mediumSplashSoundVelocity (C++ member)

 	VehicleData::minDrag (C++ member)

 	VehicleData::minImpactSpeed (C++ member)

 	VehicleData::minJetEnergy (C++ member)

 	VehicleData::minRollSpeed (C++ member)

 	VehicleData::numDmgEmitterAreas (C++ member)

 	VehicleData::onEnterLiquid (C++ function)

 	VehicleData::onLeaveLiquid (C++ function)

 	VehicleData::powerSteering (C++ member)

 	VehicleData::softImpactSound (C++ member)

 	VehicleData::softImpactSpeed (C++ member)

 	VehicleData::softSplashSoundVelocity (C++ member)

 	VehicleData::splashEmitter (C++ member)

 	VehicleData::splashFreqMod (C++ member)

 	VehicleData::splashVelEpsilon (C++ member)

 	VehicleData::steeringReturn (C++ member)

 	VehicleData::steeringReturnSpeedScale (C++ member)

 	VehicleData::triggerDustHeight (C++ member)

 	VehicleData::waterWakeSound (C++ member)

W

 	
 	warn (C++ function)

 	WaterBlock::gridElementSize (C++ member)

 	WaterBlock::gridSize (C++ member)

 	WaterObject::baseColor (C++ member)

 	WaterObject::clarity (C++ member)

 	WaterObject::cubemap (C++ member)

 	WaterObject::density (C++ member)

 	WaterObject::depthGradientMax (C++ member)

 	WaterObject::depthGradientTex (C++ member)

 	WaterObject::distortEndDist (C++ member)

 	WaterObject::distortFullDepth (C++ member)

 	WaterObject::distortStartDist (C++ member)

 	WaterObject::emissive (C++ member)

 	WaterObject::foamAmbientLerp (C++ member)

 	WaterObject::foamDir (C++ member)

 	WaterObject::foamMaxDepth (C++ member)

 	WaterObject::foamOpacity (C++ member)

 	WaterObject::foamRippleInfluence (C++ member)

 	WaterObject::foamSpeed (C++ member)

 	WaterObject::foamTex (C++ member)

 	WaterObject::foamTexScale (C++ member)

 	WaterObject::fresnelBias (C++ member)

 	WaterObject::fresnelPower (C++ member)

 	WaterObject::fullReflect (C++ member)

 	WaterObject::liquidType (C++ member)

 	WaterObject::overallFoamOpacity (C++ member)

 	WaterObject::overallRippleMagnitude (C++ member)

 	WaterObject::overallWaveMagnitude (C++ member)

 	WaterObject::reflectDetailAdjust (C++ member)

 	WaterObject::reflectivity (C++ member)

 	WaterObject::reflectMaxRateMs (C++ member)

 	WaterObject::reflectNormalUp (C++ member)

 	WaterObject::reflectPriority (C++ member)

 	WaterObject::reflectTexSize (C++ member)

 	WaterObject::rippleDir (C++ member)

 	WaterObject::rippleMagnitude (C++ member)

 	WaterObject::rippleSpeed (C++ member)

 	WaterObject::rippleTex (C++ member)

 	WaterObject::rippleTexScale (C++ member)

 	WaterObject::soundAmbience (C++ member)

 	WaterObject::specularColor (C++ member)

 	WaterObject::specularPower (C++ member)

 	WaterObject::underwaterColor (C++ member)

 	WaterObject::useOcclusionQuery (C++ member)

 	
 	WaterObject::viscosity (C++ member)

 	WaterObject::waterFogDensity (C++ member)

 	WaterObject::waterFogDensityOffset (C++ member)

 	WaterObject::waveDir (C++ member)

 	WaterObject::waveMagnitude (C++ member)

 	WaterObject::waveSpeed (C++ member)

 	WaterObject::wetDarkening (C++ member)

 	WaterObject::wetDepth (C++ member)

 	WaterObject::wireframe (C++ member)

 	WaterPlane::gridElementSize (C++ member)

 	WaterPlane::gridSize (C++ member)

 	WayPoint::markerName (C++ member)

 	WayPoint::team (C++ member)

 	WheeledVehicle::getWheelCount (C++ function)

 	WheeledVehicle::setWheelPowered (C++ function)

 	WheeledVehicle::setWheelSpring (C++ function)

 	WheeledVehicle::setWheelSteering (C++ function)

 	WheeledVehicle::setWheelTire (C++ function)

 	WheeledVehicleData::brakeTorque (C++ member)

 	WheeledVehicleData::engineBrake (C++ member)

 	WheeledVehicleData::engineSound (C++ member)

 	WheeledVehicleData::engineTorque (C++ member)

 	WheeledVehicleData::jetSound (C++ member)

 	WheeledVehicleData::maxWheelSpeed (C++ member)

 	WheeledVehicleData::squealSound (C++ member)

 	WheeledVehicleData::tireEmitter (C++ member)

 	WheeledVehicleData::WheelImpactSound (C++ member)

 	WheeledVehicleSpring::antiSwayForce (C++ member)

 	WheeledVehicleSpring::damping (C++ member)

 	WheeledVehicleSpring::force (C++ member)

 	WheeledVehicleSpring::length (C++ member)

 	WheeledVehicleTire::kineticFriction (C++ member)

 	WheeledVehicleTire::lateralDamping (C++ member)

 	WheeledVehicleTire::lateralForce (C++ member)

 	WheeledVehicleTire::lateralRelaxation (C++ member)

 	WheeledVehicleTire::longitudinalDamping (C++ member)

 	WheeledVehicleTire::longitudinalForce (C++ member)

 	WheeledVehicleTire::longitudinalRelaxation (C++ member)

 	WheeledVehicleTire::mass (C++ member)

 	WheeledVehicleTire::radius (C++ member)

 	WheeledVehicleTire::restitution (C++ member)

 	WheeledVehicleTire::shapeFile (C++ member)

 	WheeledVehicleTire::staticFriction (C++ member)

 	writeFontCache (C++ function)

Z

 	
 	ZipObject::addFile (C++ function)

 	ZipObject::closeArchive (C++ function)

 	ZipObject::closeFile (C++ function)

 	ZipObject::deleteFile (C++ function)

 	ZipObject::extractFile (C++ function)

 	ZipObject::getFileEntry (C++ function)

 	ZipObject::getFileEntryCount (C++ function)

 	ZipObject::openArchive (C++ function)

 	ZipObject::openFileForRead (C++ function)

 	
 	ZipObject::openFileForWrite (C++ function)

 	Zone::ambientLightColor (C++ member)

 	Zone::dumpZoneState (C++ function)

 	Zone::edge (C++ member)

 	Zone::getZoneId (C++ function)

 	Zone::plane (C++ member)

 	Zone::point (C++ member)

 	Zone::soundAmbience (C++ member)

 	Zone::useAmbientLightColor (C++ member)

 	Zone::zoneGroup (C++ member)

Overview of Content Pipeline

The main tool for importing and manage content in Torque 3D is the World Editor. However the World Editor is not a tool for creating game objects. Objects must be created using applications appropriate for the object type.

Importing 3D Models

Torque 3D uses two different formats for 3D geometry and animation data: Collada and DTS.

Collada is intended to be the primary model format during development of a Torque 3D game, as there are Collada importers and exporters for almost every 3D modeling application around. Collada is a format for interchanging models between digital content creation applications. Torque 3D can load geometry, material and animation data directly from Collada DAE files and is based on version 1.4.1 of the Collada specification. Collada is an XML based file format, meaning DAE files may be opened, viewed and edited in any text editor.

The Torque 3D supports all of the Collada polygonal geometry elements: <triangles>, <tristrips>, <trifans>, <polygons> and <polylist>, with non-triangular polygons automatically converted to triangles during loading. Note that if polygons are non-planar, this may introduce seams on the model, so the best option is to triangulate in the modeling application prior to exporting.

Many 3D modeling applications come with built-in Collada import and export functionality, but third party plugins are also available that may be more stable, updated more frequently and give better results. In particular, OpenCOLLADA is recommended for both Autodesk 3ds Max and Maya.

While DTS is a format internal engine format intended for the models that ship with the released version of a game. It is an optimized, binary format that loads much faster than Collada and also provides a small measure of protection for art assets.

Shipping 3D Models

The normal workflow is to use Collada during development, then make sure all models are converted to DTS for a shipping release build. There are several different approaches available to achieve that.

It can be accomplished by either use the cached DTS files that Torque 3D saves in the same folder as the Collada file during import. Every time the DAE file would be loaded, Torque 3D first checks if there is a newer cached.dts file in the same folder and if so, loads that instead. For simple models, this means you can simply strip the DAEs from the released version of the game, leaving only the cached.dts files. All datablocks and mission files still refer to the DAE model, but Torque will automatically load the cached.dts in its place.

Note

The cached.dts file represents the converted DAE model only - changes applied using a TSShapeConstructor script are only made to the in-memory shape and are not included in this file.

Anther way is to use the dae2dts tool as a part of the build process to convert Collada files into DTS. If using this approach, datablocks and mission files should refer to the coverted DTS output file, not the original DAE file. The dae2dts tool bakes any model transformations made using TSShapeConstructor into the final DTS model, so make sure that the TSShapeConstructor script used with dae2dts is not run when loading the DTS output file into Torque 3D (by making the filenames different, or keeping the output DTS file in a different folder) or the changes will be applied twice!

Of course, there is no reason you could not use one TSShapeConstructor script with dae2dts to bake changes, then use another TSShapeConstructor script when loading the baked DTS file into Torque 3D to apply dynamic changes (like auto-loading all sequence files within a folder for example).

There also exist some modeling applications with DTS file export support. However, those are no longer recommended as they place limitations on the exported files while the Torque 3D Collada importer is much more flexible.

Coordinate System

Torque uses the same coordinate system as 3ds Max where characters and vehicles should are facing the +Y axis.

[image: ../_images/torque_coords.png]
The Torque 3D coordinate system.

Thus the coordinate system is equivalent to Z_UP in Collada and the importer will automatically convert models using X_UP or Y_UP to this coordinate system.
However, some Collada exporters may generate models with a wrong or missing <up_axis> element (Z_UP is assumed if <up_axis> is not specified). In this case, the Collada import dialog can be used to override the value.

Units

When exporting to Collada, you are free to work in whatever units you like. They will be scaled appropriately when importing the model into Torque 3D.

When creating a model, it makes sense to work in units appropriate to the type of object being modeled. For example, it may be convenient to model a building in meters (or feet), but a small object like a pen would be better modeled in cm (or inches). Normally the modeler would be forced to choose a single unit for both objects, and one object would end up having awkward measurements; like a building that is 2000 units high, or a pen that is only 0.14 units long.

Collada provides a mechanism to specify the units used when modeling the object. This is very important, since it allows a set of objects modeled in completely different units to be imported into Torque 3D with the correct scale relative to each other. This is done using the Collada <unit> element, which appears near the top of the .dae file and specifies the units-per-meter used for all positional values in the file such as vertex and node positions, translation animations etc. Torque 3D uses this value as a global scale factor which is applied to the entire model on import.

Many modeling applications allow the user to specify the units to be used, or alternatively, the option may be available when exporting the model to Collada.

It is up to the modeler to ensure that models are created with appropriate units in mind. For example, if a chair was modeled at 5 units high in the modeling application (simply because that was a convenient value for the modeler), then exported to DAE with units set to feet, then the chair would appear to be the equivalent of 5 feet high in Torque 3D! The Torque 3D Collada import dialog allows you to override the <unit> scale specified in the DAE file, for cases like this when the modeler has not taken units into account.

Texture Files

Torque 3D supports several texture file formats: BMP, GIF, JEPG, JPG, JNG, MNG, PNG, TGA, DDS. Note that texture dimensions should be powers of 2 wherever possible such as 16, 32, 64, 128, 256, so forth, although they need not be square. Some older hardware is unable to process non-power-of-2 textures at all, and even modern hardware will pad such textures up to the next largest power of 2 when loaded which wastes VRAM.

Normal/Bump Maps

Torque 3D uses DirectX style normal maps, where the green (Y) channel contains the DOWN vector. This is opposite to the system OpenGL uses which has the UP vector in the green channel. If your normal maps appear backwards in Torque 3D, you may need to invert the green channel manually.

Rigging a Player Character

The purpose of this guide is to show how to rig and export a character for use in Torque 3D. This guide assumes that you are creating a new rig and animations from scratch and are not reusing any already existing rig or library of animations.

Already created animations will only work when applied to the rig they where created for. If you for example want to reuse the animation sequences that ships with the Torque 3D demo character, then you need to set up the rig for your new character exactly the same. However, this guide will not cover that specific case.

Deciding what rigs are necessary and setting them up should typically be done during technical pre-production of your game. Once it is done they should not be changed as that would mean re-targeting or in worst case re-creating all your animations.

How many and what type of rigs you need depend on your project. Are all your characters bipedal? Or do you also need to do quadrupedal animation as well? Will you use the same bipedal rig for all characters, player as well as all non-player characters? In some games you want a rig of higher fidelity for the hero player character, simpler rigs for the non-player characters and possibly a couple of special biped rigs for some monsters.

However, each rig you decide to create need its own library of animation sequences. Thus you can not share animations between say the hero rig and the non-player rig unless you set them up very carefully. For example you can set up the hero rig to be the exact same rig as the non-player but with some additional joints for any separate and additional animation.

With sharing animations in mind you should carefully name the rig and its components so that they apear logical in all skinned mesh files as well as sequence animation files.

Assets

Your game shapes should live in a directory somewhere under the art/shapes directory. You should create a new directory for each character. It will normaly hold the following files:

	materials.cs

	All the material definitions for the character.

	character.cs

	The TSShapeConstructor definition for the character.

	character.dae

	Collada file with the characters rigged and skinned mesh.

	character_d.dds

	The diffuse texture map for the character.

	character_n.dds

	The normal map for the character.

	character_s.dds

	The specular map for the character.

The exact naming convention of the mesh and texture files are entierly up to you as you export them from your 3D and 2D applications. While the script files are automatically generated by the Shape Editor upon importing the character mesh.

It is also recommended that you create a directory for all the animation sequences somewhere under the art directory. Each animation sequence should be stored in a separate DAE file. It’s important to note that the characters skinned mesh need to use the same rig as the animation sequence files to be able to play them back.

Hierarchy

Torque expects for each type of shape a number of specific nodes to be present depending on the shape class. The Player class require thus the following nodes acting as mount points:

	cam

	Used as 3rd person camera position.

	eye

	Used as 1st person camera position.

	ear

	Where the SFX listener is mounted.

	mount0-31

	You can have up to 32 mount nodes that is used to mount objects to the character.

Further the Player class expects a number of nodes acting as bones in an armature. The following nodes are used by the Player class for look, aim and recoil animations if no special sequences has specified by you for those actions (see Sequences). The naming convention for those nodes were taken from 3ds Max Biped and are therefore already present if the character is rigged in 3ds Max:

	Bip01_Pelvis

	Hierarchial node (usually a bone) that act as the root.

	Bip01_Spine

	Hierarchial node (usually a bone) whose parent is Bip01_Pelvis.

	Bip01_Spine1

	Hierarchial node (usually a bone) whose parent is Bip01_Spine.

	Bip01_Spine2

	Hierarchial node (usually a bone) whose parent is Bip01_Spine1.

	Bip01_Neck

	Hierarchial node (usually a bone) whose parent is Bip01_Spine2.

	Bip01_Head

	Hierarchial node (usually a bone) whose parent is Bip01_Neck.

The hierarchy should also contain axis-aligned bounding box mesh named bounds that fits around the shape at the root level that is used to define the shapes origin, determine which shape level to render and define the speed that the shape is intended to be moving at.

Lastly the hierarchy should contain one or more skinned meshes of the actual character shape. The number of meshes depend on the number of detail levels used. How to name the meshes is up to you, as long as you put the detail size as a number at the end of the mesh name.

While most nodes are optional, the shape will still load and run without a particular node or sequence, the object may not perform correctly in-game. However, a minimal rig for the Player class could look like this:

+ Bip01
| + Bip01_Pelvis
| | + Bip01_Spine
| | + Bip01_Spine1
| | + Bip01_Spine2
| | + Bip01_Neck
| | + Bip01_Head
| + cam
| + eye
| + ear
| + mesh0
+ bounds

Nodes for arms should normally be connected to the Bip01_Neck node and legs to the Bip01_Spine node. It is also recommended to add meshes of several detail levels, depending on the complexity of your mesh.

Level of detail

Level-of-Detail (LOD) is an extremely important concept to master in order to produce a great looking game that plays smoothly on low/mid-range hardware. Essentially, it involves rendering successively less complex versions of a shape in order to improve performance.

The metric used to control LOD is the estimated size in pixels of the shapes bounding box on screen. As the shape gets further from the camera it will become smaller on screen, and a simpler version of the mesh may be rendered without loss of fidelity. Before rendering the shape, Torque estimates how large it would appear on-screen and selects the mesh, or meshes, of the appropriate detail level to be rendered.

Only a mesh with a detail level equal or higher to the estimated size will be considered. Note that detail levels with negative sizes will never be chosen for rendering. Once the estimated size is less than the smallest positive detail size, no geometry will be rendered for the shape. You can force a shape to always render something by making the smallest positive detail level have a size of zero.

The level of detail size is expressed as a number put at the end of the mesh name. The LOD type should be set to “TrailingNumber” in the Shape Editor when you import the shape.

Bounding box

Every shape includes an axis-aligned bounding box. This box appears around the shape when it is selected in the World Editor, and can be used for simple collision detection or mouse-hit picking. The bounding box is also used to determine which shape detail level to render and optionally to define the speed that the shape is intended to be moving at. The size of the bounding box is not fixed to the shape geometry. The modeler is free to define a custom bounding box extent for an object. This is done prior to export from the 3D application by creating a cube mesh called bounds with the appropriate dimensions.

If the exported DAE file does not contain a root level node called bounds with geometry attached to it, the Collada importer will automatically calculate a bounding box that encloses all of the geometry in the scene. For animated models, only the root (non-animated) pose is considered, but a walking character animation may move the feet or arms of the model outside the box containing the shape in its root pose, so use a custom bounding box to explicitly specify the bounding box extents.

Ground transform

Animation sequences that move the character should also include a ground transform. This tells the engine how fast the character would move along the ground when the animation is played back at normal speed. In the case of a Player object, this allows Torque to scale the animation playback speed to match the in-game speed that the Player is moving. For example, if the model was animated such that it would normally move at 3 units per second, but in-game was moving at 6 units per second, then the animation can be played back at double speed so the feet do not look like they are skating along the ground. Another use for ground transforms is to automatically switch between walking and running animations based on the in-game velocity of the Player.

The exact details of how to export ground transforms will depend on the 3D application. In general, the animation should be created so the character moves through space, rather than running or walking in-place. Animate the bounds node to move with the character so there is no translation relative to the bounds node. On export, the ground transform is determined by subtracting the movement of the bounds node from the walking or running animation so that it will play in-place in Torque 3D.

The ground transform information can also be set in the shapes script file (not yet available in Shape Editor UI) by using the setSequenceGroundSpeed member method on the shape object.

Mounts

Objects in Torque may be mounted to other objects, such as a Player riding a WheeledVehicle or a weapon placed in the player’s hands. Usually the object to be mounted has a node named mountPoint. A weapon will be mounted in the player model’s hand at node mount0. The mountPoint node is not essential however, if not present the mounted object’s origin is used as the mount point.

Hitboxes

Currently, the player’s hitbox defined by their bounding box. In order to get damage locations we have cut the player’s world box up into pieces as defined by the following sections in the Player’s datablock:

	boundingBox

	boxHeadPercentage

	boxTorsoPercentage

	boxHeadLeftPercentage

	boxHeadRightPercentage

	boxHeadBackPercentage

	boxHeadFrontPercentage

The player’s boundingBox determines the length in each dimension the bounding box should encompass. From the standard player datablock, its sections would look like the following:

[image: ../_images/CharacterHitBoxOverview.jpg]
It may be easiest to come up with these numbers by taking a render of the player, and using an imaging program to determine what percentage of the player makes up their legs/head/torso.

Sequences

Player characters can be setup to use different weapon animations and share those animations between different skinned meshes with the same skeleton hierarchy. A character can have Collada files for the character’s skinned mesh and skinned skeleton as well as for the character’s animations with just the skeleton for each weapon pose. The animations can either be exported individually or combined in one DAE file that is split up through the Shape Editor.

Just as like with nodes the Player class also make use of a number of animation sequences to work properly in the game:

	head

	Vertical head movement blend animation, start frame is fully up and end frame is fully down. Usually implementd as a 9 frame animation that only affects the neck and head nodes.

	headside

	Horizontal head movement blend animation, start frame is full left and end frame is full right. Usually implemented as a 9 frame animation that only affects the neck and head nodes.

	look

	Vertical arm movement blend animation, start frame is fully up and end frame is fully down. Usually implemented as a 9 frame animation that only affects the spine.

	light_recoil

	Player has been hit lightly.

	medium_recoil

	Player has been hit moderately hard.

	heavy_recoil

	Player has been hit hard.

	root

	Looped idle animation, just the character standing and breathing.

	run

	Looped running forward animation.

	back

	Looped runing backward animation.

	side

	Character side stepping to the right. This looped animation will be played in reverse when moving to the left.

	crouch_root

	Looped crouched idle animation.

	crouch_forward

	Looped crouched forward walk animation.

	crouch_backward

	Looped crouched backward walk animation.

	crouch_side

	Looped crouched right movement animation. Will be played in reverse when moving to the left.

	prone_root

	Looped idle animation of player lying down and not moving.

	prone_forward

	Looped animation of player lying down and moving forward.

	prone_backward

	Looped animation of player lying down and moving backward.

	prone_side

	Looped animation of player lying down and moving to the right. Will be played in reverse when moving to the left.

	swim_root

	Looped treading water animation.

	swim_forward

	Looped animation of swimming forward.

	swim_backward

	Looped animation of swimming backward.

	swim_right

	Looped swiming right animation.

	swim_left

	Looped swiming left animation.

	fall

	Looped falling animation.

	jump

	Character jump up from a moving start animation.

	standjump

	Character jump up from a standing start animation.

	land

	Character landing animation after falling or jumping.

	jet

	Looped jetting animation.

	reload

	Reloading the weapon blend animation.

	sitting

	Looped animation of character sitting in a vehicle.

	death#

	Where # is can be a number for multiple death sequences that will be picked randomly.

A number of these animation sequences are optional.

You add the animations through the Shape Editor by going to sequence tab labeled Seq and click on the new sequence icon and a file browsing dialog will open. Select the sequence Collada file you want. Now define the time range that you want by changing the numbers at the beginning and end of the timeline. Complete this process for each sequence that you wish to add.

Blends

Blend animations allow additive animation on the node structure of the shape. These will not conflict with other threads, and can be played on top of the node animation contained in other threads; such animations are relative. Blends only store the changes that occur over the course of the animation and not the absolute position of the nodes. This means that if a node is transformed by a blend animation, it includes only the transform information for that node, and it will add that transformation on top of the existing position in the base shape. Common uses for blend animations are facial expressions, head turning or nodding, and arm aiming.

Bear in mind that a blend can be played as a normal sequence, or it can be played on top of other sequences. When another sequence is playing, it will alter the root position, and the blend will be applied on top of that.

If you try to do a blend sequence where the root position is different than the ‘normal’ root (in the default root animation), you might expect that the blend will blend it to the new root (the position the character is positioned in during the blend animation). However, it does not work this way. Since nothing would actually be animating, it doesn’t move the bones to the new position. What is contained in the blend sequence is only transform offsets from the blend sequence root position. Thus it is not a good idea to have a different root position in your ‘normal’ animations and your blends, as they can easily get out of sync!

The values added from the blend animation are based on the root position in the Collada file. This root position does not have to be the beginning of the animation. You can pick any position for the blend animation to reference. This is useful, because you can have a blend animation that can have a reference position that is the ‘root’ position. For animation like hip twists and arm movements (as in the ‘look’ animation), the character can be in a natural default state. In this way, you can have one animation control the character through the base pose to an extreme in either direction while referencing the default ‘base’ state, which will exist somewhere in the middle of the blend animation.

Threads

Animation threads allow multiple sequences to play at the same time on a single shape. For example, a “headside” animation could rotate the player’s head to look at something at the same time as a running animation is playing. Each animation sequence is played using a thread. Threads for non-blend sequences are applied first (in order of increasing priority), then blend sequence threads are applied on top (in order of increasing priority). The following rules determine what happens when more than one thread controls the same node in the shape:

	If two non-blend sequences control the same node, the sequence with higher priority will animate it.

	If two non-blend sequences with the same priority control the same node, the thread that was created last will animate it.

	Blend sequences are applied on top of any previous thread, so if two blend sequences control the same node, both will animate it (applied in order of increasing priority, or thread creation order if priority is the same).

Triggers

Triggers are arbitrary markers that can be used to call events on specific frames in a sequence. For example, a trigger can be responsible for generating footstep sounds and footprints when the feet hit the ground during walk and run animations. There can be up to 30 independent trigger states each with their respective on (1 to 30) and off (-1 to -30) states. You decide what each of those trigger states means. You should work with your programmer to define what the trigger states mean and how you should use them.

For example, you could have one trigger for each foot of a character that creates a footprint when the foot is down on the ground. Let’s say that a triggerState of 1 is the left foot down and a triggerState of 2 is the right foot down. When the sequence plays the frame during which the left foot touches the ground, you could have a trigger on that frame that has a triggerState of 1 to create a footprint. You would then create another trigger with a triggerState of 2 for the right foot. You don’t necessarily need to turn off the footprints (let’s assume that the programmer will turn them off when it is necessary), but you could by creating two more triggers with triggerStates -1 and -2.

GUI Editor Interface

The main GUI Editor view consists of 5 primary sections:

	File Menu

	Found at the very top, this is where you will find various menus that controls global functionality of the editor, such as creating/saving GUI files, manually locking, selecting, and aligning controls, toggle snapping, and so on.

	The Toolbar

	Located just below the File Menu, this bar contains shortcuts to the GUI Selector, resolution adjuster, and common positioning actions (nudge, align, etc).

	Control Palette

	The Control Palette contains all of the controls you can add to your current GUI. You can click a control in the list or manually drag it to a position in the view to add it to the scene.

	GUI Tree Panel

	This panel, located on the far right, contains all of the controls that make up your current GUI. They are listed in hierarchical tree, which is sorted by oldest to most recent (top to bottom) and parenting (described later).

	GUI Inspector Panel

	This panel, found directly below the GUI Tree Panel, is populated with all the properties that make up the currently selected GUI control. Most of your field editing will be performed here.

File Menu

File Menu allows you to create, save, and open GUI files. You can also revert GUIs or load from file.

[image: ../_images/GEFileMenu.jpg]
The Edit Menu controls various editor actions, such as undo and redo. The second function allows you to cut/copy/paste/delete objects you have selected. Finally, this is the menu that allows you to perform selection and group actions, such as toggling visibility and locking.

[image: ../_images/GEEditMenu.jpg]
The Layout Menu contains actions that makes it easy for you align your GUI controls for a clean and neat appearance. This is very useful for a complex interface with multiple controls that stack vertically or horizontally.

[image: ../_images/GELayoutMenu.jpg]
When you need to perform very subtle and precise movements on a GUI control, you can use the actions listed in the Move Menu. Each nudge is assigned a shortcut, so using this menu is optional.

[image: ../_images/GEMoveMenu.jpg]
When dragging GUI controls with your mouse, using the Snap Menu toggles will cause your mouse to immediately jump to specific points (depending on the toggle).

[image: ../_images/GESnapMenu.jpg]
Contains shortcuts to documentation and forums for Torque 3D.

[image: ../_images/GEHelpMenu.jpg]

Tool Bar

The most useful and preferred shortcuts for quick edits can be found in the Tool Bar. While most of your control properties will be edited in the Inspector, you can use the Tool Bar to perform quick positioning actions and testing.

[image: ../_images/GEToolBar.jpg]
The first three icons toggle the editors, and are always available. The left most icon (looks like a mountain) toggles the World Editor. The next one (boxes) toggles the GUI Editor. The Play icon will exit the editors and let you play through the game.

Next to the editor toggles, you will find three extremely important settings. The first two are drop down lists and the last one is a button toggle. These determine what you are editing and at what resolution. The first drop down is a list of every single GUI available to edit, including new ones you just created. You can jump to an individual GUI at anytime, which can be useful if you are editing multiple GUIs that which work together. The second drop down list contains three different resolutions you can build your GUI in.

The button toggles the Control Palette, which is explained in the next section. The next set of icons allow you to toggle the most commonly used and important settings for snapping. After the snapping icons, several shortcuts are available toggle the alignment of controls. The next two icons, which look like multiple boxes attached to lines, are used when you have multiple GUI controls selected. These distribution toggles will equally space the GUIs you currently have selected. The final two icons in the the Tool Bar can move the currently selected GUI between layers. The first button will move the selected GUI ahead in a layer, bringing it closer to view. The second button will start shoving your GUI behind others, obscuring it from view.

Control Palette

The Control Palette contains all of the controls you can add to your current GUI. You can click a control in the list or manually drag it to a position in the view to add it to the scene. There are ways to view the list of available controls, depending on which tab you are using.

[image: ../_images/GECateExpanded.jpg]
When you first toggle the Control Palette, you will see a list of the most commonly used controls. There are quite a few controls hidden, which are mainly used to create the Torque 3D editors. These controls are not typically used in games, so they have been hidden. You can click the All button to see every GUI control the engine contains. When you click on the Categorized tab, you can get list of all the GUI controls based on their functionality. The categories are straight forward and should be an excellent way to get to the exact controls you need to build your interface. To see what a category contains, just click on one of the arrows or text to expand it:

To add a control, locate it in the Palette’s list. Next, click on the control and drag it to your main view using a mouse. When you let go of your mouse button, you new control will anchor to the view and become your current selection.

GUI Tree View

Every control added to your current GUI is kept in a sorted list. To view this list, go to the panel on the far right and click the “GUI” tab. This will list all of your controls in the order they were added, the most recent at the bottom of the list. Each control has a unique ID, and can be given a name.

[image: ../_images/GETreeView.jpg]

Profile Editor

In the same panel as the GUI Tree View, there is a tab called “Profiles.” Clicking this tab will present you with a list of all the GUI profiles currently loaded by your game. GUI profiles contain data that personalizes your controls. This will allow you tailor an interface unique to your game.

[image: ../_images/GEProfileEditor.jpg]

GUI Inspector

When you have a control or profile selected, the GUI inspector will be populated with the properties that make up the selection. These are the values that play an important role in assigning functionality to your GUI. Most of your editing will occur here.

[image: ../_images/GEInspector.jpg]

Selection and Parenting

The last portion of the interface is how controls are selected. The following image shows the stock options GUI that ships with Torque 3D. This consists of dozens of controls working together to make up the audio and video options:

[image: ../_images/GESelection.jpg]
In the above image, I have selected the list box control that shows the display driver for a video card. The current selection is marked by six boxes surrounding the corners of the control, and several subtle lines. However, you should notice there is a large blue box surrounding multiple controls.

The large blue box shows the Parent control. When a control is the “parent”, it can contain multiple sub-controls. The “children” controls will now adhere to the same behaviors as the parent control. For example, if the parent control is set to invisible, the children controls will become invisible as well. If the parent is moved, all the children controls will move with it.

GUI Editor Interface

Running the GUI Editor

You can run Torque 3D’s GUI Editor using one of two ways. In the main menu you can click “Launch GUI Editor”:

[image: ../../_images/T3D_menu.png]
Once you have started GUI the editor you can begin editing. From here, you can edit your selected GUI, load a different GUI, or create an entirely new one. You can also open the GUI Editor by pressing the shortcut key while running a game: Windows users press F10, OS X users press cmd + F10.

Main Editor Sections

The main GUI Editor view consists of 5 primary sections:

	File Menu - Found at the very top, this is where you will find various menus that controls global functionality of the editor, such as creating/saving GUI files, manually locking, selecting, and aligning controls, toggle snapping, and so on.

	The Toolbar - Located just below the File Menu, this bar contains shortcuts to the GUI Selector, resolution adjuster, and common positioning actions (nudge, align, etc).

	GUI Tab - This panel, GUI Tree Panel, contains all of the controls that make up your current GUI. They are listed in hierarchical tree, which is organized from top to bottom and parenting (described later).

	Library Tab - The Library contains all of the controls you can add to your current GUI. You can click a control in the list or manually drag it to a position in the view to add it to the scene.

	GUI Inspector Panel - This panel, found directly below the GUI Tree Panel, is populated with all the properties that make up the currently selected GUI control. Most of your field editing will be performed here.

	Profiles Tab - List of all the GUI profiles.

	GUI View - The main canvas view of your GUI.

[image: ../../_images/gui_editor1.png]

Menu Bar

File Menu allows you to create, save, and open GUI files. You can also revert GUIs or load from file.

[image: ../../_images/gui_editor_menu1.png]
Edit Menu controls various editor actions, such as undo and redo.

The second function allows you to cut/copy/paste/delete objects you have selected.

Finally, this is the menu that allows you to perform selection and group actions, such as toggling visibility and locking.

[image: ../../_images/gui_editor_menu2.png]
The Layout Menu contains actions that makes it easy for you align your GUI controls for a clean and neat appearance.

This is very useful for a complex interface with multiple controls that stack vertically or horizontally.

[image: ../../_images/gui_editor_menu3.png]
When you need to perform very subtle and precise movements on a GUI control, you can use the actions listed in the Move Menu.

Each nudge is assigned a shortcut, so using this menu is optional.

[image: ../../_images/gui_editor_menu4.png]
When dragging GUI controls with your mouse, using the Snap Menu toggles will cause your mouse to immediately jump to specific points (depending on the toggle).

[image: ../../_images/gui_editor_menu5.png]
The help menu contains shortcuts to documentation and forums for Torque 3D. (right now without use)

[image: ../../_images/gui_editor_menu6.png]

Tool Bar

The most useful and preferred shortcuts for quick edits can be found in the Tool Bar. While most of your control properties will be edited in the Inspector, you can use the Tool Bar to perform quick positioning actions and testing.

[image: ../../_images/gui_tool_bar1.png]
The first three icons toggle the editors, and are always available. The left most icon (looks like a mountain) toggles the World Editor. The next one (boxes) toggles the GUI Editor. The Play icon will exit the editors and let you play through the game.

[image: ../../_images/gui_tool_bar2.png]
Next to the editor toggles, you will find two extremely important settings. These two are drop down lists that determine what you are editing and at what resolution.

[image: ../../_images/gui_tool_bar3.png]
The first drop down is a list of every single GUI available to edit, including new ones you just created. You can jump to an individual GUI at anytime, which can be useful if you are editing multiple GUIs that which work together.

[image: ../../_images/gui_tool_bar4.png]
The second drop down list contains different resolutions you can build your GUI in:

[image: ../../_images/gui_tool_bar5.png]
The next set of icons allow you to toggle the most commonly used and important settings for snapping:

[image: ../../_images/gui_tool_bar6.png]
After the snapping icons, several shortcuts are available toggle the alignment of controls:

[image: ../../_images/gui_tool_bar7.png]
The next two icons, which look like multiple boxes attached to lines, are used when you have multiple GUI controls selected. These distribution toggles will equally space the GUIs you currently have selected:

[image: ../../_images/gui_tool_bar8.png]
The final two icons in the the Tool Bar can move the currently selected GUI between layers. The first button will move the selected GUI ahead in a layer, bringing it closer to view. The second button will start shoving your GUI behind others, obscuring it from view:

[image: ../../_images/gui_tool_bar9.png]

Library Tab

The Control Palette contains all of the controls you can add to your current GUI. You can click a control in the list or manually drag it to a position in the view to add it to the scene.

When you click on the library tab, you can get list of all the GUI controls based on their functionality:

[image: ../../_images/gui_editor_library1.png]
The categories are straight forward and should be an excellent way to get to the exact controls you need to build your interface. To see what a category contains, just click on one of the arrows or text to expand it:

[image: ../../_images/gui_editor_library2.png]
To add a control, locate it in the Library’s list:

[image: ../../_images/gui_add_control1.png]
Next, click on the control and drag it to your main view using a mouse:

[image: ../../_images/gui_add_control2.png]
When you let go of your mouse button, you new control will anchor to the view and become your current selection:

[image: ../../_images/gui_add_control3.png]

GUI Tree View

Every control added to your current GUI is kept in a sorted list. To view this list, click the “GUI” tab. This will list all of your controls in the order they were added, the most recent at the bottom of the list. Each control has a unique ID, and can be given a name.

[image: ../../_images/gui_tree1.png]

Profile Editor

In the same panel as the GUI Tree View, there is a tab called “Profiles.” Clicking this tab will present you with a list of all the GUI profiles currently loaded by your game. GUI profiles contain data that personalizes your controls. This will allow you tailor an interface unique to your game.

[image: ../../_images/gui_profile_tab1.png]

GUI Inspector

When you have a control or profile selected, the GUI inspector will be populated with the properties that make up the selection. These are the values that play an important role in assigning functionality to your GUI. Most of your editing will occur here.

[image: ../../_images/gui_inspector1.png]

Selection and Parenting

The last portion of the interface is how controls are selected. The following image shows the stock options GUI from the Full template that ships with Torque 3D. This consists of dozens of controls working together to make up the audio and video options:

[image: ../../_images/gui_editor_parenting1.png]
In the above image, I have selected the list box control that shows the display driver for a video card. The current selection is marked by six boxes surrounding the corners of the control, and several subtle lines. However, you should notice there is a large blue box surrounding multiple controls.

The large blue box shows the Parent control. When a control is the “parent”, it can contain multiple sub-controls. The “children” controls will now adhere to the same behaviors as the parent control. For example, if the parent control is set to invisible, the children controls will become invisible as well. If the parent is moved, all the children controls will move with it.

Overview of GUI Editor

What is a GUI?

“GUI” stands for Graphical User Interface. It is the summation of all the controls (windows, buttons, text fields, etc.) that are used to interact with a game and its settings. Most interfaces in games consist of buttons to launch or join a game session, editing devices to change user preferences, options to change screen resolutions and rendering options, and elements which display game data to the user as they are playing.

GUI creation and design is extremely important to game development. Many decent games have been crippled by inaccessible GUIs, which is why having a built in GUI editor can be a blessing. The Torque 3D editor provides drag and drop functionality, with minimal fill in the blank requirements.

GUI Editor

Torque 3D features a WYSIWYG GUI Editor, which allows you to create, edit, and test your GUI in game with maximum fidelity. 90% of your GUI creation can be done in the editor, leaving 10% for scripting advanced functionality.

[image: gui/overview/img/GUIEditor.jpg]

Torque3D GUIs

GUIs are saved as a script (.gui), which allows you to further tweak values using your favorite text editor. Additionally, you can declare variables and define functions at the end of a GUI script, which will not be written over when modifying the GUI using Torques editor.

Multiple controls which can be combined to make up a single interface. Each control is contained in a single structure, which can be embedded into other GUI elements to form a tree. The following is an example of a GUI control which displays a picture:

// Bitmap GUI control
new GuiBitmapCtrl() {
 profile = "GuiDefaultProfile";
 horizSizing = "width";
 vertSizing = "height";
 position = "8 8";
 extent = "384 24";
 minExtent = "8 8";
 visible = "1";
 helpTag = "0";
 bitmap = "data/FPSGameplay/art/gui/weaponHud/swarmer.png";
 wrap = "0";
};

Once the above GUI is active in your interface, it will display the following:

[image: ../../_images/swarmer1.png]

Getting Started

The Project Manager

TBD

Seting up the SDK

TBD

Camera

This section is dedicated to the various camera objects in Torque 3D. The base Camera object that is typically manipulated by a GameConnection’s input. A Path Camera moves along a path.

Classes

	Camera

	CameraData

	PathCamera

	PathCameraData

Functions

	
void setDefaultFov(float defaultFOV)

	Set the default FOV for a camera.

	Parameters

	defaultFOV – The default field of view in degrees

	
void setFov(float FOV)

	Set the FOV of the camera.

	Parameters

	FOV – The camera’s new FOV in degrees

	
void setZoomSpeed(int speed)

	Set the zoom speed of the camera. This affects how quickly the camera changes from one field of view to another.

	Parameters

	speed – The camera’s zoom speed in ms per 90deg FOV change

Enumerations

	
enum CameraMotionMode

	Movement behavior type for Camera.

	Parameters

	
	Stationary – Camera does not rotate or move.

	FreeRotate – Camera may rotate but does not move.

	Fly – Camera may rotate and move freely.

	OrbitObject – Camera orbits about a given object. Damage flash and white out is determined by the object being orbited. See Camera::setOrbitMode() to set the orbit object and other parameters.

	OrbitPoint – Camera orbits about a given point. See Camera::setOrbitMode() to set the orbit point and other parameters.

	TrackObject – Camera always faces a given object. See Camera::setTrackObject() to set the object to track and a distance to remain from the object.

	Overhead – Camera moves in the XY plane.

	EditOrbit – Used by the World Editor to orbit about a point. When first activated, the camera is rotated to face the orbit point rather than move to it.

Variables

	
int Camera::extendedMovePosRotIndex

	The ExtendedMove position/rotation index used for camera movements.

	
float Camera::movementSpeed

	Global camera movement speed in units/s (typically m/s), with a base value of 40.

Used in the following camera modes:

	Edit Orbit Mode

	Fly Mode

	Overhead Mode

Console

The basis of the TorqueScript system and command execution.

Functions

	
void cls()

	Clears the console output.

	
void debugEnumInstances(string className, string functionName)

	Call the given function for each instance of the given class.

	Parameters

	
	className – Name of the class for which to enumerate instances.

	functionName – Name of function to call and pass each instance of the given class.

	
bool dumpEngineDocs(string outputFile)

	Dumps the engine scripting documentation to the specified file overwriting any existing content.

	Parameters

	outputFile – The relative or absolute output file path and name.

	Returns

	Returns true if successful.

	
SimXMLDocument exportEngineAPIToXML()

	Create a XML document containing a dump of the entire exported engine API.

	Returns

	containing a dump of the engine’s export information or NULL if the operation failed.

	
string getCategoryOfClass(string className)

	Returns the category of the given class.

	Parameters

	className – The name of the class.

	
string getDescriptionOfClass(string className)

	Returns the description string for the named class.

	Parameters

	className – The name of the class.

	Returns

	The class description in string format.

	
bool isClass(string identifier)

	Returns true if the passed identifier is the name of a declared class.

	
bool isMemberOfClass(string className, string superClassName)

	Returns true if the class is derived from the super class. If either class doesn’t exist this returns false.

	Parameters

	
	className – The class name.

	superClassName – The super class to look for.

	
bool isValidObjectName(string name)

	Return true if the given name makes for a valid object name.

	Parameters

	name – Name of object

	Returns

	True if name is allowed, false if denied (usually because it starts with a number, _, or invalid character

	
SimObject loadObject(string filename)

	Loads a serialized object from a file.

	Parameters

	Name – and path to text file containing the object

	
bool saveObject(SimObject object, string filename)

	Serialize the object to a file.

	Parameters

	
	object – The object to serialize.

	filename – The file name and path.

	
void unitTest_runTests()

	Run unit tests, or just the tests that prefix match against the searchString.

Variables

	
string $instantGroup

	The group that objects will be added to when they are created.

	
bool $Con::alwaysUseDebugOutput

	Determines whether to send output to the platform’s “debug” system.

	
bool $Con::logBufferEnabled

	If true, the log buffer will be enabled.

	
int $Con::objectCopyFailures

	If greater than zero then it counts the number of object creation failures based on a missing copy object and does not report an error..

	
int $Con::printLevel

	This is deprecated. It is no longer in use and does nothing.

	
bool $Con::useTimestamp

	If true a timestamp is prepended to every console message.

	
bool $Con::warnUndefinedVariables

	If true, a warning will be displayed in the console whenever a undefined variable is used in script.

Debugging

Functionality to help spot program errors. Also provides profiler functions, helpful in determining performance bottlenecks.

Functions

	
void backtrace()

	Prints the scripting call stack to the console log. Used to trace functions called from within functions. Can help discover what functions were called (and not yet exited) before the current point in scripts.

	
void debug()

	Drops the engine into the native C++ debugger. This function triggers a debug break and drops the process into the IDE’s debugger. If the process is not running with a debugger attached it will generate a runtime error on most platforms.

	
void debugDumpAllObjects()

	Dumps all current EngineObject instances to the console.

	
void debugv(string variableName)

	Logs the value of the given variable to the console. Prints a string of the form ” lt variableName gt = lt variable value gt ” to the console.

	Parameters

	variableName – Name of the local or global variable to print.

Example:

%var = 1;
debugv("%var"); // Prints "%var = 1"

	
void dumpAlloc(int allocNum)

	Dumps information about the given allocated memory block.

	Parameters

	allocNum – Memory block to dump information about.

	
void dumpMemSnapshot(string fileName)

	Dumps a snapshot of current memory to a file. The total memory used will also be output to the console. This function will attempt to create the file if it does not already exist.

	Parameters

	fileName – Name and path of file to save profiling stats to. Must use forward slashes (/)

Example:

dumpMemSnapshot("C:/Torque/ProfilerLogs/profilerlog1.txt");

	
void dumpUnflaggedAllocs(string fileName)

	Dumps all unflagged memory allocations. Dumps all memory allocations that were made after a call to flagCurrentAllocs() . Helpful when used with flagCurrentAllocs() for detecting memory leaks and analyzing general memory usage.

	Parameters

	fileName – Optional file path and location to dump all memory allocations not flagged by flagCurrentAllocs(). If left blank, data will be dumped to the console.

Example:

dumpMemSnapshot(); // dumps info to console
dumpMemSnapshot("C:/Torque/profilerlog1.txt"); // dumps info to file

	
void flagCurrentAllocs()

	Flags all current memory allocations. Flags all current memory allocations for exclusion in subsequent calls to dumpUnflaggedAllocs() . Helpful in detecting memory leaks and analyzing memory usage.

	
void freeMemoryDump()

	Dumps some useful statistics regarding free memory. Dumps an analysis of ‘free chunks’ of memory. Does not print how much memory is free.

	
void profilerDump()

	Dumps current profiling stats to the console window.

	
void profilerDumpToFile(string fileName)

	Dumps current profiling stats to a file.

	Parameters

	fileName – Name and path of file to save profiling stats to. Must use forward slashes (/). Will attempt to create the file if it does not already exist.

Example:

profilerDumpToFile("C:/Torque/log1.txt");

	
void profilerEnable(bool enable)

	Enables or disables the profiler. Data is only gathered while the profiler is enabled.

	
void profilerMarkerEnable(string markerName, bool enable)

	Enable or disable a specific profile.

	Parameters

	
	enable – Optional paramater to enable or disable the profile.

	markerName – Name of a specific marker to enable or disable.

	
void profilerReset()

	Resets the profiler, clearing it of all its data. If the profiler is currently running, it will first be disabled. All markers will retain their current enabled/disabled status.

	
int sizeof(string objectOrClass)

	Determines the memory consumption of a class or object.

	Parameters

	objectOrClass – The object or class being measured.

	Returns

	Returns the total size of an object in bytes.

	
void telnetSetParameters(int port, string consolePass, string listenPass, bool remoteEcho)

	Initializes and open the telnet console.

	Parameters

	
	port – Port to listen on for console connections (0 will shut down listening).

	consolePass – Password for read/write access to console.

	listenPass – Password for read access to console.

	remoteEcho – [optional] Enable echoing back to the client, off by default.

	
void trace(bool enable)

	Enable or disable tracing in the script code VM. When enabled, the script code runtime will trace the invocation and returns from all functions that are called and log them to the console. This is helpful in observing the flow of the script program.

	Parameters

	enable – New setting for script trace execution, on by default.

	
void validateMemory()

	Used to validate memory space for the game.

Variables

	
int getAppVersionNumber

	Get the version of the application build, as a string.

	
string getAppVersionString

	Get the version of the aplication, as a human readable string.

	
string getBuildString

	Get the type of build, “Debug” or “Release”.

	
string getCompileTimeString

	Get the time of compilation.

	
string getEngineName

	Get the name of the engine product that this is running from, as a string.

	
int getVersionNumber

	Get the version of the engine build, as a string.

	
string getVersionString

	Get the version of the engine build, as a human readable string.

Logging

Functions for logging messages, warnings, and errors to the console.

Classes

	ConsoleLogger

Enumeration

	
enum LogLevel

	Priority levels for logging entries.

	Parameters

	
	normal – Lowest priority level, no highlighting.

	warning – Mid level priority, tags and highlights possible issues in blue.

	error – Highest priority level, extreme emphasis on this entry. Highlighted in red.

Functions

	
void dumpConsoleClasses(bool dumpScript, bool dumpEngine)

	Dumps all declared console classes to the console.

	Parameters

	
	dumpScript – Optional parameter specifying whether or not classes defined in script should be dumped.

	dumpEngine – Optional parameter specifying whether or not classes defined in the engine should be dumped.

	
void dumpConsoleFunctions(bool dumpScript, bool dumpEngine)

	Dumps all declared console functions to the console.

	Parameters

	
	dumpScript – Optional parameter specifying whether or not functions defined in script should be dumped.

	dumpEngine – Optional parameter specitying whether or not functions defined in the engine should be dumped.

	
void echo(string message, ...)

	Logs a message to the console. Concatenates all given arguments to a single string and prints the string to the console. A newline is added automatically after the text.

	Parameters

	message – Any number of string arguments.

	
void error(string message, ...)

	Logs an error message to the console. Concatenates all given arguments to a single string and prints the string to the console as an error message (in the in-game console, these will show up using a red font by default). A newline is added automatically after the text.

	Parameters

	message – Any number of string arguments.

	
void log(string message)

	Logs a message to the console.

	Parameters

	message – The message text.

	
void logError(string message)

	Logs an error message to the console.

	Parameters

	message – The message text.

	
void logWarning(string message)

	Logs a warning message to the console.

	Parameters

	message – The message text.

	
void setLogMode(int mode)

	Determines how log files are written. Sets the operational mode of the console logging system. Additionally, when changing the log mode and thus opening a new log file, either of the two mode values may be combined by binary OR with 0x4 to cause the logging system to flush all console log messages that had already been issued to the console system into the newly created log file.

	Parameters

	mode – Parameter specifying the logging mode. This can be:1: Open and close the console log file for each seperate string of output. This will ensure that all parts get written out to disk and that no parts remain in intermediate buffers even if the process crashes.2: Keep the log file open and write to it continuously. This will make the system operate faster but if the process crashes, parts of the output may not have been written to disk yet and will be missing from the log.

	
void warn(string message, ...)

	Logs a warning message to the console. Concatenates all given arguments to a single string and prints the string to the console as a warning message (in the in-game console, these will show up using a turquoise font by default). A newline is added automatically after the text.

	Parameters

	message – Any number of string arguments.

Messaging

Script classes and functions used for passing messages and events between classes.

Classes

	EventManager

	Message

	MessageForwarder

	ScriptMsgListener

Functions

	
bool dispatchMessage(string queueName, string message, string data)

	Dispatch a message to a queue.

	Parameters

	
	queueName – Queue to dispatch the message to

	message – Message to dispatch

	data – Data for message

	Returns

	True for success, false for failure

	
bool dispatchMessageObject(string queueName, string message)

	Dispatch a message object to a queue.

	Parameters

	
	queueName – Queue to dispatch the message to

	message – Message to dispatch

	Returns

	true for success, false for failure

	
bool isQueueRegistered(string queueName)

	Determines if a dispatcher queue exists.

	Parameters

	queueName – String containing the name of queue

	
bool registerMessageListener(string queueName, string listener)

	Registers an event message.

	Parameters

	
	queueName – String containing the name of queue to attach listener to

	listener – Name of event messenger

	
void registerMessageQueue(string queueName)

	Registeres a dispatcher queue.

	Parameters

	queueName – String containing the name of queue

	
void unregisterMessageListener(string queueName, string listener)

	Unregisters an event message.

	Parameters

	
	queueName – String containing the name of queue

	listener – Name of event messenger

	
void unregisterMessageQueue(string queueName)

	Unregisters a dispatcher queue.

	Parameters

	queueName – String containing the name of queue

Packages

Functions relating to the control of packages.

Functions

	
void activatePackage(string packageName)

	Activates an existing package. The activation occurs by updating the namespace linkage of existing functions and methods. If the package is already activated the function does nothing.

	
void deactivatePackage(string packageName)

	Deactivates a previously activated package. The package is deactivated by removing its namespace linkages to any function or method. If there are any packages above this one in the stack they are deactivated as well. If the package is not on the stack this function does nothing.

	
string getFunctionPackage(string funcName)

	Provides the name of the package the function belongs to.

	Parameters

	funcName – String containing name of the function

	Returns

	The name of the function’s package

	
string getMethodPackage(string namespace, string method)

	Provides the name of the package the method belongs to.

	Parameters

	
	namespace – Class or namespace, such as Player

	method – Name of the funciton to search for

	Returns

	The name of the method’s package

	
string getPackageList()

	Returns a space delimited list of the active packages in stack order.

	
bool isPackage(string identifier)

	Returns true if the identifier is the name of a declared package.

Scripting

Functions for working with script code.

Classes

	ArrayObject

	ScriptGroup

	ScriptObject

	ScriptTickObject

Functions

	
string call(string functionName, string args, ...)

	Apply the given arguments to the specified global function and return the result of the call.

	Parameters

	functionName – The name of the function to call. This function must be in the global namespace, i.e. you cannot call a function in a namespace through call. Use eval() for that.

	Returns

	The result of the function call.

Example:

function myFunction(%arg)
{
 return (%arg SPC "World!");
}

echo(call("myFunction", "Hello"));
// Prints "Hello World!" to the console.

	
bool compile(string fileName, bool overrideNoDSO)

	Compile a file to bytecode. This function will read the TorqueScript code in the specified file, compile it to internal bytecode, and, if DSO generation is enabled or overrideNoDDSO is true, will store the compiled code in a .dso file in the current DSO path mirrorring the path of fileName .

	Parameters

	
	fileName – Path to the file to compile to bytecode.

	overrideNoDSO – If true, force generation of DSOs even if the engine is compiled to not generate write compiled code to DSO files.

	Returns

	True if the file was successfully compiled, false if not.

	
void deleteVariables(string pattern)

	Undefine all global variables matching the given name pattern .

	Parameters

	pattern – A global variable name pattern. Must begin with ‘$’.

Example:

// Define a global variable in the "My" namespace.
$My::Variable = "value";

// Undefine all variable in the "My" namespace.
deleteVariables("$My::*");

	
bool exec(string fileName, bool noCalls, bool journalScript)

	Execute the given script file.

	Parameters

	
	fileName – Path to the file to execute

	noCalls – Deprecated

	journalScript – Deprecated

	Returns

	True if the script was successfully executed, false if not.

Example:

// Execute the init.cs script file found in the
// same directory as the current script file.
exec("./init.cs");

	
bool execPrefs(string relativeFileName, bool noCalls, bool journalScript)

	Manually execute a special script file that contains game or editor preferences.

	Parameters

	
	relativeFileName – Name and path to file from project folder

	noCalls – Deprecated

	journalScript – Deprecated

	Returns

	True if script was successfully executed

	
void export(string pattern, string filename, bool append)

	Write out the definitions of all global variables matching the given name pattern . If fileName is not “”, the variable definitions are written to the specified file. Otherwise the definitions will be printed to the console. The output are valid TorqueScript statements that can be executed to restore the global variable values.

	Parameters

	
	pattern – A global variable name pattern. Must begin with ‘$’.

	filename – Path of the file to which to write the definitions or “” to write the definitions to the console.

	append – If true and fileName is not “”, then the definitions are appended to the specified file. Otherwise existing contents of the file (if any) will be overwritten.

Example:

// Write out all preference variables to a prefs.cs file.
export("$prefs::*", "prefs.cs");

	
string getDSOPath(string scriptFileName)

	Get the absolute path to the file in which the compiled code for the given script file will be stored.

	Parameters

	scriptFileName – Path to the .cs script file.

	Returns

	The absolute path to the .dso file for the given script file.

	
string getVariable(string varName)

	Returns the value of the named variable or an empty string if not found. Name of the variable to search for

	Returns

	Value contained by varName, “” if the variable does not exist

	
bool isDefined(string varName)

	Determines if a variable exists and contains a value.

	Parameters

	varName – Name of the variable to search for

	Returns

	True if the variable was defined in script, false if not

Example:

isDefined("$myVar");

	
bool isFunction(string funcName)

	Determines if a function exists or not.

	Parameters

	funcName – String containing name of the function

	Returns

	True if the function exists, false if not

	
bool isMethod(string namespace, string method)

	Determines if a class/namespace method exists.

	Parameters

	
	namespace – Class or namespace, such as Player

	method – Name of the function to search for

	Returns

	True if the method exists, false if not

	
void setVariable(string varName, string value)

	Sets the value of the named variable.

	Parameters

	
	varName – Name of the variable to locate

	value – New value of the variable

	Returns

	True if variable was successfully found and set

Console Reference

Core

Basic engine and language functionality for TorqueScript.

	Console

	File I/O

	Math

	Strings

	Utilities

GUI

Subsystem to display user interface elements and handle high-level rendering
control flow.

	3D Controls

	Core Controls

	Button Controls

	General Controls

	Container Controls

	Image and Video Controls

	Value Controls

	Utility Controls

	Game Controls

Game

Objects, functions, and variables related to game play elements.

	Game

	Objects

	Special Effects

	Decals

	AI

	Physics

	Vehicles

Environment

Objects that represent environmental features, such as, terrain, water, atmosphere, plants and trees.

	Atmosphere

	Water

	Terrain

	Forest

	Foliage

	Miscellaneous

Miscellaneous

Camera, sound, input and networking.

	Camera

	Input

	Network

	Platform

	Localization

	Sound

Rendering

All rendering related functionality.

	Rendering

	Font

	GFX

	Materials

	Shaders

	Lighting

	Render Binning

Examples

	Examples

Control Structures

TorqueScript provides basic branching structures that will be familiar to programmers that have used other languages. If you are completely new to programming, you use branching structures to control your game’s flow and logic. This section builds on everything you have learned about TorqueScript so far.

if, else

This type of structure is used to test a condition, then perform certain actions if the condition passes or fails. You do not always have to use the full structure, but the following syntax shows the extent of the conditional:

if(<boolean expression>)
{
 pass logic
}
else
{
 alternative logic
}

Remember how boolean values work? Essentially, a bool can either be true (1) or false (0). The condition (boolean) is always typed into the parenthesis after the “if” syntax. Your logic will be typed within the brackets {}. The following example uses specific variable names and conditions to show how this can be used:

// Global variable that controls lighting
$lightsShouldBeOn = true;

// Check to see if lights should be on or off
if($lightsShouldBeOn)
{
 // True. Call turn on lights function
 turnOnLights();

 echo("Lights have been turned on");
}
else
{
 // False. Turn off the lights
 turnOffLights();

 echo("Lights have been turned off");
}

Brackets for single line statements are optional. If you are thinking about adding additional logic to the code, then you should use the brackets anyway. If you know you will only use one logic statement, you can use the following syntax:

// Global variable that controls lighting
$lightsShouldBeOn = true;

// Check to see if lights should be on or off
if($lightsShouldBeOn)
 turnOnLights(); // True. Call turn on lights function
else
 turnOffLights(); // False. Turn off the lights

switch, switch$

If your code is using several cascading if-then-else statements based on a single value, you might want to use a switch statement instead. Switch statements are easier to manage and read. There are two types of switch statements, based on data type: numeric (switch) and string (switch$):

switch(<numeric expression>)
{
 case value0:
 statements;
 case value1:
 statements;
 case value3:
 statements;
 default:
 statements;
}

As the above code demonstrates, start by declaring the switch statement by passing in a value to the switch(...) line. Inside of the brackets {}, you will list out all the possible cases that will execute based on what value being tested. It is wise to always use the default case, anticipating rogue values being passed in:

switch($ammoCount)
{
 case 0:
 echo("Out of ammo, time to reload");
 reloadWeapon();
 case 1:
 echo("Almost out of ammo, warn user");
 lowAmmoWarning();
 case 100:
 echo("Full ammo count");
 playFullAmmoSound();
 default:
 doNothing();
}

switch only properly evaluates numerical values. If you need a switch statement to handle a string value, you will want to use switch$. The switch$ syntax is similar to what you just learned:

switch$ (<string expression>)
{
 case "string value 0":
 statements;
 case "string value 1":
 statements;
 case "string value N":
 statements;
 default:
 statements;
}

Appending the $ sign to switch will immediately cause the parameter passed in to be parsed as a string. The following code applies this logic:

// Print out specialties
switch($userName)
{
 case "Heather":
 echo("Sniper");
 case "Nikki":
 echo("Demolition");
 case Mich:
 echo("Meat shield");
 default:
 echo("Unknown user");
}

for

As the name implies, this structure type is used to repeat logic in a loop based on an expression. The expression is usually a set of variables that increase by count, or a constant variable changed once a loop has hit a specific point:

for(expression0; expression1; expression2)
{
 statement(s);
}

One way to label the expressions in this syntax are (startExpression; testExpression; countExpression). Each expression is separated by a semi-colon:

for(%count = 0; %count < 3; %count++)
{
 echo(%count);
}

OUTPUT:
0
1
2

The first expression creates the local variable %count and initializing it to 0. In the second expression determines when to stop looping, which is when the %count is no longer less than 3. Finally, the third expression increases the count the loop relies on.

foreach

Simplify the iteration over sets of objects and string vectors. To loop over each object in a SimSet, use the foreach statement:

foreach(%obj in %set)
 /* do something with %obj */;

To loop over each element in a string vector, use the foreach$ statement:

foreach$(%str in "a b c")
 /* do something with %str */;

while

A while loop is a much simpler looping structure compared to a for loop.

while(expression)
{
 statements;
}

As soon as the expression is met, the while loop will terminate:

%countLimit = 0;

while(%countLimit <= 5)
{
 echo("Still in loop");
 %count++;
}

echo("Loop was terminated");

Atmosphere

Objects that represent the atmosphere and weather, such as the sky, sun, clouds, and precipitation.

Classes

	BasicClouds

	CloudLayer

	ForestWindEmitter

	Lightning

	LightningData

	LightningStrikeEvent

	Precipitation

	PrecipitationData

	ScatterSky

	SkyBox

	Sun

Foliage

Objects used for mass replication of foliage, such as grass, rocks, and bushes.

Classes

	fxFoliageReplicator

	fxShapeReplicatedStatic

	fxShapeReplicator

	GroundCover

Functions

	
void StartClientReplication()

	Activates the shape replicator.

Example:

// Call the function
StartClientReplication()

	
void StartFoliageReplication()

	Activates the foliage replicator.

Example:

// Call the function
StartFoliageReplication();

Variables

	
float $pref::GroundCover::densityScale

	A global LOD scalar which can reduce the overall density of placed GroundCover .

	
int GroundCover::renderedBatches[static, inherited]

	Stat for number of rendered billboard batches.

	
int GroundCover::renderedBillboards[static, inherited]

	Stat for number of rendered billboards.

	
int GroundCover::renderedCells[static, inherited]

	Stat for number of rendered cells.

	
int GroundCover::renderedShapes[static, inherited]

	Stat for number of rendered shapes.

Forest

Objects for efficiently placing and rendering trees, rocks, foliage, or any such feature needed in large number.

Classes

	Forest

	ForestBrushElement

	ForestItemData

	ForestWindEmitter

	TSForestItemData

Variables

	
bool Forest::disableImposters[static, inherited]

	A debugging aid which will disable rendering of all imposters in the forest.

	
bool Forest::drawBounds[static, inherited]

	A debugging aid which renders the forest bounds.

	
bool Forest::drawCells[static, inherited]

	A debugging aid which renders the forest cell bounds.

	
bool Forest::forceImposters[static, inherited]

	A debugging aid which will force all forest items to be rendered as imposters.

Miscellaneous

Miscellaneous environmental and level objects.

Classes

	ConvexShape

	LevelInfo

	Marker

	MissionArea

	MissionMarker

	MissionMarkerData

	OcclusionVolume

	Path

	PhysicalZone

	Portal

	Prefab

	ReflectorDesc

	SpawnSphere

	TerrainMaterial

	TimeOfDay

	WayPoint

	Zone

Enumeration

	
enum MarkerKnotType

	The type of knot that this marker will be.

	Parameters

	
	Normal – Knot will have a smooth camera translation/rotation effect.

	Only – Will do the same for translations, leaving rotation un-touched.

	Kink – The rotation will take effect immediately for an abrupt rotation change.

	
enum MarkerSmoothingType

	The type of smoothing this marker will have for pathed objects.

	Parameters

	
	Spline – Marker will cause the movements of the pathed object to be smooth.

	Linear – Marker will have no smoothing effect.

Functions

	
MissionArea getMissionAreaServerObject()

	Get the MissionArea object, if any.

Terrain

Objects that specialize in representing terrain and other collidable/walkable surfaces.

Classes

	DecalRoad

	GroundPlane

	MeshRoad

	TerrainBlock

Functions

	
bool getTerrainHeight(Point2I position)

	Gets the terrain height at the specified position.

	Parameters

	position – The world space point, minus the z (height) value. Formatted as (“x y”)

	Returns

	Returns the terrain height at the given point as an F32 value.

	
bool getTerrainHeight(F32 x, F32 y)

	Gets the terrain height at the specified position.

	Parameters

	
	x – The X coordinate in world space

	y – The Y coordinate in world space

	Returns

	Returns the terrain height at the given point as an F32 value.

	
bool getTerrainHeightBelowPosition(Point2I position)

	Takes a world point and find the “highest” terrain underneath it.

	Parameters

	position – The world space point, minus the z (height) value. Formatted as (“x y”)

	Returns

	Returns the closest terrain height below the given point as an F32 value.

	
bool getTerrainHeightBelowPosition(F32 x, F32 y)

	Takes a world point and find the “highest” terrain underneath it.

	Parameters

	
	x – The X coordinate in world space

	y – The Y coordinate in world space

	Returns

	Returns the closest terrain height below the given point as an F32 value.

	
bool getTerrainUnderWorldPoint(Point3F position)

	Gets the terrain block that is located under the given world point.

	Parameters

	position – The world space coordinate you wish to query at. Formatted as (“x y z”)

	Returns

	Returns the ID of the requested terrain block (0 if not found).

	
bool getTerrainUnderWorldPoint(F32 x, F32 y, F32 z)

	Takes a world point and find the “highest” terrain underneath it.

	Parameters

	
	x – The X coordinate in world space

	y – The Y coordinate in world space

	z – The Z coordinate in world space

	Returns

	Returns the ID of the requested terrain block (0 if not found).

Variables

	
bool TerrainBlock::debugRender[static, inherited]

	Triggers debug rendering of terrain cells.

	
float $pref::Terrain::detailScale

	A global detail scale used to tweak the material detail distances.

	
float $pref::Terrain::lodScale

	A global LOD scale used to tweak the default terrain screen error value.

Water

Objects that represent water features, from puddles to rivers and oceans.

Classes

	River

	WaterBlock

	WaterObject

	WaterPlane

Variables

	
bool $pref::Water::disableTrueReflections

	Force all water objects to use static cubemap reflections.

	
bool WaterObject::wireframe[static, inherited]

	If true, will render the wireframe of the WaterObject .

Examples

Classes

	RenderMeshExample

	RenderObjectExample

	RenderShapeExample

File I/O

Functions allowing you to search for files, read them, write them, and access their properties.

Classes

	FileDialog

	FileObject

	FileStreamObject

	OpenFileDialog

	OpenFolderDialog

	SaveFileDialog

	SimXMLDocument

	StreamObject

	ZipObject

Functions

	
bool createPath(string path)

	Create the given directory or the path leading to the given filename. If path ends in a trailing slash, then all components in the given path will be created as directories (if not already in place). If path , does not end in a trailing slash, then the last component of the path is taken to be a file name and only the directory components of the path will be created.

	Parameters

	path – The path to create.

	
string expandFilename(string filename)

	Grabs the full path of a specified file.

	Parameters

	filename – Name of the local file to locate

	Returns

	String containing the full filepath on disk

	
string expandOldFilename(string filename)

	Retrofits a filepath that uses old Torque style.

	Returns

	String containing filepath with new formatting

	
String fileBase(string fileName)

	Get the base of a file name (removes extension).

	Parameters

	fileName – Name and path of file to check

	Returns

	String containing the file name, minus extension

	
String fileCreatedTime(string fileName)

	Returns a platform specific formatted string with the creation time for the file.

	Parameters

	fileName – Name and path of file to check

	Returns

	Formatted string (OS specific) containing created time, “9/3/2010 12:33:47 PM” for example

	
bool fileDelete(string path)

	Delete a file from the hard drive.

	Parameters

	path – Name and path of the file to delete

	Returns

	True if file was successfully deleted

	
String fileExt(string fileName)

	Get the extension of a file.

	Parameters

	fileName – Name and path of file

	Returns

	String containing the extension, such as “.exe” or “.cs”

	
String fileModifiedTime(string fileName)

	Returns a platform specific formatted string with the last modified time for the file.

	Parameters

	fileName – Name and path of file to check

	Returns

	Formatted string (OS specific) containing modified time, “9/3/2010 12:33:47 PM” for example

	
String fileName(string fileName)

	Get the file name of a file (removes extension and path).

	Parameters

	fileName – Name and path of file to check

	Returns

	String containing the file name, minus extension and path

	
String filePath(string fileName)

	Get the path of a file (removes name and extension).

	Parameters

	fileName – Name and path of file to check

	Returns

	String containing the path, minus name and extension

	
int fileSize(string fileName)

	Determines the size of a file on disk.

	Parameters

	fileName – Name and path of the file to check

	Returns

	Returns filesize in KB, or -1 if no file

	
String getCurrentDirectory()

	Return the current working directory.

	Returns

	The absolute path of the current working directory.

	
String getDirectoryList(string path, int depth)

	Gathers a list of directories starting at the given path.

	Parameters

	
	path – String containing the path of the directory

	depth – Depth of search, as in how many subdirectories to parse through

	Returns

	Tab delimited string containing list of directories found during search, “” if no files were found

	
String getExecutableName()

	Gets the name of the game’s executable.

	Returns

	String containing this game’s executable name

	
int getFileCRC(string fileName)

	Provides the CRC checksum of the given file.

	Parameters

	fileName – The path to the file.

	Returns

	The calculated CRC checksum of the file, or -1 if the file could not be found.

	
String getMainDotCsDir()

	Get the absolute path to the directory that contains the main.cs script from which the engine was started. This directory will usually contain all the game assets and, in a user-side game installation, will usually be read-only.

	Returns

	The path to the main game assets.

	
String getWorkingDirectory()

	Reports the current directory.

	Returns

	String containing full file path of working directory

	
bool IsDirectory(string directory)

	Determines if a specified directory exists or not.

	Parameters

	directory – String containing path in the form of “foo/bar”

	Returns

	Returns true if the directory was found.

	
bool isFile(string fileName)

	Determines if the specified file exists or not.

	Parameters

	fileName – The path to the file.

	Returns

	Returns true if the file was found.

	
bool isWriteableFileName(string fileName)

	Determines if a file name can be written to using File I/O.

	Parameters

	fileName – Name and path of file to check

	Returns

	Returns true if the file can be written to.

	
String makeFullPath(string path, string cwd)

	Converts a relative file path to a full path. For example, “./console.log” becomes “C:/Torque/t3d/examples/FPS Example/game/console.log”

	Parameters

	
	path – Name of file or path to check

	cwd – Optional current working directory from which to build the full path.

	Returns

	String containing non-relative directory of path

	
String makeRelativePath(string path, string to)

	Turns a full or local path to a relative one. For example, “./game/art” becomes “game/art”

	Parameters

	
	path – Full path (may include a file) to convert

	to – Optional base path used for the conversion. If not supplied the current working directory is used.

	Returns

	String containing relative path

	
void openFile(string file)

	Open the given file through the system. This will usually open the file in its associated application.

	Parameters

	file – Path of the file to open.

	
void openFolder(string path)

	Open the given folder in the system’s file manager.

	Parameters

	path – full path to a directory.

	
String pathConcat(string path, string file)

	Combines two separate strings containing a file path and file name together into a single string.

	Parameters

	
	path – String containing file path

	file – String containing file name

	Returns

	String containing concatenated file name and path

	
bool pathCopy(string fromFile, string toFile, bool noOverwrite)

	Copy a file to a new location.

	Parameters

	
	fromFile – Path of the file to copy.

	toFile – Path where to copy fromFile to.

	noOverwrite – If true, then fromFile will not overwrite a file that may already exist at toFile.

	Returns

	True if the file was successfully copied, false otherwise.

	
bool setCurrentDirectory(string path)

	Set the current working directory.

	Parameters

	path – The absolute or relative (to the current working directory) path of the directory which should be made the new working directory.

	Returns

	, false otherwise.

	
void startFileChangeNotifications()

	Start watching resources for file changes. Typically this is called during initializeCore().

	
void stopFileChangeNotifications()

	Stop watching resources for file changes. Typically this is called during shutdownCore().

Variables

	
string $Con::File

	The currently executing script file.

	
string $Con::Root

	The mod folder for the currently executing script file.

File Searching

Functions for searching files by name patterns.

Functions

	
String findFirstFile(string pattern, bool recurse)

	Returns the first file in the directory system matching the given pattern. Use the corresponding findNextFile() to step through the results. If you’re only interested in the number of files returned by the pattern match, use getFileCount() . This function differs from findFirstFileMultiExpr() in that it supports a single search pattern being passed in.

	Parameters

	
	pattern – The path and file name pattern to match against.

	recurse – If true, the search will exhaustively recurse into subdirectories of the given path and match the given filename pattern.

	Returns

	The path of the first file matched by the search or an empty string if no matching file could be found.

Example:

// Execute all .cs files in a subdirectory and its subdirectories.
for(%file = findFirstFile("subdirectory/*.cs"); %file !$= ""; %file = findNextFile())
 exec(%file);

	
String findFirstFileMultiExpr(string pattern, bool recurse)

	Returns the first file in the directory system matching the given patterns. Use the corresponding findNextFileMultiExpr() to step through the results. If you’re only interested in the number of files returned by the pattern match, use getFileCountMultiExpr() . This function differs from findFirstFile() in that it supports multiple search patterns to be passed in.

	Parameters

	
	pattern – The path and file name pattern to match against, such as .cs. Separate multiple patterns with TABs. For example: “.cs” TAB “.dso”

	recurse – If true, the search will exhaustively recurse into subdirectories of the given path and match the given filename patterns.

	Returns

	String of the first matching file path, or an empty string if no matching files were found.

Example:

// Find all DTS or Collada models
%filePatterns = "*.dts" TAB "*.dae";
%fullPath = findFirstFileMultiExpr(%filePatterns);
while (%fullPath !$= "")
{
 echo(%fullPath);
 %fullPath = findNextFileMultiExpr(%filePatterns);
}

	
String findNextFile(string pattern)

	Returns the next file matching a search begun in findFirstFile() .

	Parameters

	pattern – The path and file name pattern to match against. This is optional and may be left out as it is not used by the code. It is here for legacy reasons.

	Returns

	The path of the next filename matched by the search or an empty string if no more files match.

Example:

// Execute all .cs files in a subdirectory and its subdirectories.
for(%file = findFirstFile("subdirectory/*.cs"); %file !$= ""; %file = findNextFile())
 exec(%file);

	
String findNextFileMultiExpr(string pattern)

	Returns the next file matching a search begun in findFirstFileMultiExpr() .

	Parameters

	pattern – The path and file name pattern to match against. This is optional and may be left out as it is not used by the code. It is here for legacy reasons.

	Returns

	String of the next matching file path, or an empty string if no matching files were found.

Example:

// Find all DTS or Collada models
%filePatterns = "*.dts" TAB "*.dae";
%fullPath = findFirstFileMultiExpr(%filePatterns);
while (%fullPath !$= "")
{
 echo(%fullPath);
 %fullPath = findNextFileMultiExpr(%filePatterns);
}

	
int getFileCount(string pattern, bool recurse)

	Returns the number of files in the directory tree that match the given patterns. This function differs from getFileCountMultiExpr() in that it supports a single search pattern being passed in. If you’re interested in a list of files that match the given pattern and not just the number of files, use findFirstFile() and findNextFile() .

	Parameters

	
	pattern – The path and file name pattern to match against.

	recurse – If true, the search will exhaustively recurse into subdirectories of the given path and match the given filename pattern counting files in subdirectories.

	Returns

	Number of files located using the pattern

Example:

// Count the number of .cs files in a subdirectory and its subdirectories.
getFileCount("subdirectory/*.cs");

	
int getFileCountMultiExpr(string pattern, bool recurse)

	Returns the number of files in the directory tree that match the given patterns. If you’re interested in a list of files that match the given patterns and not just the number of files, use findFirstFileMultiExpr() and findNextFileMultiExpr() .

	Parameters

	
	pattern – The path and file name pattern to match against, such as .cs. Separate multiple patterns with TABs. For example: “.cs” TAB “.dso”

	recurse – If true, the search will exhaustively recurse into subdirectories of the given path and match the given filename pattern.

	Returns

	Number of files located using the patterns

Example:

// Count all DTS or Collada models
%filePatterns = "*.dts" TAB "*.dae";
echo("Nunmer of shape files:" SPC getFileCountMultiExpr(%filePatterns));

Font

Various helpers for working with fonts from script.

Functions

	
void dumpFontCacheStatus()

	Dumps to the console a full description of all cached fonts, along with info on the codepoints each contains.

	
void duplicateCachedFont(string oldFontName, int oldFontSize, string newFontName)

	Copy the specified old font to a new name. The new copy will not have a platform font backing it, and so will never have characters added to it. But this is useful for making copies of fonts to add postprocessing effects to via exportCachedFont.

	Parameters

	
	oldFontName – The name of the font face to copy.

	oldFontSize – The size of the font to copy.

	newFontName – The name of the new font face.

	
void exportCachedFont(string faceName, int fontSize, string fileName, int padding, int kerning)

	Export specified font to the specified filename as a PNG. The image can then be processed in Photoshop or another tool and reimported using importCachedFont. Characters in the font are exported as one long strip.

	Parameters

	
	faceName – The name of the font face.

	fontSize – The size of the font in pixels.

	fileName – The file name and path for the output PNG.

	padding – The padding between characters.

	kerning – The kerning between characters.

	
void importCachedFont(string faceName, int fontSize, string fileName, int padding, int kerning)

	Import an image strip from exportCachedFont. Call with the same parameters you called exportCachedFont.

	Parameters

	
	faceName – The name of the font face.

	fontSize – The size of the font in pixels.

	fileName – The file name and path for the input PNG.

	padding – The padding between characters.

	kerning – The kerning between characters.

	
void populateAllFontCacheRange(int rangeStart, int rangeEnd)

	Populate the font cache for all fonts with Unicode code points in the specified range.

	Parameters

	
	rangeStart – The start Unicode point.

	rangeEnd – The end Unicode point.

	
void populateAllFontCacheString(string string)

	Populate the font cache for all fonts with characters from the specified string.

	
void populateFontCacheRange(string faceName, int fontSize, int rangeStart, int rangeEnd)

	Populate the font cache for the specified font with Unicode code points in the specified range.

	Parameters

	
	faceName – The name of the font face.

	fontSize – The size of the font in pixels.

	rangeStart – The start Unicode point.

	rangeEnd – The end Unicode point.

	
void populateFontCacheString(string faceName, int fontSize, string string)

	Populate the font cache for the specified font with characters from the specified string.

	Parameters

	
	faceName – The name of the font face.

	fontSize – The size of the font in pixels.

	string – The string to populate.

	
void writeFontCache()

	Force all cached fonts to serialize themselves to the cache.

Functions

Much of your TorqueScript experience will come down to calling existing Console Functions and writing your own. Functions are a blocks of code that only execute when you call them by name. Basic functions in TorqueScript are defined as follows:

// function - Is a keyword telling TorqueScript we are defining a new function.
// function_name - Is the name of the function we are creating.
// ... - Is any number of additional arguments.
// statements - Your custom logic executed when function is called
// return val - The value the function will give back after it has completed. Optional.

function function_name([arg0],...,[argn])
{
 statements;
 [return val;]
}

The function keyword, like other TorqueScript keywords, is case sensitive. You must type it exactly as shown above. The following is an example of a custom function that takes in two parameters, then executes code based on those arguments.

TorqueScript can take any number of arguments, as long as they are comma separated. If you call a function and pass fewer parameters than the function’s definition specifies, the un-passed parameters will be given an empty string as their default value:

function echoRepeat (%echoString, %repeatCount)
{
 for (%count = 0; %count < %repeatCount; %count++)
 {
 echo(%echoString);
 }
}

You can cause this function to execute by calling it in the console, or in another function:

echoRepeat("hello!", 5);

OUTPUT:
"hello!"
"hello!"
"hello!"
"hello!"
"hello!"

If you define a function and give it the same name as a previously defined function, TorqueScript will completely override the old function. This still applies even if you change the number of parameters used; the older function will still be overridden.

Torque 3D also contain Console Functions written in C++, then exposed to TorqueScript. These are global functions you can call at any time, and are usually very helpful or important. E.g. throughout this document, we have been using the Console Function echo(...).

Game

Classes

	SimObject

	SimSet

	SimGroup

	SimDataBlock

Functions

	
bool addBadWord(string badWord)

	Add a string to the bad word filter. The bad word filter is a table containing words which will not be displayed in chat windows. Instead, a designated replacement string will be displayed. There are already a number of bad words automatically defined.

	Parameters

	badWord – Exact text of the word to restrict.

	Returns

	True if word was successfully added, false if the word or a subset of it already exists in the table

Example:

// In this game, "Foobar" is banned
%badWord = "Foobar";

// Returns true, word was successfully added
addBadWord(%badWord);

// Returns false, word has already been added
addBadWord("Foobar");

	
bool containerBoxEmpty(int mask, Point3F center, float xRadius, float yRadius, float zRadius, bool useClientContainer)

	See if any objects of the given types are present in box of given extent.

	Parameters

	
	mask – Indicates the type of objects we are checking against.

	center – Center of box.

	xRadius – Search radius in the x-axis. See note above.

	yRadius – Search radius in the y-axis. See note above.

	zRadius – Search radius in the z-axis. See note above.

	useClientContainer – Optionally indicates the search should be within the client container.

	Returns

	true if the box is empty, false if any object is found.

	
string containerFindFirst(int mask, Point3F point, float x, float y, float z)

	Find objects matching the bitmask type within a box centered at point, with extents x, y, z.

	Returns

	.

	
string containerFindNext()

	Get more results from a previous call to containerFindFirst() .

	Returns

	The next object found, or an empty string if nothing else was found.

	
string containerRayCast(Point3F start, Point3F end, int mask, SceneObject pExempt, bool useClientContainer)

	Cast a ray from start to end, checking for collision against items matching mask. If pExempt is specified, then it is temporarily excluded from collision checks (For instance, you might want to exclude the player if said player was firing a weapon.)

	Parameters

	
	start – An XYZ vector containing the tail position of the ray.

	end – An XYZ vector containing the head position of the ray

	mask – A bitmask corresponding to the type of objects to check for

	pExempt – An optional ID for a single object that ignored for this raycast

	useClientContainer – Optionally indicates the search should be within the client container.

	Returns

	The distance between the start point and the position we hit.

	
float containerSearchCurrDist(bool useClientContainer)

	Get distance of the center of the current item from the center of the current initContainerRadiusSearch.

	Parameters

	useClientContainer – Optionally indicates the search should be within the client container.

	Returns

	distance from the center of the current object to the center of the search

	
float containerSearchCurrRadiusDist(bool useClientContainer)

	Get the distance of the closest point of the current item from the center of the current initContainerRadiusSearch.

	Parameters

	useClientContainer – Optionally indicates the search should be within the client container.

	Returns

	distance from the closest point of the current object to the center of the search

	
SceneObject containerSearchNext(bool useClientContainer)

	Get next item from a search started with initContainerRadiusSearch() or initContainerTypeSearch() .

	Parameters

	useClientContainer – Optionally indicates the search should be within the client container.

	Returns

	the next object found in the search, or null if no more

Example:

// print the names of all nearby ShapeBase derived objects
%position = %obj.getPosition;
%radius = 20;
%mask = $TypeMasks::ShapeBaseObjectType;
initContainerRadiusSearch(%position, %radius, %mask);
while ((%targetObject = containerSearchNext()) != 0)
{
 echo("Found: " @ %targetObject.getName());
}

	
bool containsBadWords(string text)

	Checks to see if text is a bad word. The text is considered to be a bad word if it has been added to the bad word filter.

	Parameters

	text – Text to scan for bad words

	Returns

	True if the text has bad word(s), false if it is clean

Example:

// In this game, "Foobar" is banned
%badWord = "Foobar";

// Add a banned word to the bad word filteraddBadWord(%badWord);

// Create the base string, can come from anywhere like user chat
%userText = "Foobar";

// Create a string of random letters
%replacementChars = "knqwrtlzs";

// If the text contains a bad word, filter it before printing
// Otherwise print the original text
if(containsBadWords(%userText))
{
 // Filter the string
 %filteredText = filterString(%userText, %replacementChars);

 // Print filtered text
 echo(%filteredText);
}
elseecho(%userText);

	
string filterString(string baseString, string replacementChars)

	Replaces the characters in a string with designated text. Uses the bad word filter to determine which characters within the string will be replaced.

	Parameters

	
	baseString – The original string to filter.

	replacementChars – A string containing letters you wish to swap in the baseString.

	Returns

	The new scrambled string

Example:

// Create the base string, can come from anywhere
%baseString = "Foobar";

// Create a string of random letters
%replacementChars = "knqwrtlzs";

// Filter the string
%newString = filterString(%baseString, %replacementChars);

// Print the new string to consoleecho(%newString);

	
String getOVRHMDChromaticAbCorrection(int index)

	Provides the OVR HMD chromatic aberration correction values.

	Parameters

	index – The HMD index.

	Returns

	A four component string with the chromatic aberration correction values.

	
int getOVRHMDCount()

	Get the number of HMD devices that are currently connected.

	Returns

	The number of Oculus VR HMD devices that are currently connected.

	
float getOVRHMDCurrentIPD(int index)

	Physical distance between the user’s eye centers.

	Parameters

	index – The HMD index.

	Returns

	The current IPD.

	
Point2I getOVRHMDDisplayDesktopPos(int index)

	Desktop coordinate position of the screen (can be negative; may not be present on all platforms).

	Parameters

	index – The HMD index.

	Returns

	Position of the screen.

	
int getOVRHMDDisplayDeviceId(int index)

	MacOS display ID.

	Parameters

	index – The HMD index.

	Returns

	The ID of the HMD display device, if any.

	
string getOVRHMDDisplayDeviceName(int index)

	Windows display device name used in EnumDisplaySettings/CreateDC.

	Parameters

	index – The HMD index.

	Returns

	The name of the HMD display device, if any.

	
String getOVRHMDDistortionCoefficients(int index)

	Provides the OVR HMD distortion coefficients.

	Parameters

	index – The HMD index.

	Returns

	A four component string with the distortion coefficients.

	
float getOVRHMDDistortionScale(int index)

	Provides the OVR HMD calculated distortion scale.

	Parameters

	index – The HMD index.

	Returns

	The calculated distortion scale.

	
Point2F getOVRHMDEyeXOffsets(int index)

	Provides the OVR HMD eye x offsets in uv coordinates.

	Parameters

	index – The HMD index.

	Returns

	A two component string with the left and right eye x offsets.

	
string getOVRHMDManufacturer(int index)

	Retrieves the HMD manufacturer name.

	Parameters

	index – The HMD index.

	Returns

	The manufacturer of the HMD product.

	
string getOVRHMDProductName(int index)

	Retrieves the HMD product name.

	Parameters

	index – The HMD index.

	Returns

	The name of the HMD product.

	
float getOVRHMDProfileIPD(int index)

	Physical distance between the user’s eye centers as defined by the current profile.

	Parameters

	index – The HMD index.

	Returns

	The profile IPD.

	
Point2I getOVRHMDResolution(int index)

	Provides the OVR HMD screen resolution.

	Parameters

	index – The HMD index.

	Returns

	A two component string with the screen’s resolution.

	
int getOVRHMDVersion(int index)

	Retrieves the HMD version number.

	Parameters

	index – The HMD index.

	Returns

	The version number of the HMD product.

	
float getOVRHMDXCenterOffset(int index)

	Provides the OVR HMD calculated XCenterOffset.

	Parameters

	index – The HMD index.

	Returns

	The calculated XCenterOffset.

	
float getOVRHMDYFOV(int index)

	Provides the OVR HMD calculated Y FOV.

	Parameters

	index – The HMD index.

	Returns

	The calculated Y FOV.

	
Point3F getOVRSensorAcceleration(int index)

	Get the acceleration values for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	The acceleration values of the Oculus VR sensor, in m/s^2.

	
Point3F getOVRSensorAngVelocity(int index)

	Get the angular velocity values for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	The angular velocity values of the Oculus VR sensor, in degrees/s.

	
int getOVRSensorCount()

	Get the number of sensor devices that are currently connected.

	Returns

	The number of Oculus VR sensor devices that are currently connected.

	
Point3F getOVRSensorEulerRotation(int index)

	Get the Euler rotation values for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	The Euler rotation values of the Oculus VR sensor, in degrees.

	
bool getOVRSensorGravityCorrection(int index)

	Get the gravity correction state for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	True if gravity correction (for pitch and roll) is active.

	
Point3F getOVRSensorMagnetometer(int index)

	Get the magnetometer reading (direction and field strength) for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	The magnetometer reading (direction and field strength) of the Oculus VR sensor, in Gauss.

	
bool getOVRSensorMagnetometerCalibrated(int index)

	Get the magnetometer calibrated data state for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	True if magnetometer calibration data is available.

	
float getOVRSensorPredictionTime(int index)

	Get the prediction time set for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	The prediction time of the Oculus VR sensor, given in seconds.

	
bool getOVRSensorYawCorrection(int index)

	Get the yaw correction state for the given sensor index.

	Parameters

	index – The sensor index.

	Returns

	True if yaw correction (using magnetometer calibration data) is active.

	
Point3F getRazerHydraControllerPos(int controller)

	Get the given Razer Hydra controller’s last position.

	Parameters

	controller – Controller number to check.

	Returns

	A Point3F containing the last known position.

	
AngAxisF getRazerHydraControllerRot(int controller)

	Get the given Razer Hydra controller’s last rotation.

	Parameters

	controller – Controller number to check.

	Returns

	A AngAxisF containing the last known rotation.

	
TransformF getRazerHydraControllerTransform(int controller)

	Get the given Razer Hydra controller’s last transform.

	Parameters

	controller – Controller number to check.

	Returns

	A TransformF containing the last known transform.

	
void initContainerRadiusSearch(Point3F pos, float radius, int mask, bool useClientContainer)

	Start a search for items at the given position and within the given radius, filtering by mask.

	Parameters

	
	pos – Center position for the search

	radius – Search radius

	mask – Bitmask of object types to include in the search

	useClientContainer – Optionally indicates the search should be within the client container.

	
void initContainerTypeSearch(int mask, bool useClientContainer)

	Start a search for all items of the types specified by the bitset mask.

	Parameters

	
	mask – Bitmask of object types to include in the search

	useClientContainer – Optionally indicates the search should be within the client container.

	
bool isLeapMotionActive()

	Used to determine if the Leap Motion input device is active. The Leap Motion input device is considered active when the support library has been loaded and the device has been found.

	Returns

	True if the Leap Motion input device is active.

	
bool isOculusVRDeviceActive()

	Used to determine if the Oculus VR input device is active. The Oculus VR device is considered active when the library has been initialized and either a real of simulated HMD is present.

	Returns

	True if the Oculus VR input device is active.

	
bool isOVRHMDSimulated(int index)

	Determines if the requested OVR HMD is simulated or real.

	Parameters

	index – The HMD index.

	Returns

	True if the HMD is simulated.

	
bool isRazerHydraActive()

	Used to determine if the Razer Hydra input device active. The Razer Hydra input device is considered active when the support library has been loaded and the controller has been found.

	Returns

	True if the Razer Hydra input device is active.

	
bool isRazerHydraControllerDocked(int controller)

	Used to determine if the given Razer Hydra controller is docked.

	Parameters

	controller – Controller number to check.

	Returns

	True if the given Razer Hydra controller is docked. Also returns true if the input device is not found or active.

	
void ovrResetAllSensors()

	Resets all Oculus VR sensors. This resets all sensor orientations such that their ‘normal’ rotation is defined when this function is called. This defines an HMD’s forwards and up direction, for example.

	
void resetFPSTracker()

	Reset FPS stats (fps::).

	
void sceneDumpZoneStates(bool updateFirst)

	Dump the current zoning states of all zone spaces in the scene to the console.

	Parameters

	updateFirst – If true, zoning states are brought up to date first; if false, the zoning states are dumped as is.

	
SceneObject sceneGetZoneOwner(int zoneId)

	Return the SceneObject that contains the given zone.

	Parameters

	zoneId – ID of zone.

	Returns

	is invalid.

	
void setAllSensorPredictionTime(float dt)

	Set the prediction time set for all sensors.

	Parameters

	dt – The prediction time to set given in seconds. Setting to 0 disables prediction.

	
bool setOVRHMDAsGameConnectionDisplayDevice(GameConnection conn)

	Sets the first HMD to be a GameConnection’s display device.

	Parameters

	conn – The GameConnection to set.

	Returns

	display device was set.

	
void setOVRHMDCurrentIPD(int index, float ipd)

	Set the physical distance between the user’s eye centers.

	Parameters

	
	index – The HMD index.

	ipd – The IPD to use.

	
void setOVRSensorGravityCorrection(int index, bool state)

	Set the gravity correction state for the given sensor index.

	Parameters

	
	index – The sensor index.

	state – The gravity correction state to change to.

	
void setOVRSensorYawCorrection(int index, bool state)

	Set the yaw correction state for the given sensor index.

	Parameters

	
	index – The sensor index.

	state – The yaw correction state to change to.

	
void setSensorPredictionTime(int index, float dt)

	Set the prediction time set for the given sensor index.

	Parameters

	
	index – The sensor index.

	dt – The prediction time to set given in seconds. Setting to 0 disables prediction.

	
bool spawnObject(class [, dataBlock, name, properties, script])

	Global function used for spawning any type of object. Note: This is separate from SpawnSphere::spawnObject() . This function is not called off any other class and uses different parameters than the SpawnSphere’s function. In the source, SpawnSphere::spawnObject() actually calls this function and passes its properties (spawnClass, spawnDatablock, etc).

	Parameters

	
	class – Mandatory field specifying the object class, such as Player or TSStatic.

	datablock – Field specifying the object’s datablock, optional for objects such as TSStatic, mandatory for game objects like Player.

	name – Optional field specifying a name for this instance of the object.

	properties – Optional set of parameters applied to the spawn object during creation.

	script – Optional command(s) to execute when spawning an object.

Example:

// Set the parameters for the spawn function
%objectClass = "Player";
%objectDatablock = "DefaultPlayerData";
%objectName = "PlayerName";
%additionalProperties = "health = \"0\";"; // Note the escape sequence \ in front of quotes
%spawnScript = "echo(\"Player Spawned\");"// Note the escape sequence \ in front of quotes// Spawn with the engines Sim::spawnObject() function
%player = spawnObject(%objectClass, %objectDatablock, %objectName, %additionalProperties, %spawnScript);

Variables

	
float $cameraFov

	The camera’s Field of View.

	
float $mvBackwardAction

	Backwards movement speed for the active player.

	
bool $mvDeviceIsKeyboardMouse

	Boolean state for it the system is using a keyboard and mouse or not.

	
float $mvDownAction

	Downwards movement speed for the active player.

	
float $mvForwardAction

	Forwards movement speed for the active player.

	
bool $mvFreeLook

	Boolean state for if freelook is active or not.

	
float $mvLeftAction

	Left movement speed for the active player.

	
float $mvPitch

	Current pitch value, typically applied through input devices, such as a mouse.

	
float $mvPitchDownSpeed

	Downwards pitch speed.

	
float $mvPitchUpSpeed

	Upwards pitch speed.

	
float $mvRightAction

	Right movement speed for the active player.

	
float $mvRoll

	Current roll value, typically applied through input devices, such as a mouse.

	
float $mvRollLeftSpeed

	Left roll speed.

	
float $mvRollRightSpeed

	Right roll speed.

	
int $mvTriggerCount0

	Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons firing.

	
int $mvTriggerCount1

	Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons firing.

	
int $mvTriggerCount2

	Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons firing.

	
int $mvTriggerCount3

	Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons firing.

	
int $mvTriggerCount4

	Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons firing.

	
int $mvTriggerCount5

	Used to determine the trigger counts of buttons. Namely used for input actions such as jumping and weapons firing.

	
float $mvUpAction

	Upwards movement speed for the active player.

	
float $mvXAxis_L

	Left thumbstick X axis position on a dual-analog gamepad.

	
float $mvXAxis_R

	Right thumbstick X axis position on a dual-analog gamepad.

	
float $mvYaw

	Current yaw value, typically applied through input devices, such as a mouse.

	
float $mvYawLeftSpeed

	Left Yaw speed.

	
float $mvYawRightSpeed

	Right Yaw speed.

	
float $mvYAxis_L

	Left thumbstick Y axis position on a dual-analog gamepad.

	
float $mvYAxis_R

	Right thumbstick Y axis position on a dual-analog gamepad.

	
int $Ease::Back

	Backwards ease for curve movement.

	
int $Ease::Bounce

	Bounce ease for curve movement.

	
int $Ease::Circular

	Circular ease for curve movement.

	
bool $RazerHydra::CombinedPositionEvents

	If true, one position event will be sent that includes one component per argument.

	
int $Ease::Cubic

	Cubic ease for curve movement.

	
float $pref::Camera::distanceScale

	A scale to apply to the normal visible distance, typically used for tuning performance.

	
int $Ease::Elastic

	Elastic ease for curve movement.

	
bool $pref::enableBadWordFilter

	If true, the bad word filter will be enabled.

	
bool $pref::LeapMotion::EnableDevice

	If true, the Leap Motion device will be enabled, if present.

	
bool $pref::OculusVR::EnableDevice

	If true, the Oculus VR device will be enabled, if present.

	
bool $pref::RazerHydra::EnableDevice

	If true, the Razer Hydra device will be enabled, if present.

	
bool $pref::enablePostEffects

	If true, post effects will be eanbled.

	
int $Ease::Exponential

	Exponential ease for curve movement.

	
bool $OculusVR::GenerateAngleAxisRotationEvents

	If true, broadcast sensor rotation events as angled axis.

	
bool $OculusVR::GenerateEulerRotationEvents

	If true, broadcast sensor rotation events as Euler angles about the X, Y and Z axis.

	
bool $LeapMotion::GenerateIndividualEvents

	Indicates that events for each hand and pointable will be created.

	
bool $OculusVR::GenerateRotationAsAxisEvents

	If true, broadcast sensor rotation as axis events.

	
bool $OculusVR::GenerateSensorRawEvents

	If ture, broadcast sensor raw data: acceleration, angular velocity, magnetometer reading.

	
bool $LeapMotion::GenerateSingleHandRotationAsAxisEvents

	If true, broadcast single hand rotation as axis events.

	
bool $LeapMotion::GenerateWholeFrameEvents

	Indicates that a whole frame event should be generated and frames should be buffered.

	
bool $OculusVR::GenerateWholeFrameEvents

	Indicates that a whole frame event should be generated and frames should be buffered.

	
bool $RazerHydra::GenerateWholeFrameEvents

	Indicates that a whole frame event should be generated and frames should be buffered.

	
int $Ease::In

	In ease for curve movement.

	
int $Ease::InOut

	InOut ease for curve movement.

	
bool $pref::Input::JoystickEnabled

	If true, the joystick is currently enabled.

	
bool $LeapMotion::KeepHandIndexPersistent

	Indicates that we track hand IDs and will ensure that the same hand will remain at the same index between frames.

	
bool $LeapMotion::KeepPointableIndexPersistent

	Indicates that we track pointable IDs and will ensure that the same pointable will remain at the same index between frames.

	
int $Ease::Linear

	Linear ease for curve movement.

	
float $OculusVR::MaximumAxisAngle

	The maximum sensor angle when used as an axis event as measured from a vector pointing straight up (in degrees). Should range from 0 to 90 degrees.

	
float $RazerHydra::MaximumAxisAngle

	The maximum controller angle when used as an axis event as measured from a vector pointing straight up (in degrees). Shoud range from 0 to 90 degrees.

	
int $LeapMotion::MaximumFramesStored

	The maximum number of frames to keep when $LeapMotion::GenerateWholeFrameEvents is true.

	
int $RazerHydra::MaximumFramesStored

	The maximum number of frames to keep when $RazerHydra::GenerateWholeFrameEvents is true.

	
float $LeapMotion::MaximumHandAxisAngle

	The maximum hand angle when used as an axis event as measured from a vector pointing straight up (in degrees). Shoud range from 0 to 90 degrees.

	
int $Ease::Out

	Out ease for curve movement.

	
bool $RazerHydra::ProcessWhenDocked

	If true, events will still be sent when a controller is docked.

	
int $Ease::Quadratic

	Quadratic ease for curve movement.

	
int $Ease::Quartic

	Quartic ease for curve movement.

	
int $Ease::Quintic

	Quintic ease for curve movement.

	
bool $RazerHydra::RotationAsAxisEvents

	If true, broadcast controller rotation as axis events.

	
bool $RazerHydra::SeparatePositionEvents

	If true, separate position events will be sent for each component.

	
int $Ease::Sinusoidal

	Sinusoidal ease for curve movement.

	
bool $pref::OculusVR::UseChromaticAberrationCorrection

	If true, Use the chromatic aberration correction version of the Oculus VR barrel distortion shader.

AI

Classes and functions related to artificial intelligence for Torque 3D.

Classes

	AIClient

	AIConnection

	AIPlayer

	NavMesh

	NavPath

Functions

	
int aiConnect(...)

	Creates a new AIConnection , and passes arguments to its onConnect script callback.

	Returns

	AIConnection

Decals

Decals are non-SimObject derived objects that are stored and loaded separately from the normal mission file.

The DecalManager handles all aspects of decal management including loading, creation, saving, and automatically deleting decals that have exceeded their lifeSpan.

The static decals associated with a mission are normally loaded immediately after the mission itself has loaded as shown below.

Example:

// Load the static mission decals.
decalManagerLoad(%missionName @ ".decals");

Classes

	DecalData

	DecalManager

Functions

	
int decalManagerAddDecal(Point3F position, Point3F normal, float rot, float scale, DecalData decalData, bool isImmortal)

	Adds a new decal to the decal manager.

	Parameters

	
	position – World position for the decal.

	normal – Decal normal vector (if the decal was a tire lying flat on a surface, this is the vector pointing in the direction of the axle).

	rot – Angle (in radians) to rotate this decal around its normal vector.

	scale – Scale factor applied to the decal.

	decalData – DecalData datablock to use for the new decal.

	isImmortal – Whether or not this decal is immortal. If immortal, it does not expire automatically and must be removed explicitly.

	Returns

	Returns the ID of the new Decal object or -1 on failure.

Example:

// Specify the decal position
%position = "1.0 1.0 1.0";

// Specify the up vector
%normal = "0.0 0.0 1.0";

// Add the new decal.
%decalObj = decalManagerAddDecal(%position, %normal, 0.5, 0.35, ScorchBigDecal, false);

	
void decalManagerClear()

	Removes all decals currently loaded in the decal manager.

Example:

// Tell the decal manager to remove all existing decals.decalManagerClear();

	
bool decalManagerDirty()

	Returns whether the decal manager has unsaved modifications.

	Returns

	True if the decal manager has unsaved modifications, false if everything has been saved.

Example:

// Ask the decal manager if it has unsaved modifications.
%hasUnsavedModifications = decalManagerDirty();

	
bool decalManagerLoad(string fileName)

	Clears existing decals and replaces them with decals loaded from the specified file.

	Parameters

	fileName – Filename to load the decals from.

	Returns

	True if the decal manager was able to load the requested file, false if it could not.

Example:

// Set the filename to load the decals from.
%fileName = "./missionDecals.mis.decals";
// Inform the decal manager to load the decals from the entered filename.decalManagerLoad(%fileName);

	
bool decalManagerRemoveDecal(int decalID)

	Remove specified decal from the scene.

	Parameters

	decalID – ID of the decal to remove.

	Returns

	Returns true if successful, false if decal ID not found.

Example:

// Specify a decal ID to be removed
%decalID = 1;

// Tell the decal manager to remove the specified decal ID.
decalManagerRemoveDecal(%decalId)

	
void decalManagerSave(String decalSaveFile)

	Saves the decals for the active mission in the entered filename.

	Parameters

	decalSaveFile – Filename to save the decals to.

Example:

// Set the filename to save the decals in. If no filename is set, then the
// decals will default to <activeMissionName>.mis.decals
%fileName = "./missionDecals.mis.decals";
// Inform the decal manager to save the decals for the active mission.
decalManagerSave(%fileName);

Variables

	
bool $Decals::debugRender

	If true, the decal spheres will be visualized when in the editor.

	
bool $pref::Decals::enabled

	Controls whether decals are rendered.

	
float $pref::Decals::lifeTimeScale

	Lifetime that decals will last after being created in the world. Deprecated. Use DecalData::lifeSpan instead.

	
bool $Decals::poolBuffers

	If true, will merge all PrimitiveBuffers and VertexBuffers into a pair of pools before clearing them at the end of a frame. If false, will just clear them at the end of a frame.

	
float $Decals::sphereDistanceTolerance

	The distance at which the decal system will start breaking up decal spheres when adding new decals.

	
float $Decals::sphereRadiusTolerance

	The radius beyond which the decal system will start breaking up decal spheres when adding new decals.

Special Effects

Classes responsible for special effect objects, such as Explosion, Debris, Particles, etc.

Classes

	Debris

	DebrisData

	DecalData

	DecalManager

	Explosion

	ExplosionData

	ForestWindEmitter

	LightAnimData

	Lightning

	LightningData

	LightningStrikeEvent

	ParticleData

	ParticleEmitter

	ParticleEmitterData

	ParticleEmitterNode

	ParticleEmitterNodeData

	Precipitation

	PrecipitationData

	Splash

	SplashData

Enumeration

	
enum ParticleBlendStyle

	The type of visual blending style to apply to the particles.

	Parameters

	
	NORMAL – No blending style.

	ADDITIVE – Adds the color of the pixel to the frame buffer with full alpha for each pixel.

	SUBTRACTIVE – Subtractive Blending. Reverses the color model, causing dark colors to have a stronger visual effect.

	PREMULTALPHA – Color blends with the colors of the imagemap rather than the alpha.

Functions

	
float calcExplosionCoverage(Point3F pos, int id, int covMask)

	Calculates how much an explosion effects a specific object. Use this to determine how much damage to apply to objects based on their distance from the explosion’s center point, and whether the explosion is blocked by other objects.

	Parameters

	
	pos – Center position of the explosion.

	id – Id of the object of which to check coverage.

	covMask – Mask of object types that may block the explosion.

	Returns

	Coverage value from 0 (not affected by the explosion) to 1 (fully affected)

Example:

// Get the position of the explosion.
%position = %explosion.getPosition();

// Set a list of TypeMasks (defined in gameFunctioncs.cpp), seperated by the | character.
%TypeMasks = $TypeMasks::StaticObjectType | $TypeMasks::ItemObjectType

// Acquire the damage value from 0.0f - 1.0f.
%coverage = calcExplosionCoverage(%position, %sceneObject, %TypeMasks);

// Apply damage to object
%sceneObject.applyDamage(%coverage * 20);

Objects

Objects which can be controlled or directly interact with a user, such as Player, Projectile, Item, etc. Does not include vehicles as they have their own section.

Classes

	AIPlayer

	AITurretShape

	AITurretShapeData

	GameBase

	GameBaseData

	Item

	ItemData

	Player

	PlayerData

	Projectile

	ProjectileData

	ProximityMine

	ProximityMineData

	SceneObject

	ShapeBase

	ShapeBaseData

	ShapeBaseImageData

	SpawnSphere

	StaticShape

	StaticShapeData

	Trigger

	TriggerData

	TSShapeConstructor

	TSStatic

	TurretShape

	TurretShapeData

Enumeration

	
enum ItemLightType

	The type of light the Item has.

	Parameters

	
	NoLight – The item has no light attached.

	ConstantLight – The item has a constantly emitting light attached.

	PulsingLight – The item has a pulsing light attached.

	
enum PlayerPose

	The pose of the Player .

	Parameters

	
	Stand – Standard movement pose.

	Sprint – Sprinting pose.

	Crouch – Crouch pose.

	Prone – Prone pose.

	Swim – Swimming pose.

	
enum ShapeBaseImageLightType

	The type of light to attach to this ShapeBaseImage.

	Parameters

	
	NoLight – No light is attached.

	ConstantLight – A constant emitting light is attached.

	SpotLight – A spotlight is attached.

	PulsingLight – A pusling light is attached.

	WeaponFireLight – Light emits when the weapon is fired, then dissipates.

	
enum ShapeBaseImageLoadedState

	The loaded state of this ShapeBaseImage.

	Parameters

	
	Ignore – Ignore the loaded state.

	Loaded – ShapeBaseImage is loaded.

	Empty – ShapeBaseImage is not loaded.

	
enum ShapeBaseImageRecoilState

	What kind of recoil this ShapeBaseImage should emit when fired.

	Parameters

	
	NoRecoil – No recoil occurs.

	LightRecoil – A light recoil occurs.

	MediumRecoil – A medium recoil occurs.

	HeavyRecoil – A heavy recoil occurs.

	
enum ShapeBaseImageSpinState

	How the spin animation should be played.

	Parameters

	
	Ignore – No changes to the spin sequence.

	Stop – Stops the spin sequence at its current position.

	SpinUp – Increase spin sequence timeScale from 0 (on state entry) to 1 (after stateTimeoutValue seconds).

	SpinDown – Decrease spin sequence timeScale from 1 (on state entry) to 0 (after stateTimeoutValue seconds).

	FullSpeed – Resume the spin sequence playback at its current position with timeScale = 1.

	
enum TSMeshType

	Type of mesh data available in a shape.

	Parameters

	
	None – No mesh data.

	Bounds – Bounding box of the shape.

	Mesh – Specifically desingated “collision” meshes.

	Mesh – Rendered mesh polygons.

	
enum TurretShapeFireLinkType

	How the weapons are linked to triggers for this TurretShape .

	Parameters

	
	FireTogether – All weapons fire under trigger 0.

	GroupedFire – Weapon mounts 0,2 fire under trigger 0, mounts 1,3 fire under trigger 1.

	IndividualFire – Each weapon mount fires under its own trigger 0-3.

Variables

	
float $SB::CloakSpeed

	Time to cloak, in seconds.

	
float $SB::DFDec

	Speed to reduce the damage flash effect per tick.

	
float $SB::FullCorrectionDistance

	Distance at which a weapon’s muzzle vector is fully corrected to match where the player is looking. When a weapon image has correctMuzzleVector set and the Player is in 1st person, the muzzle vector from the weapon is modified to match where the player is looking. Beyond the FullCorrectionDistance the muzzle vector is always corrected. Between FullCorrectionDistance and the player, the weapon’s muzzle vector is adjusted so that the closer the aim point is to the player, the closer the muzzle vector is to the true (non-corrected) one.

	
bool Trigger::renderTriggers[static, inherited]

	Forces all Trigger’s to render. Used by the Tools and debug render modes.

	
float $SB::WODec

	Speed to reduce the whiteout effect per tick.

Physics

Objects and functions related to Torque 3D’s physics layer.

Classes

	PhysicsDebris

	PhysicsDebrisData

	PhysicsForce

	PhysicsShape

	PhysicsShapeData

	PxCloth

	PxMaterial

	PxMultiActor

	PxMultiActorData

	RadialImpulseEvent

	RigidShape

	RigidShapeData

Enumeration

	
enum PhysicsSimType

	How to handle the physics simulation with the client’s and server.

	Parameters

	
	ClientOnly – Only handle physics on the client.

	ServerOnly – Only handle physics on the server.

	ClientServer – Handle physics on both the client and server.

Variables

	
bool $PhysXLogWarnings

	Output PhysX warnings to the console.

	
bool $Physics::isSinglePlayer

	Informs the physics simulation if only a single player exists. If true, optimizations will be implemented to better cater to a single player environmnent.

	
bool physicsPluginPresent

	Returns true if a physics plugin exists and is initialized. physicsPluginPresent()

	
int $pref::Physics::threadCount

	Number of threads to use in a single pass of the physics engine. Defaults to 2 if not set.

Vehicles

This section is dedicated to vehicle game objects, such as the base Vehicle class, WheeledVehicle, FlyingVehicle, and so on.

Classes

	FlyingVehicle

	FlyingVehicleData

	HoverVehicle

	HoverVehicleData

	Vehicle

	VehicleData

	WheeledVehicle

	WheeledVehicleData

	WheeledVehicleSpring

	WheeledVehicleTire

GFX

The low level graphics interface to the engine.

Classes

	CubemapData

	DebugDrawer

	GFXCardProfiler

	GFXCardProfilerAPI

	GFXInit

	GFXSamplerStateData

	GFXStateBlockData

	Material

	PfxVis

	RenderFormatToken

Description

In Torque the GFX layer provides access to abstracted low level graphics concepts. From script you have limited access to graphics rendering as it is usually too slow to do individual draw calls thru the scripting interface. For drawing its usually better to use the higher level gameplay objects.

Note

Detailed technical descriptions of when to use specific GFXStateBlockData fields, how GFXBlendOp works, or other interfaces of that nature are outside the scope of this manual. Since Torque is based on DirectX and OpenGL any reference documents for those APIs will provide the background needed to learn about rendering.

Enumeration

	
enum GFXAdapterType

	Back-end graphics API used by the GFX subsystem.

	Parameters

	
	OpenGL – OpenGL.

	D3D8 – Direct3D 8.

	D3D9 – Direct3D 9.

	NullDevice – Null device for dedicated servers.

	Xenon – Direct3D 9 on Xbox 360.

	
enum GFXBlend

	The supported blend modes.

	Parameters

	
	GFXBlendZero – (0, 0, 0, 0)

	GFXBlendOne – (1, 1, 1, 1)

	GFXBlendSrcColor – (Rs, Gs, Bs, As)

	GFXBlendInvSrcColor – (1 - Rs, 1 - Gs, 1 - Bs, 1 - As)

	GFXBlendSrcAlpha – (As, As, As, As)

	GFXBlendInvSrcAlpha – (1 - As, 1 - As, 1 - As, 1 - As)

	GFXBlendDestAlpha – (Ad Ad Ad Ad)

	GFXBlendInvDestAlpha – (1 - Ad 1 - Ad 1 - Ad 1 - Ad)

	GFXBlendDestColor – (Rd, Gd, Bd, Ad)

	GFXBlendInvDestColor – (1 - Rd, 1 - Gd, 1 - Bd, 1 - Ad)

	GFXBlendSrcAlphaSat – (f, f, f, 1) where f = min(As, 1 - Ad)

	
enum GFXBlendOp

	The blend operators.

	Parameters

	
	GFXBlendOpAdd –

	GFXBlendOpSubtract –

	GFXBlendOpRevSubtract –

	GFXBlendOpMin –

	GFXBlendOpMax –

	
enum GFXCmpFunc

	The supported comparison functions.

	Parameters

	
	GFXCmpNever –

	GFXCmpLess –

	GFXCmpEqual –

	GFXCmpLessEqual –

	GFXCmpGreater –

	GFXCmpNotEqual –

	GFXCmpGreaterEqual –

	GFXCmpAlways –

	
enum GFXCullMode

	The render cull modes.

	Parameters

	
	GFXCullNone –

	GFXCullCW –

	GFXCullCCW –

	
enum GFXFormat

	The texture formats.

	Parameters

	
	GFXFormatR8G8B8 –

	GFXFormatR8G8B8A8 –

	GFXFormatR8G8B8X8 –

	GFXFormatR32F –

	GFXFormatR5G6B5 –

	GFXFormatR5G5B5A1 –

	GFXFormatR5G5B5X1 –

	GFXFormatA4L4 –

	GFXFormatA8L8 –

	GFXFormatA8 –

	GFXFormatL8 –

	GFXFormatDXT1 –

	GFXFormatDXT2 –

	GFXFormatDXT3 –

	GFXFormatDXT4 –

	GFXFormatDXT5 –

	GFXFormatD32 –

	GFXFormatD24X8 –

	GFXFormatD24S8 –

	GFXFormatD24FS8 –

	GFXFormatD16 –

	GFXFormatR32G32B32A32F –

	GFXFormatR16G16B16A16F –

	GFXFormatL16 –

	GFXFormatR16G16B16A16 –

	GFXFormatR16G16 –

	GFXFormatR16F –

	GFXFormatR16G16F –

	GFXFormatR10G10B10A2 –

	
enum GFXStencilOp

	The stencil operators.

	Parameters

	
	GFXStencilOpKeep –

	GFXStencilOpZero –

	GFXStencilOpReplace –

	GFXStencilOpIncrSat –

	GFXStencilOpDecrSat –

	GFXStencilOpInvert –

	GFXStencilOpIncr –

	GFXStencilOpDecr –

	
enum GFXTextureAddressMode

	The texture address modes.

	Parameters

	
	GFXAddressWrap –

	GFXAddressMirror –

	GFXAddressClamp –

	GFXAddressBorder –

	GFXAddressMirrorOnce –

	
enum GFXTextureArgument

	The texture arguments.

	Parameters

	
	GFXTADiffuse –

	GFXTACurrent –

	GFXTATexture –

	GFXTATFactor –

	GFXTASpecular –

	GFXTATemp –

	GFXTAConstant –

	OneMinus –

	AlphaReplicate –

	
enum GFXTextureFilterType

	The texture filter types.

	Parameters

	
	GFXTextureFilterNone –

	GFXTextureFilterPoint –

	GFXTextureFilterLinear –

	GFXTextureFilterAnisotropic –

	GFXTextureFilterPyramidalQuad –

	GFXTextureFilterGaussianQuad –

	
enum GFXTextureOp

	The texture operators.

	Parameters

	
	GFXTOPDisable –

	GFXTOPSelectARG1 –

	GFXTOPSelectARG2 –

	GFXTOPModulate –

	GFXTOPModulate2X –

	GFXTOPModulate4X –

	GFXTOPAdd –

	GFXTOPAddSigned –

	GFXTOPAddSigned2X –

	GFXTOPSubtract –

	GFXTOPAddSmooth –

	GFXTOPBlendDiffuseAlpha –

	GFXTOPBlendTextureAlpha –

	GFXTOPBlendFactorAlpha –

	GFXTOPBlendTextureAlphaPM –

	GFXTOPBlendCURRENTALPHA –

	GFXTOPPreModulate –

	GFXTOPModulateAlphaAddColor –

	GFXTOPModulateColorAddAlpha –

	GFXTOPModulateInvAlphaAddColor –

	GFXTOPModulateInvColorAddAlpha –

	GFXTOPBumpEnvMap –

	GFXTOPBumpEnvMapLuminance –

	GFXTOPDotProduct3 –

	GFXTOPLERP –

	
enum GFXTextureTransformFlags

	The texture transform state flags.

	Parameters

	
	GFXTTFDisable –

	GFXTTFFCoord1D –

	GFXTTFFCoord2D –

	GFXTTFFCoord3D –

	GFXTTFFCoord4D –

	GFXTTFProjected –

	
enum MaterialAnimType

	The type of animation effect to apply to this material.

	Parameters

	
	Scroll – Scroll the material along the X/Y axis.

	Rotate – Rotate the material around a point.

	Wave – Warps the material with an animation using Sin, Triangle or Square mathematics.

	Scale – Scales the material larger and smaller with a pulsing effect.

	Sequence – Enables the material to have multiple frames of animation in its imagemap.

	
enum MaterialBlendOp

	The type of graphical blending operation to apply to this material.

	Parameters

	
	None – Disable blending for this material.

	Mul – Multiplicative blending.

	Add – Adds the color of the material to the frame buffer with full alpha for each pixel.

	AddAlpha – The color is modulated by the alpha channel before being added to the frame buffer.

	Sub – Subtractive Blending. Reverses the color model, causing dark colors to have a stronger visual effect.

	LerpAlpha – Linearly interpolates between Material color and frame buffer color based on alpha.

	
enum MaterialWaveType

	When using the Wave material animation, one of these Wave Types will be used to determine the type of wave to display.

	Parameters

	
	Sin – Warps the material along a curved Sin Wave.

	Triangle – Warps the material along a sharp Triangle Wave.

	Square – Warps the material along a wave which transitions between two oppposite states. As a Square Wave, the transition is quick and sudden.

Functions

	
void cleanupTexturePool()

	Release the unused pooled textures in texture manager freeing up video memory.

	
void clearGFXResourceFlags()

	Clears the flagged state on all allocated GFX resources. See flagCurrentGFXResources for usage details.

	
void describeGFXResources(string resourceTypes, string filePath, bool unflaggedOnly)

	Dumps a description of GFX resources to a file or the console.

	texture

	texture target

	window target

	vertex buffers

	primitive buffers

	fences

	cubemaps

	shaders

	stateblocks

	Parameters

	
	resourceTypes – A space seperated list of resource types or an empty string for all resources.

	filePath – A file to dump the list to or an empty string to write to the console.

	unflaggedOnly – If true only unflagged resources are dumped. See flagCurrentGFXResources.

	
void describeGFXStateBlocks(string filePath)

	Dumps a description of all state blocks.

	Parameters

	filePath – A file to dump the state blocks to or an empty string to write to the console.

	
void dumpRandomNormalMap()

	Creates a 64x64 normal map texture filled with noise. The texture is saved to randNormTex.png in the location of the game executable.

	
void dumpTextureObjects()

	Dumps a list of all active texture objects to the console.

	
void flagCurrentGFXResources()

	Flags all currently allocated GFX resources. Used for resource allocation and leak tracking by flagging current resources then dumping a list of unflagged resources at some later point in execution.

	
void flushTextureCache()

	Releases all textures and resurrects the texture manager.

	
static int GFXInit::getAdapterCount()

	Return the number of graphics adapters available.

	
GFXFormat getBestHDRFormat()

	Returns the best texture format for storage of HDR data for the active device.

	
Point3F getDesktopResolution()

	Returns the width, height, and bitdepth of the screen/desktop.

	
string getDisplayDeviceInformation()

	Get the string describing the active GFX device.

	
String getDisplayDeviceList()

	Returns a tab-seperated string of the detected devices across all adapters.

	
float getPixelShaderVersion()

	Returns the pixel shader version for the active device.

	
String getTextureProfileStats()

	Returns a list of texture profiles in the format: ProfileName TextureCount TextureMB.

	
void listGFXResources(bool unflaggedOnly)

	Returns a list of the unflagged GFX resources. See flagCurrentGFXResources for usage details.

	
void reloadTextures()

	Reload all the textures from disk.

	
void screenShot(string file, string format, int tileCount, float tileOverlap)

	Takes a screenshot with optional tiling to produce huge screenshots.

	Parameters

	
	file – The output image file path.

	format – Either JPEG or PNG.

	tileCount – If greater than 1 will tile the current screen size to take a large format screenshot.

	tileOverlap – The amount of horizontal and vertical overlap between the tiles used to remove tile edge artifacts from post effects.

	
void setPixelShaderVersion(float version)

	Sets the pixel shader version for the active device. This can be used to force a lower pixel shader version than is supported by the device for testing or performance optimization.

	Parameters

	version – The floating point shader version number.

	
void setReflectFormat(GFXFormat format)

	Set the reflection texture format.

Variables

	
bool $gfx::disableOcclusionQuery

	Debug helper that disables all hardware occlusion queries causing them to return only the visibile state.

	
bool $pref::Video::disableVerticalSync

	Disables vertical sync on the active device.

	
bool $gfx::disassembleAllShaders

	On supported devices this will dump shader disassembly to the procedural shader folder.

	
float $pref::Video::forcedPixVersion

	Will force the shader model if the value is positive and less than the shader model supported by the active device. Use 0 for fixed function.

	
string $pref::Video::missingTexturePath

	The file path of the texture to display when the requested texture is missing.

	
int $pref::Video::textureReductionLevel

	The number of mipmap levels to drop on loaded textures to reduce video memory usage. It will skip any textures that have been defined as not allowing down scaling.

	
string $pref::Video::unavailableTexturePath

	The file path of the texture to display when the requested texture is unavailable. Often this texture is used by GUI controls to indicate that the request image is unavailable.

	
string $pref::Video::warningTexturePath

	The file path of the texture used to warn the developer.

	
bool $gfx::wireframe

	Used to toggle wireframe rendering at runtime.

3D Controls

Controls to render 3D elements.

Classes

	GameTSCtrl

	GuiObjectView

	GuiTSCtrl

Enumeration

	
enum GuiTSRenderStyles

	Style of rendering for a GuiTSCtrl .

	Parameters

	
	standard –

	side –

Button Controls

A collection of various buttons (push buttons, radio buttons, check boxes, etc).

Classes

	GuiBitmapButtonCtrl

	GuiBitmapButtonTextCtrl

	GuiBorderButtonCtrl

	GuiButtonBaseCtrl

	GuiButtonCtrl

	GuiCheckBoxCtrl

	GuiRadioCtrl

	GuiSwatchButtonCtrl

Enumeration

	
enum GuiButtonType

	Type of button control.

	Parameters

	
	PushButton – A button that triggers an action when clicked.

	ToggleButton – A button that is toggled between on and off state.

	RadioButton – A button placed in groups for presenting choices.

Container Controls

A collection of various containers (container, window, scroll, etc).

Classes

	GuiAutoScrollCtrl

	GuiContainer

	GuiControlArrayControl

	GuiDynamicCtrlArrayControl

	GuiFrameSetCtrl

	GuiPaneControl

	GuiPanel

	GuiRolloutCtrl

	GuiScrollCtrl

	GuiSpeedometerHud

	GuiSplitContainer

	GuiStackControl

	GuiTabBookCtrl

	GuiTabPageCtrl

	GuiTreeViewCtrl

	GuiWindowCtrl

Enumeration

	
enum GuiAutoScrollDirection

	Direction in which to scroll the child control.

	Parameters

	
	Up – Scroll from bottom towards top.

	Down – Scroll from top towards bottom.

	Left – Scroll from right towards left.

	Right – Scroll from left towards right.

	
enum GuiDockingType

	
	Parameters

	
	None –

	Client –

	Top –

	Bottom –

	Left –

	Right –

	
enum GuiFrameState

	
	Parameters

	
	alwaysOn –

	alwaysOff –

	dynamic –

	
enum GuiHorizontalStackingType

	Determines how child controls are stacked horizontally.

	Parameters

	
	Right – Child controls are positioned in order from left to right (left-most control is first).

	Left – Child controls are positioned in order from right to left (right-most control is first).

	
enum GuiScrollBarBehavior

	Display behavior of a scroll bar. Determines when a scrollbar will be visible.

	Parameters

	
	alwaysOn – Always visible.

	alwaysOff – Never visible.

	dynamic – Only visible when actually needed, i.e. when the child control(s) exceed the visible space on the given axis.

	
enum GuiSplitFixedPanel

	Which side of the splitter to keep at a fixed size (if any).

	Parameters

	
	None – Allow both childs to resize (default).

	FirstPanel – Keep.

	SecondPanel –

	
enum GuiSplitOrientation

	Axis along which to divide the container’s space.

	Parameters

	
	Vertical – Divide vertically placing one child left and one child right.

	Horizontal – Divide horizontally placing one child on top and one child below.

	
enum GuiStackingType

	Stacking method used to position child controls.

	Parameters

	
	Vertical – Stack children vertically by setting their Y position.

	Horizontal – Stack children horizontall by setting their X position.

	Dynamic – Automatically switch between Vertical and Horizontal stacking. Vertical stacking is chosen when the stack control is taller than it is wide, horizontal stacking is chosen when the stack control is wider than it is tall.

	
enum GuiTabPosition

	Where the control should put the tab headers for selecting individual pages.

	Parameters

	
	Top – Tab headers on top edge.

	Bottom – Tab headers on bottom edge.

	
enum GuiVerticalStackingType

	Determines how child controls are stacked vertically.

	Parameters

	
	Bottom – Child controls are positioned in order from top to bottom (top-most control is first).

	Top – Child controls are positioned in order from bottom to top (bottom-most control is first).

General Controls

A collection of general controls (bitmap, text, popup, etc).

Classes

	GuiBitmapCtrl

	GuiBubbleTextCtrl

	GuiDirectoryFileListCtrl

	GuiMLTextEditCtrl

	GuiPopUpMenuCtrl

	GuiPopUpMenuCtrlEx

	GuiSeparatorCtrl

	GuiTextEditCtrl

	GuiTextListCtrl

	GuiArrayCtrl

Enumeration

	
enum GuiSeparatorType

	GuiSeparatorCtrl orientations.

	Parameters

	
	Vertical –

	Horizontal –

Core Controls

Core parts of the Gui System.

Classes

	GuiCanvas

	GuiConsole

	GuiConsoleEditCtrl

	GuiControl

	GuiControlProfile

	GuiCursor

	GuiFadeinBitmapCtrl

	GuiIconButtonCtrl

	GuiListBoxCtrl

	GuiMenuBar

	GuiMLTextCtrl

	GuiMouseEventCtrl

	GuiTextCtrl

	GuiTextEditSliderBitmapCtrl

	GuiTextEditSliderCtrl

Enumeration

	
enum GuiAlignmentType

	
	Parameters

	
	Left –

	Center –

	Right –

	Top –

	Bottom –

	
enum GuiFontCharset

	
	Parameters

	
	ANSI –

	SYMBOL –

	SHIFTJIS –

	HANGEUL –

	HANGUL –

	GB2312 –

	CHINESEBIG5 –

	OEM –

	JOHAB –

	HEBREW –

	ARABIC –

	GREEK –

	TURKISH –

	VIETNAMESE –

	THAI –

	EASTEUROPE –

	RUSSIAN –

	MAC –

	BALTIC –

	
enum GuiHorizontalSizing

	Horizontal sizing behavior of a GuiControl .

	Parameters

	
	right –

	width –

	left –

	center –

	relative –

	windowRelative –

	
enum GuiVerticalSizing

	Vertical sizing behavior of a GuiControl .

	Parameters

	
	bottom –

	height –

	top –

	center –

	relative –

	windowRelative –

Functions

	
bool excludeOtherInstance(string appIdentifer)

	Used to exclude/prevent all other instances using the same identifier specified.

	Parameters

	appIdentifier – Name of the app set up for exclusive use.

	Returns

	False if another app is running that specified the same appIdentifier

	
string StripMLControlChars(string inString)

	Strip TorqueML control characters from the specified string, returning a ‘clean’ version.

	Parameters

	inString – String to strip TorqueML control characters from.

	Returns

	Version of the inputted string with all TorqueML characters removed.

Example:

// Define the string to strip TorqueML control characters from
%string = "<font:Arial:24>How Now <color:c43c12>Brown <color:000000>Cow";

// Request the stripped version of the string
%strippedString = StripMLControlChars(%string);

Variables

	
GuiControl $ThisControl

	The control for which a command is currently being evaluated. Only set during ‘command’ and altCommand callbacks to the control for which the command or altCommand is invoked.

Game Controls

GUI controls dedicated to game play systems, such as heads up displays.

Classes

	GuiClockHud

	GuiCrossHairHud

	GuiGameListMenuCtrl

	GuiGameListMenuProfile

	GuiGameListOptionsCtrl

	GuiGameListOptionsProfile

	GuiHealthBarHud

	GuiHealthTextHud

	GuiShapeNameHud

Functions

	
void snapToggle()

	Prevents mouse movement from being processed. In the source, whenever a mouse move event occurs GameTSCtrl::onMouseMove() is called. Whenever snapToggle() is called, it will flag a variable that can prevent this from happening: gSnapLine. This variable is not exposed to script, so you need to call this function to trigger it.

Example:

// Snapping is off by default, so we will toggle
// it on first:
PlayGui.snapToggle();

// Mouse movement should be disabled
// Lets turn it back on
PlayGui.snapToggle();

Image and Video Controls

Controls that display images or videos.

Classes

	GuiBitmapBorderCtrl

	GuiChunkedBitmapCtrl

	GuiTheoraCtrl

Enumeration

	
enum GuiBitmapMode

	Rendering behavior when placing bitmaps in controls.

	Parameters

	
	Stretched – Stretch bitmap to fit control extents.

	Centered – Center bitmap in control.

	
enum GuiIconButtonIconLocation

	
	Parameters

	
	None –

	Left –

	Right –

	Center –

	
enum GuiIconButtonTextLocation

	
	Parameters

	
	None –

	Bottom –

	Right –

	Top –

	Left –

	Center –

	
enum GuiTheoraTranscoder

	Routine to use for converting Theora’s Y’CbCr pixel format to RGB color space.

	Parameters

	
	Auto – Automatically detect most appropriate setting.

	Generic – Slower but beneric transcoder that can convert all Y’CbCr input formats to RGB or RGBA output.

	SSE2420RGBA – Fast SSE2-based transcoder with fixed conversion from 4:2:0 Y’CbCr to RGBA.

Utility Controls

A collection of utility classes that support other GUI controls.

Classes

	GuiDragAndDropControl

	GuiInputCtrl

	GuiMessageVectorCtrl

	GuiScriptNotifyCtrl

	GuiTickCtrl

	MessageVector

Value Controls

Controls that display values and optionally allow to edit them.

Classes

	GuiGraphCtrl

	GuiProgressBitmapCtrl

	GuiProgressCtrl

	GuiSliderCtrl

Enumeration

	
enum GuiGraphType

	The charting style of a single plotting curve in a GuiGraphCtrl .

	Parameters

	
	Bar – Plot the curve as a bar chart.

	Filled – Plot a filled poly graph that connects the data points on the curve.

	Point – Plot each data point on the curve as a single dot.

	PolyLine – Plot straight lines through the data points of the curve.

Input

Functions and classes relating to to user input.

Classes

	ActionMap

	LeapMotionFrame

	RazerHydraFrame

Description

Input events come from the OS, are translated in the platform layer and then posted to the game. By default the game then checks the input event against a global ActionMap (which supercedes all other action handlers). If there is no action specified for the event, it is passed on to the GUI system. If the GUI does not handle the input event it is passed to the currently active (non-global) ActionMap stack.

Example: the user presses the ~ (tilde) key, which is bound in the global ActionMap to toggleConsole.

This causes the console function associated with the bind to be executed, which in this case is toggleConsole, resulting in the console output window being shown. If the key had not been bound in the global map, it would have passed to the first gui that could have handled it, and if none did, it would pass to any game actions that were bound to that key.

Input Events

The following table represents all keyboard, mouse, and joystick input events available to stock Torque 3D. It should be noted that letter and number keys directly correlate to their mapping. For example “a” is literally the letter a. The button0, button1, and button2 are the most commonly used input mappings for left mouse button, right mouse button, and middle mouse button (respectively).

Keyboard General Events:

	backspace

	end

	win_apps

	tilde

	tab

	home

	cmd

	minus

	return

	left

	equals

	enter

	up

	lopt

	lbracket

	opt

	shift

	right

	ropt

	rbracket

	ctrl

	down

	numlock

	backslash

	alt

	print

	scrolllock

	semicolon

	pause

	insert

	rshift

	apostrophe

	capslock

	delete

	lcontrol

	comma

	escape

	help

	rcontrol

	period

	space

	win_lwindow

	lalt

	slash

	pagedown

	win_rwindow

	ralt

	lessthan

	pageup

	
	
	

Note

All general keys can be bound by simply using the key… ex. “u” will trigger the u key response.

Keyboard Numpad Events:

	numpad0

	numpad5

	numpad9

	numpadminus

	numpad1

	numpad6

	numpadadmult

	numpaddecimal

	numpad2

	numpad7

	numpadadd

	numpaddivide

	numpad3

	numpad8

	numpadsep

	numpadenter

	numpad4

	
	
	

Keyboard Function Key Events:

	f1

	f7

	f13

	f19

	f2

	f8

	f14

	f20

	f3

	f9

	f15

	f21

	f4

	f10

	f16

	f22

	f5

	f11

	f17

	f23

	f6

	f12

	f18

	f24

Joystick/Mouse Events:

	button0

	button8

	button16

	button24

	button1

	button9

	button17

	button25

	button2

	button10

	button18

	button26

	button3

	button11

	button19

	button27

	button4

	button12

	button20

	button28

	button5

	button13

	button21

	button29

	button6

	button14

	button22

	button30

	button7

	button15

	button23

	button31

Joystick/Mouse Axes:

	xaxis

	zaxis

	ryaxis

	slider

	yaxis

	rxaxis

	rzaxis

	

Joystick POV:

	xpov

	dpov

	xpov2

	dpov2

	ypov

	lpov

	ypov2

	lpov2

	upov

	rpov

	upov2

	rpov2

Miscellaneous Events:

	anykey

	nomatch

Functions

	
void activateDirectInput()

	Activates DirectInput. Also activates any connected joysticks.

	
void deactivateDirectInput()

	Disables DirectInput. Also deactivates any connected joysticks.

	
void disableJoystick()

	Disables use of the joystick.

Note:
DirectInput must be enabled and active to use this function.

	
void disableXInput()

	Disables XInput for Xbox 360 controllers.

	
void echoInputState()

	Prints information to the console stating if DirectInput and a Joystick are enabled and active.

	
bool enableJoystick()

	Enables use of the joystick.

Note

DirectInput must be enabled and active to use this function.

	
bool enableXInput()

	Enables XInput for Xbox 360 controllers.

Note

XInput is enabled by default. Disable to use an Xbox 360 Controller as a joystick device.

	
ActionMap getCurrentActionMap()

	Returns the current ActionMap.

See also

ActionMap

	
int getXInputState(int controllerID, string property, bool current)

	Queries the current state of a connected Xbox 360 controller.

XInput Properties:

	XI_THUMBLX, XI_THUMBLY - X and Y axes of the left thumbstick.

	XI_THUMBRX, XI_THUMBRY - X and Y axes of the right thumbstick.

	XI_LEFT_TRIGGER, XI_RIGHT_TRIGGER - Left and Right triggers.

	SI_UPOV, SI_DPOV, SI_LPOV, SI_RPOV - Up, Down, Left, and Right on the directional pad.

	XI_START, XI_BACK - The Start and Back buttons.

	XI_LEFT_THUMB, XI_RIGHT_THUMB - Clicking in the left and right thumbstick.

	XI_LEFT_SHOULDER, XI_RIGHT_SHOULDER - Left and Right bumpers.

	XI_A, XI_B , XI_X, XI_Y - The A, B, X, and Y buttons.

	Parameters

	
	controllerID – Zero-based index of the controller to return information about.

	property – Name of input action being queried, such as “XI_THUMBLX”.

	current – True checks current device in action.

	Returns

	Button queried - 1 if the button is pressed, 0 if it’s not. Thumbstick queried - Int representing displacement from rest position. Trigger queried - Int from 0 to 255 representing how far the trigger is displaced.

	
bool isJoystickEnabled()

	Queries input manager to see if a joystick is enabled.

	Returns

	1 if a joystick exists and is enabled, 0 if it’s not.

	
bool isXInputConnected(int controllerID)

	Checks to see if an Xbox 360 controller is connected.

	Parameters

	controllerID – Zero-based index of the controller to check.

	Returns

	1 if the controller is connected, 0 if it isn’t, and 205 if XInput hasn’t been initialized.

	
void lockMouse(bool isLocked)

	Lock or unlock the mouse to the window.

When true, prevents the mouse from leaving the bounds of the game window.

	
void resetXInput()

	Rebuilds the XInput section of the InputManager.

Requests a full refresh of events for all controllers. Useful when called at the beginning of game code after actionMaps are set up to hook up all appropriate events.

	
void rumble(string device, float xRumble, float yRumble)

	Activates the vibration motors in the specified controller.

The controller will constantly at it’s xRumble and yRumble intensities until changed or told to stop.Valid inputs for xRumble/yRumble are [0 - 1].

	Parameters

	
	device – Name of the device to rumble.

	xRumble – Intensity to apply to the left motor.

	yRumble – Intensity to apply to the right motor.

Note

In an Xbox 360 controller, the left motor is low-frequency, while the right motor is high-frequency.

What is TorqueScript?

TorqueScript (TS) is a proprietary scripting language developed specifically for Torque technology. The language itself is derived from the scripting used for Tribes 2, which was the base tech Torque evolved from. Scripts are written and stored in .cs files, which are compiled and executed by a binary compiled via the C++ engine (.exe for Windows or .app OS X).

The CS extension stands for “C Script,” meaning the language resembles C programming. Though there is a connection, TorqueScript is a much higher level language and is easier to learn than standard C or C++.

Basic Usage

Like most other scripting languages, such as Python or Java Script, TorqueScript is a high-level programming language interpreted by Torque 3D at run time. Unlike C++, you can write your code in script and run it without recompiling your game.

All of your interfaces can be built using the GUI Editor, which saves the data out to TorqueScript. The same goes for data saved by the World Editor or Material Editor. Most of the editors themselves are C++ components exposed and constructed via TorqueScript.

More importantly, nearly all of your game play programming will be written in TorqueScript: inventory systems, win/lose scenarios, AI, weapon functionality, collision response, and game flow. All of these can be written in TorqueScript. The language will allow you to rapidly prototype your game without having to be a programming expert or perform lengthy engine recompilation.

Scripting vs Engine Programming

As mentioned above, TorqueScript is comprised of the core C++ objects needed to make your game. For example, you will use the PlayerData structure to create player objects for your game. This structure was written in C++:

struct PlayerData: public ShapeBaseData {
 typedef ShapeBaseData Parent;
 bool renderFirstPerson; ///< Render the player shape in first person

 mass = 9.0f; // from ShapeBase
 drag = 0.3f; // from ShapeBase
 density = 1.1f; // from ShapeBase

Instead of having to go into C++ and create new PlayerData objects or edit certain fields (such as mass), PlayerData was exposed to TorqueScript:

datablock PlayerData(DefaultPlayerData)
{
 renderFirstPerson = true;

 className = Armor;
 shapeFile = "art/shapes/actors/gideon/base.dts";

 mass = 100;
 drag = 1.3;
 maxdrag = 0.4;

 // Allowable Inventory Items
 maxInv[Pistol] = 1;
 maxInv[PistolAmmo] = 50;
};

If you want to change the name of the object, the mass, the inventory, or anything else, just open the script, make the change, and save the file. When you run your game, the changes will immediately take effect. Of course, for this example you could have used the in-game Datablock Editor, but you should get the point. TorqueScript is the first place you should go to write your game play code.

Language Reference

	Basic Syntax

	Variables

	Types

	Operators

	Control Structures

	Functions

	Objects

	Packages

Lighting

The script functionality related to the lighting systems and lights.

Classes

	AdvancedLightBinManager

	LightAnimData

	LightBase

	LightDescription

	LightFlareData

	PointLight

	SpotLight

Functions

	
string getActiveLightManager()

	Returns the active light manager name.

	
String getLightManagerNames()

	Returns a tab seperated list of light manager names.

	
bool lightScene(string completeCallbackFn, string mode)

	Will generate static lighting for the scene if supported by the active light manager. If mode is “forceAlways”, the lightmaps will be regenerated regardless of whether lighting cache files can be written to. If mode is “forceWritable”, then the lightmaps will be regenerated only if the lighting cache files can be written.

	Parameters

	
	completeCallbackFn – The name of the function to execute when the lighting is complete.

	mode – One of “forceAlways”, “forceWritable” or “loadOnly”.

	Returns

	Returns true if the scene lighting process was started.

	
void onLightManagerActivate(string name)

	A callback called by the engine when a light manager is activated.

	Parameters

	name – The name of the light manager being activated.

	
void onLightManagerDeactivate(string name)

	A callback called by the engine when a light manager is deactivated.

	Parameters

	name – The name of the light manager being deactivated.

	
void resetLightManager()

	Deactivates and then activates the currently active light manager.This causes most shaders to be regenerated and is often used when global rendering changes have occured.

	
bool setLightManager(string name)

	Finds and activates the named light manager.

	Returns

	Returns true if the light manager is found and activated.

Variables

	
bool $Light::renderLightFrustums

	Toggles rendering of light frustums when the light is selected in the editor.

	
bool $Light::renderViz

	Toggles visualization of light object’s radius or cone.

Advanced Lighting

The script functionality related to the Advanced Lghting system.

Enumeration

	
enum ShadowFilterMode

	The shadow filtering modes for Advanced Lighting shadows.

	Parameters

	
	None – Simple point sampled filtering. This is the fastest and lowest quality mode.

	SoftShadow – A variable tap rotated poisson disk soft shadow filter. It performs 4 taps to classify the point as in shadow, out of shadow, or along a shadow edge. Samples on the edge get an additional 8 taps to soften them.

	SoftShadowHighQuality – A 12 tap rotated poisson disk soft shadow filter. It performs all the taps for every point without any early rejection.

	
enum ShadowType

	
	Parameters

	
	Spot –

	PSSM –

	Paraboloid –

	DualParaboloidSinglePass –

	DualParaboloid –

	CubeMap –

Variables

	
float $pref::PSSM::detailAdjustScale

	Scales the model LOD when rendering into the PSSM shadow. Use this to reduce the draw calls when rendering the shadow by having meshes LOD out nearer to the camera than normal.

	
bool $Shadows::disable

	Used by the editor to disable all shadow rendering.

	
bool $pref::Shadows::disable

	Used to disable all shadow rendering.

	
ShadowFilterMode $pref::shadows::filterMode

	The filter mode to use for shadows.

	
bool $AL::PSSMDebugRender

	Enables debug rendering of the PSSM shadows.

	
float $pref::PSSM::smallestVisiblePixelSize

	The smallest pixel size an object can be and still be rendered into the PSSM shadow. Use this to force culling of small objects which contribute little to the final shadow.

	
float $pref::Shadows::textureScalar

	Used to scale the shadow texture sizes. This can reduce the shadow quality and texture memory overhead or increase them.

	
bool $AL::UseSSAOMask

	Used by the SSAO PostEffect to toggle the sampling of ssaomask texture by the light shaders.

Basic Lighting

The script functionality related to the Basic Lghting system.

Variables

	
int $BasicLightManagerStats::activePlugins

	The number of active Basic Lighting SceneObjectLightingPlugin objects this frame.

	
int $BasicLightManagerStats::elapsedUpdateMs

	The number of milliseconds spent this frame updating Basic Lighting shadows.

	
float $pref::ProjectedShadow::fadeEndPixelSize

	A size in pixels at which BL shadows are fully faded out. This should be a smaller value than fadeStartPixelSize.

	
float $pref::ProjectedShadow::fadeStartPixelSize

	A size in pixels at which BL shadows begin to fade out. This should be a larger value than fadeEndPixelSize.

	
float $BasicLightManager::shadowFilterDistance

	The maximum distance in meters that projected shadows will get soft filtering.

	
int $BasicLightManagerStats::shadowsUpdated

	The number of Basic Lighting shadows updated this frame.

Localization

Localization of games to multiple languages.

Classes

	LangTable

Description

Localizing large applications can be an extremely time consuming and aggravating process. This manual is intended to guide you through the changes made to Torque to support localization and help you reduce the ongoing headaches in day-to-day development in a localized codebase. This manual assumes you are at least familiar with Torque Script. C++ and localization experience is not necessary.

Languages and String Tables

Lets say you want to print some text to the console. From script, you’d usually just write something like:

echo(“Hello, World!”);
This is all well and good, if all you care about is English. What do you do if the user wants your game to talk French? You could do something like the following:

switch($Pref::Language)
{
 case $ENGLISH:
 echo("Hello, World!");
 case $FRENCH:
 echo("Salut, Monde!");
... other languages here ...
}

Sure, this works. It’s also a complete pain in the backside to keep up to date, let alone that you’d have to repeat the switch for every string you use. In the C++ code alone there is upwards of 4000 strings that are candidates for localization, so this method is clearly not even close to an option.

String tables are the answer to this problem. A string table is an array of strings that you can reference based on an ID instead of specifying the string directly in the source code. Changing which language the string is displayed in is simply a matter of using a string table that contains the strings in the language you wish to display. The above example can be reduced down to the following:

echo(L($STR_HELLO_WORLD));

The code is not much different to how you wrote it before, but the string will now be displayed in the correct language based on the user’s selection. This does come with a price, however. You now have to create and maintain string tables for all the languages you support, which can be a big headache. Torque tries to make this as simple as possible, and some tips for creating and maintaining these string tables are given later.

Script Interface

Torque contains a lot of strings, not just in the C++ code but in the script code too. For example, all your GUIs are created in script and must also be localized. To further complicate matters the scripts are contained in mod directories, each of which is a separate entity.

Strings in Script

It would be cumbersome and difficult to maintain one string table for all the strings, so Torque doesn’t try. Each mod has it’s own string table, as well as the core C++ code. You would be forgiven for thinking that this leads to having to write code as follows:

echo(L($StarterFPSTable, $STR_HELLO_WORLD));

I don’t know about you, but I’m a lazy programmer and that’s just too much typing for me to put up with every time I want to display a string. Instead, you just use:

echo(L($STR_HELLO_WORLD));

Torque takes care of the rest: the correct table will be used based on which mod the code is executed from.

Loading strings and specifying languages

The new LangTable class, accessible in script as well as in C++, provides the code necessary to handle the low level management of the string tables and obtaining the correct strings from them. One LangTable is created for each mod, as well as one for the C++ code.

An important portion of the localization system is implemented in script. This support code is responsible for managing the language tables and provides you with a simpler API than would be the case using LangTable directly. To provide this API, a new mod called “lang” has been added. The lang mod works a little like the common mod in that it just provides code needed by all mods. As the localization code is needed very early in the initialisation code, adding it to the common mod was not possible.

To ease loading of language tables, language maps are provided. These map the displayed name of the language to a string table on disk and are used to provide automatic loading across all mods. You specify the language map in the lang/languages.cs script, for example:

addLanguageMap("English", "english.lso");
addLanguageMap("Pony", "pony.lso");

The first argument to addLanguageMap() is the name of the language as it will be displayed to the user, and the second is the filename of the language. The filename will be concatenated onto the mod path to find the actual filename name of the table to load.

To load the language tables for the current mod, in the onStart() function for the mod, before any other code, use the following:

table = loadModLangTables("starter.fps/lang/tables");
setModLangTable(table);
loadModLangTables() loads the tables from the specified directory based on the information in the language map. setModLangTable() tells the C++ code to use the specified table for the current mod. This is usually done in the mod's onStart() function. After loading the tables, the current language will be set to English.

 // setup localization:
 $I18N::starter.fps = new LangTable();
 exec("starter.fps/lang/tables/German.cs");
 exec("starter.fps/lang/tables/English.cs");
 $I18N::starter.fps.addLanguage("starter.fps/lang/tables/German.lso", "German");
 $I18N::starter.fps.addLanguage("starter.fps/lang/tables/English.lso", "English");
 $I18N::starter.fps.setDefaultLanguage(0); // German is default here
 $I18N::starter.fps.setCurrentLanguage(0); // German is current
$I18N::starter.fps.setCurrentLanguage(1); // this would set the current language to english

Handling user language preferences

In the Torque demo, the user is provided two ways to change their language settings. If they have not already chosen a language, for example the first time they run the game, a dialog will pop up after the splash screens asking them to choose a language. The language can also be changed at any time from the options dialog. Note that some strings will not be in the new language until the game is restarted. There will be further discussion on this topic in later chapters.

When the language is changed, the onChangeLanguage() function is called. This should be overriden for each mod in the same way as onStart(). The following code can be used for all mods:

function onChangeLanguage()
{
 setCurrentLanguage(getModLangTable(), $pref::I18N::language);
 Parent::onChangeLanguage();
}

To change the language for all mods, you can simply use the setLanguage() function. setLanguage() takes one argument, the display name of the language to switch to.

Localizing the GUI

The GUI provides some interesting challenges for localization. Since GUI files are just script files that create the objects for the GUI, text is specified as a member field of the object. For example:

new GuiButtonCtrl() {
 text = "Quit!";
... other fields ...
};

As this is just a script, you can localize it easily by using the L() function in the same way you would with other scripts, for example:

new GuiButtonCtrl() {
 text = L($STR_QUIT);
... other fields ...
};

Unfortunately, this is not a viable solution. If you save that GUI from the GUI editor, the call to L() will be replaced with the text it returned when creating the GUI, reverting it to the first example. The only way around that is to edit all your GUIs by hand, which is not a particularly pleasant option when you have an editor to do it for you.

In order to sensibly support editing of GUIs, most of the GUI controls that support the text field now also support a textID field. This is the name of the ID variable for the string, for example:

new GuiButtonCtrl() {
 textID = "STR_QUIT";
... other fields ...
};

In addition, a setTextID() method was added to all controls that expose a setText() method to allow you to set the text at run time. It functions the same as the setText() method, except it works with IDs:

obj.setTextID("STR_ABOUT");

The only caveat is you must specify the name of the variable as a string, and not the variable itself. If you used the variable, for example obj.setText($STR_ABOUT), then the textID field would get set to the numeric ID, and the GUI control would be looking for a variable called, for example, 45.

If you don’t specify an ID, or the ID you do specify is invalid for whatever reason, then the control will simply use the text field as before.

Specifying the language table

Unfortunately, there is not enough context available in the GUI system to determine which mod the control was defined in, so the tricks used to make the L() function work cannot be used in the GUI.

To work around the problem, a field was added to GuiControl to specify the table to use, called langTableMod, which is simply the name of the mod to get the language table from. Usually, this will be the same as the mod that the .gui file resides in.

To avoid having to specify the table for every control that needs it, a crude form of inheritance was implemented. If langTableMod is not specified for a control, the control’s parent will be checked. This means you only have to specify the table in the root control for the GUI. However, you could also specify a different table on a per-control basis if needed, for example if you wanted to use a string from the language table for common. The following example GUI illustrates this better:

// The value that you set langTableMod to is the same as name after "$I18N::".
// If you use "$I18N::bob" then langTableMod = "bob".
new GuiChunkedBitmapCtrl(MainMenuGui)
{
 profile = "GuiContentProfile";
 horizSizing = "width";
 vertSizing = "height";
 position = "0 0";
 extent = "640 480";
 minExtent = "8 8";
 visible = "1";
 langTableMod = "starter.fps";
 bitmap = "./background";
 useVariable = "0";
 tile = "0";
 helpTag = "0";
 new GuiButtonCtrl() {
 profile = "GuiButtonProfile";
 horizSizing = "right";
 vertSizing = "top";
 position = "36 413";
 extent = "110 20";
 minExtent = "8 8";
 visible = "1";
 command = "quit();";
 textID = "STR_QUIT";
 groupNum = "-1";
 buttonType = "PushButton";
 helpTag = "0";
 };
};

Refreshing the GUI

When the user has chosen a new language, it would be nice to be able to get the GUI to refresh without forcing them to restart the game. One nice side effect of the updates to the GUI system is that we can do that.

The way the textID field was implemented is it checks for a valid ID, then if it has one it passes the string directly to setText(). The initial update of the text field is done on onWake(), so to get the control to update you only have to cause it to get an onWake() event.

It turns out that you can trick Torque into resending onWake() events quite simply, without having to write a ton of code. For the main canvas, you can simply do:

if(isObject(Canvas))
Canvas.setContent(Canvas.getContent());

When implementing the options dialog, I found that this wont refresh the dialogs. To work around that, when you click apply the script will pop the dialog then re-push it, as follows:

Canvas.popDialog(optionsDlg);
Canvas.pushDialog(optionsDlg);

Of course, some things will not be possible to update when you change the language. It may be worth considering requiring users to restart the game for language changes to take effect for the sake of consistency.

C++ Interface

The C++ interface is largely in flux at the moment pending fixing the string extractor to cope with multi-line strings. In terms of how you reference strings, it will be largely the same as the script interface.

Caveats

This will have caveats for the localization thingy.

The Localization Tools

The current toolset consists of the command line language compiler, called langc, which is used to compile a language file into the various formats needed by the engine.

Language Files

Language files are simple text files containing the identifiers and strings. An example follows:

TEST_STR_1=This is a test
TEST_STR_2=and so is this!

The string definitions are similar to variable definitions in C++ and Torque Script, except you do not need quotes or a semicolon. The “variable” becomes the ID as it will be referred to in the game code.

If you need the string to span multiple lines, you can use the usual as you would in C++. Note that currently you can’t use a trailing on the line to continue to the next line. (Note: this should be fixed)

You can use any amount of white space on either side of the equals sign. Two options control how the compiler handles whitespace. By default, any whitespace after the equals (leading spaces) will be stripped and any space on the end of the string (trailing spaces) will be left alone. Two options control this behaviour:

	S

	Strip leading space. When this option is specified, any space after the = sign will become part of the string.

	T

	Strip trailing space. When specified, space on the end of the string will be stripped.

Comments may be inserted in the language file at the beginning of a line only. You can use #, ; or // to delimit comments. For example:

This is a comment
; So is this
And this

Compiling Language Files

Before a language file can be used in the engine, it has to be compiled into a .lso file. As the process is slightly different depending on whether you are compiling the default english language file or a translation, it is not possible to do this automatically, as is done with scripts.

The default language is usually English. There is no hard and fast restriction on which language is the default, but for the purposes of documentation it will be assumed that English is your default language. It is worth pointing out that because strings that are missing from a particular language will use the default language, and some strings (particularly in the C++ code) are not localized, not using English for the default language may cause inconsistencies.

Language files are compiled with the langc tool, found in the tools directory. Like other Torque tools, langc must be compiled before you can use it.

langc can also produce some other related files, for example header files for the IDs and templates for translations.

In its simplest usage, langc requires the name of the language file to compile and an output basename, for example:

> langc english.lang english

The first argument is the name of the language file and the second is the basename for output files. langc can create a number of different files, so rather then force you to specify the filename of each one explicitly, you only have to specify the first part of the filename. The relevant extension will be added automatically.

If you were to run the above example, english.lang would be compiled, but no output files will be generated. This can be useful for checking if there are any errors in the file, but most of the time you’ll want to produce some output files.

To compile the language to an lso, you use the -l option, as follows:

> langc -l english.lang english

This will compile english.lang and, assuming there were no errors, will produce english.lso, ready to load into the engine.

Identifiers
~~~~~~~~~-~

Earlier in this manual, global variables were used as identifiers for the strings, but there was no mention of where they came from. Because these are a pain in the backside to maintain, langc does the job for you. When you compile the english language file, you can also generate a script file containing global variables for each string ID in the language file.

To generate the script, simply use the -s option. For example:

> langc -s english.lang english





This will generate a file called english.cs. Using the earlier example .lang file, the generated script would look something like this:

// Automatically generated. DO NOT EDIT
This is a test
$TEST_STR_1 = 0;
and so is this!
$TEST_STR_2 = 1;





If you’d like to save some time, you can specify multiple options at once, as in the following example:

> langc -ls english.lang english





This will create both english.lso and english.cs.




Compiling Translations

Although translations compile to the same lso files as the default language, the process is slightly more involved. This is because the identifiers must come from the default english file to ensure they are correct.

You can create a template for a new translation, based on the english file, as follows:

> langc -r english.lang french





This will generate a file called french.tran, the format of which is identical to the .lang files described earlier:

# Automatically generated.
# [TEST_STR_1:0] This is a test
TEST_STR_1=
# [TEST_STR_2:1] and so is this!
TEST_STR_2=





The comments preceding each string definition are intended to tell the translator what the original english string was. The actual string definitions are left blank so that langc will issue a warning for empty, and thus untranslated, strings.

Compiling a translation requires a few more options then compiling the english file:

> langc -tl -e english.lang french.tran french





Here, -t tells langc you want to compile a translation, -e english.lang specifies the filename of the english translation and, as before, -l causes the .lso file to be compiled.

When the translation is loaded into the engine, any strings that are left empty will automatically fall back to the english version of them. By default, langc will issue a warning when compiling the file if a string is empty. This is useful while compiling translations to determine which strings have not been translated. However, it’s less useful when compiling the english file, so these warnings may be turned off with the -W option. It is not recommended to use -W when compiling translations.




Other langc options

Aside from the above, langc provides a few additional options that you may find useful. These were purposefully not mentioned before as they are not particularly useful at this time.

A complete list of current langc options may be obtained by running langc with no arguments, as follows:

> langc
Usage: langc [options] <filename> <outbasename>
Where options is one or more of:
 -l    Write Language File              -h    Write C++ Header
 -s    Write Script                     -d    Write C++ Defaults
 -t    Compile a translation            -r    Write translation file
 -e <filename>   Specify english file when compiling translations
 -S    Don't strip leading spaces       -T    Strip trailing spaces
 -I    Don't warn for invalid chars     -W    Don't warn for empty identifiers
 -q    Quiet mode, no warnings at all





Of particular note are the options -h and -d, used when building files for the C++ localization. The -h option generates a C++ header file in the same way as the -s option does for scripts. The -d option writes a C++ source file that provides a big array of default strings. This is intended to be used as an extra fallback when a string can’t be found in the language table (or when there is no language table), which allows the same executable to be used whether localization is active or not.

Identifiers must be valid variable names, as they are used directly both as script variables and C++ defines. By default, langc will warn you if an invalid character is used in an identifier. The -I option prevents this.

The -q option is simply a shortcut to disable all warnings at once. If any errors occur, they will still be displayed.






Functions


	
int getCoreLangTable()


	Gets the primary LangTable used by the game.


	Returns

	ID of the core LangTable










	
void setCoreLangTable(string LangTable)


	Sets the primary LangTable used by the game.


	Parameters

	LangTable – ID of the core LangTable















          

      

      

    

  

    
      
          
            
  
Materials

Classes, structures, functions, and variables related to Torque 3D’s material system.


Classes



	CustomMaterial








Functions


	
void addMaterialMapping(string texName, string matName)


	Maps the given texture to the given material. Generates a console warning before overwriting. Material maps are used by terrain and interiors for triggering effects when an object moves onto a terrain block or interior surface using the associated texture.






	
string getMaterialMapping(string texName)


	Returns the name of the material mapped to this texture. If no materials are found, an empty string is returned.


	Parameters

	texName – Name of the texture












Variables


	
int $pref::Video::defaultAnisotropy

	Global variable defining the default anisotropy value. Controls the default anisotropic texture filtering level for all materials, including the terrain. This value can be changed at runtime to see its affect without reloading.






	
void dumpMaterialInstances


	Dumps a formatted list of currently allocated material instances to the console.






	
void reInitMaterials


	Flushes all procedural shaders and re-initializes all active material instances.











          

      

      

    

  

    
      
          
            
  
Math

Functions for dealing with vectors and matrices etc.


Functions


	
Point3F getBoxCenter(Box3F box)


	Get the center point of an axis-aligned box.


	Parameters

	b – A Box3F, in string format using “minExtentX minExtentY minExtentZ maxExtentX maxExtentY maxExtentZ”



	Returns

	Center of the box.










	
float getMax(float v1, float v2)


	Calculate the greater of two specified numbers.


	Parameters

	
	v1 – Input value.


	v2 – Input value.






	Returns

	The greater value of the two specified values.










	
float getMin(float v1, float v2)


	Calculate the lesser of two specified numbers.


	Parameters

	
	v1 – Input value.


	v2 – Input value.






	Returns

	The lesser value of the two specified values.










	
float m2Pi()


	Return the value of 2*PI (full-circle in radians).


	Returns

	The value of 2*PI.










	
float mAbs(float v)


	Calculate absolute value of specified value.


	Parameters

	v – Input Value.



	Returns

	Absolute value of specified value.










	
float mAcos(float v)


	Calculate the arc-cosine of v.


	Parameters

	v – Input Value (in radians).



	Returns

	The arc-cosine of the input value.










	
float mAsin(float v)


	Calculate the arc-sine of v.


	Parameters

	v – Input Value (in radians).



	Returns

	The arc-sine of the input value.










	
float mAtan(float rise, float run)


	Calculate the arc-tangent (slope) of a line defined by rise and run.


	Parameters

	
	rise – of line.


	run – of line.






	Returns

	The arc-tangent (slope) of a line defined by rise and run.










	
void mathInit(...)


	Install the math library with specified extensions. Possible parameters are:


	‘DETECT’ Autodetect math lib settings.


	‘C’ Enable the C math routines. C routines are always enabled.


	‘FPU’ Enable floating point unit routines.


	‘MMX’ Enable MMX math routines.


	‘3DNOW’ Enable 3dNow! math routines.


	‘SSE’ Enable SSE math routines.









	
int mCeil(float v)


	Round v up to the nearest integer.


	Parameters

	v – Number to convert to integer.



	Returns

	Number converted to integer.










	
float mClamp(float v, float min, float max)


	Clamp the specified value between two bounds.


	Parameters

	
	v – Input value.


	min – Minimum Bound.


	max – Maximum Bound.






	Returns

	The specified value clamped to the specified bounds.










	
float mCos(float v)


	Calculate the cosine of v.


	Parameters

	v – Input Value (in radians).



	Returns

	The cosine of the input value.










	
float mDegToRad(float degrees)


	Convert specified degrees into radians.


	Parameters

	degrees – Input Value (in degrees).



	Returns

	The specified degrees value converted to radians.










	
string mFloatLength(float v, int precision)


	Formats the specified number to the given number of decimal places.


	Parameters

	
	v – Number to format.


	precision – Number of decimal places to format to (1-9).






	Returns

	Number formatted to the specified number of decimal places.










	
int mFloor(float v)


	Round v down to the nearest integer.


	Parameters

	v – Number to convert to integer.



	Returns

	Number converted to integer.










	
float mFMod(float v, float d)


	Calculate the remainder of v/d.


	Parameters

	
	v – Input Value.


	d – Divisor Value.






	Returns

	The remainder of v/d.










	
bool mIsPow2(int v)


	Returns whether the value is an exact power of two.


	Parameters

	v – Input value.



	Returns

	Whether the specified value is an exact power of two.










	
float mLerp(float v1, float v2, float time)


	Calculate linearly interpolated value between two specified numbers using specified normalized time.


	Parameters

	
	v1 – Interpolate From Input value.


	v2 – Interpolate To Input value.


	time – Normalized time used to interpolate values (0-1).






	Returns

	The interpolated value between the two specified values at normalized time t.










	
float mLog(float v)


	Calculate the natural logarithm of v.


	Parameters

	v – Input Value.



	Returns

	The natural logarithm of the input value.










	
float mPi()


	Return the value of PI (half-circle in radians).


	Returns

	The value of PI.










	
float mPow(float v, float p)


	Calculate b raised to the p-th power.


	Parameters

	
	v – Input Value.


	p – Power to raise value by.






	Returns

	v raised to the p-th power.










	
float mRadToDeg(float radians)


	Convert specified radians into degrees.


	Parameters

	radians – Input Value (in radians).



	Returns

	The specified radians value converted to degrees.










	
int mRound(float v)


	Round v to the nearest integer.


	Parameters

	v – Number to convert to integer.



	Returns

	Number converted to integer.










	
float mSaturate(float v)


	Clamp the specified value between 0 and 1 (inclusive).


	Parameters

	v – Input value.



	Returns

	The specified value clamped between 0 and 1 (inclusive).










	
float mSin(float v)


	Calculate the sine of v.


	Parameters

	v – Input Value (in radians).



	Returns

	The sine of the input value.










	
string mSolveCubic(float a, float b, float c, float d)


	Solve a cubic equation (3rd degree polynomial) of form a*x^3 + b*x^2 + c*x + d = 0.


	Parameters

	
	a – First Coefficient.


	b – Second Coefficient.


	c – Third Coefficient.


	d – Fourth Coefficient.






	Returns

	A 4-tuple, containing: (sol x0 x1 x2). (sol) is the number of solutions(being 0, 1, 2 or 3), and (x0), (x1) and (x2) are the solutions, if any.










	
string mSolveQuadratic(float a, float b, float c)


	Solve a quadratic equation (2nd degree polynomial) of form a*x^2 + b*x + c = 0.


	Parameters

	
	a – First Coefficient.


	b – Second Coefficient.


	c – Third Coefficient.






	Returns

	A triple, containing: (sol x0 x1). (sol) is the number of solutions(being 0, 1, or 2), and (x0) and (x1) are the solutions, if any.










	
string mSolveQuartic(float a, float b, float c, float d, float e)


	Solve a quartic equation (4th degree polynomial) of form a*x^4 + b*x^3 + c*x^2 + d*x + e = 0.


	Parameters

	
	a – First Coefficient.


	b – Second Coefficient.


	c – Third Coefficient.


	d – Fourth Coefficient.


	e – Fifth Coefficient.






	Returns

	A 5-tuple, containing: (sol x0 x1 x2 c3). (sol) is the number of solutions(being 0, 1, 2, 3 or 4), and (x0), (x1), (x2) and (x3) are the solutions, if any.










	
float mSqrt(float v)


	Calculate the square-root of v.


	Parameters

	v – Input Value.



	Returns

	The square-root of the input value.










	
float mTan(float v)


	Calculate the tangent of v.


	Parameters

	v – Input Value (in radians).



	Returns

	The tangent of the input value.












Vector Math

Functions for working with three-dimensional vectors (VectorF/Point3F).


Functions


	
VectorF VectorAdd(VectorF a, VectorF b)


	Add two vectors.


	Parameters

	
	a – The first vector.


	b – The second vector.






	Returns

	.







Example:

// VectorAdd( %a, %b );
// The sum of vector a, (ax, ay, az), and vector b, (bx, by, bz) is:
//     a + b = ( ax + bx, ay + by, az + bz )

%a = "1 0 0";
%b = "0 1 0";

// %r = "( 1 + 0, 0 + 1, 0 + 0 )";// %r = "1 1 0";
%r = VectorAdd( %a, %b );










	
VectorF VectorCross(VectorF a, VectorF b)


	Calculcate the cross product of two vectors.


	Parameters

	
	a – The first vector.


	b – The second vector.






	Returns

	.







Example:

// VectorCross( %a, %b );
// The cross product of vector a, (ax, ay, az), and vector b, (bx, by, bz), is
//     a x b = ( ( ay * bz ) - ( az * by ), ( az * bx ) - ( ax * bz ), ( ax * by ) - ( ay * bx ) )

%a = "1 1 0";
%b = "2 0 1";

// %r = "( ( 1 * 1 ) - ( 0 * 0 ), ( 0 * 2 ) - ( 1 * 1 ), ( 1 * 0 ) - ( 1 * 2 ) )";
// %r = "1 -1 -2";
%r = VectorCross( %a, %b );










	
float VectorDist(VectorF a, VectorF b)


	Compute the distance between two vectors.


	Parameters

	
	a – The first vector.


	b – The second vector.






	Returns

	).





Example:

// VectorDist( %a, %b );
// The distance between vector a, (ax, ay, az), and vector b, (bx, by, bz), is
//     a -> b = ||( b - a )||
//            = ||( bx - ax, by - ay, bz - az )||
//            = mSqrt( ( bx - ax ) * ( bx - ax ) + ( by - ay ) * ( by - ay ) + ( bz - az ) * ( bz - az ) )

%a = "1 1 0";
%b = "2 0 1";

// %r = mSqrt( ( 2 - 1 ) * ( 2 - 1) + ( 0 - 1 ) * ( 0 - 1 ) + ( 1 - 0 ) * ( 1 - 0 ) );
// %r = mSqrt( 3 );
%r = VectorDist( %a, %b );










	
float VectorDot(VectorF a, VectorF b)


	Compute the dot product of two vectors.


	Parameters

	
	a – The first vector.


	b – The second vector.






	Returns

	.







Example:

// VectorDot( %a, %b );
// The dot product between vector a, (ax, ay, az), and vector b, (bx, by, bz), is:
//     a . b = ( ax * bx + ay * by + az * bz )

%a = "1 1 0";
%b = "2 0 1";

// %r = "( 1 * 2 + 1 * 0 + 0 * 1 )";
// %r = 2;
%r = VectorDot( %a, %b );










	
float VectorLen(VectorF v)


	Calculate the magnitude of the given vector.


	Parameters

	v – A vector.



	Returns

	.







Example:

// VectorLen( %a );
// The length or magnitude of  vector a, (ax, ay, az), is:
//     ||a|| = Sqrt( ax * ax + ay * ay + az * az )

%a = "1 1 0";

// %r = mSqrt( 1 * 1 + 1 * 1 + 0 * 0 );
// %r = mSqrt( 2 );
// %r = 1.414;
%r = VectorLen( %a );










	
VectorF VectorLerp(VectorF a, VectorF b, float t)


	Linearly interpolate between two vectors by t .


	Parameters

	
	a – Vector to start interpolation from.


	b – Vector to interpolate to.


	t – Interpolation factor (0-1). At zero, a is returned and at one, b is returned. In between, an interpolated vector between a and b is returned.






	Returns

	.







Example:

// VectorLerp( %a, %b );
// The point between vector a, (ax, ay, az), and vector b, (bx, by, bz), which is
// weighted by the interpolation factor, t, is
//     r = a + t * ( b - a )
//       = ( ax + t * ( bx - ax ), ay + t * ( by - ay ), az + t * ( bz - az ) )

%a = "1 1 0";
%b = "2 0 1";
%v = "0.25";

// %r = "( 1 + 0.25 * ( 2 - 1 ), 1 + 0.25 * ( 0 - 1 ), 0 + 0.25 * ( 1 - 0 ) )";
// %r = "1.25 0.75 0.25";
%r = VectorLerp( %a, %b );










	
VectorF VectorNormalize(VectorF v)


	Brings a vector into its unit form, i.e. such that it has the magnitute 1.


	Parameters

	v – The vector to normalize.



	Returns

	scaled to length 1.





Example:

// VectorNormalize( %a );
// The normalized vector a, (ax, ay, az), is:
//     a^ = a / ||a||
//        = ( ax / ||a||, ay / ||a||, az / ||a|| )

%a = "1 1 0";
%l = 1.414;

// %r = "( 1 / 1.141, 1 / 1.141, 0 / 1.141 )";
// %r = "0.707 0.707 0";
%r = VectorNormalize( %a );










	
MatrixF VectorOrthoBasis(AngAxisF aa)


	Create an orthogonal basis from the given vector.


	Parameters

	aaf – The vector to create the orthogonal basis from.



	Returns

	A matrix representing the orthogonal basis.










	
VectorF VectorScale(VectorF a, float scalar)


	Scales a vector by a scalar.


	Parameters

	
	a – The vector to scale.


	scalar – The scale factor.






	Returns

	.







Example:

// VectorScale( %a, %v );
// Scaling vector a, (ax, ay, az), but the scalar, v, is:
//     a * v = ( ax * v, ay * v, az * v )

%a = "1 1 0";
%v = "2";

// %r = "( 1 * 2, 1 * 2, 0 * 2 )";
// %r = "2 2 0";
%r = VectorScale( %a, %v );










	
VectorF VectorSub(VectorF a, VectorF b)


	Subtract two vectors.


	Parameters

	
	a – The first vector.


	b – The second vector.






	Returns

	.







Example:

// VectorSub( %a, %b );
// The difference of vector a, (ax, ay, az), and vector b, (bx, by, bz) is:
//     a - b = ( ax - bx, ay - by, az - bz )

%a = "1 0 0";
%b = "0 1 0";

// %r = "( 1 - 0, 0 - 1, 0 - 0 )";
// %r = "1 -1 0";
%r = VectorSub( %a, %b );














Matrix Math

Functions for working with matrices (MatrixF, AngAxisF, MatrixRotation, MatrixPosition).


Functions


	
TransformF MatrixCreate(VectorF position, AngAxisF orientation)


	Create a transform from the given translation and orientation.


	Parameters

	
	position – The translation vector for the transform.


	orientation – The axis and rotation that orients the transform.






	Returns

	A transform based on the given position and orientation.










	
TransformF MatrixCreateFromEuler(Point3F angles)


	a matrix from the given rotations.


	Parameters

	Vector3F – X, Y, and Z rotation in radians.



	Returns

	A transform based on the given orientation.










	
Point3F MatrixMulPoint(TransformF transform, Point3F point)


	Multiply the given point by the given transform assuming that w=1. This function will multiply the given vector such that translation with take effect.


	Parameters

	
	transform – A transform.


	point – A vector.






	Returns

	The transformed vector.










	
TransformF MatrixMultiply(TransformF left, TransformF right)


	Multiply the two matrices.


	Parameters

	
	left – First transform.


	right – Right transform.






	Returns

	Concatenation of the two transforms.










	
VectorF MatrixMulVector(TransformF transform, VectorF vector)


	Multiply the vector by the transform assuming that w=0. This function will multiply the given vector by the given transform such that translation will not affect the vector.


	Parameters

	
	transform – A transform.


	vector – A vector.






	Returns

	The transformed vector.














Random Numbers

Functions for generating random numbers. Based on a seed, the random number generator produces a sequence of numbers. As a given seed will always produce the same sequence of numbers this can be used to generate re-producible sequences of apparently random numbers. To set the seed, call setRandomSeed().


Functions


	
float getRandom(int a, int b)


	Returns a random number based on parameters passed in.. If no parameters are passed in, getRandom() will return a float between 0.0 and 1.0. If one parameter is passed an integer between 0 and the passed in value will be returned. Two parameters will return an integer between the specified numbers.


	Parameters

	
	a – If this is the only parameter, a number between 0 and a is returned. Elsewise represents the lower bound.


	b – Upper bound on the random number. The random number will be <= b.






	Returns

	, between 0 and a, or a float between 0.0 and 1.1 depending on usage.










	
int getRandomSeed()


	Get the current seed used by the random number generator.


	Returns

	The current random number generator seed value.










	
void setRandomSeed(int seed)


	Set the current seed for the random number generator. Based on this seed, a repeatable sequence of numbers will be produced by getRandom() .


	Parameters

	seed – The seed with which to initialize the randon number generator with. The same seed will always leed tothe same sequence of pseudo-random numbers. If -1, the current timestamp will be used as the seed which is a good basis for randomization.

















          

      

      

    

  

    
      
          
            
  
Network

Classes and functions related Torque 3D networking.


Description

Torque was designed from the foundation up to offer robust client/server networked simulations. Performance over the internet drove the design for the networking model. Torque attempts to deal with three fundamental problems of network simulation programming: limited bandwidth, packet loss and latency.

An instance of Torque can be set up as a dedicated server, a client, or both a client and a server. If the game is a client and a server, it still behaves as a client connected to a server - instead of using the network, however, the NetConnection object has a short-circuit link to another NetConnection object in the same application instance. This is known as a local connection.

[image: ../_images/networkingServerTypes.png]

Handling Limited Bandwidth

Bandwidth is a problem because in the large, open environments that Torque allows, and with the large number of clients that the engine supports (depending on amount of data sent per client, game world complexity, and available bandwidth), potentially many different objects can be moving and updating at once.

Torque uses three main strategies to maximize available bandwidth. First, it prioritizes data, sending updates to what is most “important” to a client at a greater frequency than it updates data that is less important. Second, it sends only data that is necessary. Using the BitStream class, only the absolute minimum number of bits needed for a given piece of data will be sent. Also, when object state changes, Torque only sends the part of the object state that changed. Last, Torque caches common strings (NetStringTable) and data (SimDataBlock) so that they only need to be transmitted once.




Handling Packet Loss

Packet loss is a problem because the information in lost data packets must somehow be retransmitted, yet in many cases the data in the dropped packet, if resent directly, will be stale by the time it gets to the client.

[image: ../_images/networkingPacketLoss.png]
For example, suppose that packet 2 contains a position update for a player and packet 3 contains a more recent position update for that same player. If packet 2 is dropped but packet 3 makes it across to the client, the engine shouldn’t resend the data that was in packet 2. It is older than the version that was received by the client. In order to minimize data that gets resent unnecessarily, the engine classifies data into five groups:


	Unguaranteed Data (NetEvent) - If this data is lost, don’t re-transmit it. An example of this type of data could be real-time voice traffic. By the time it is resent subsequent voice segments will already have played.


	Guaranteed Data (NetEvent) - If this data is lost, resend it. This is good for important, one-time information, like which team the player is on, or mission end messages are all examples of guaranteed data.


	Guaranteed Ordered Data (NetEvent) - If this data is lost, not only resend it, but make sure it arrives in the correct order. Chat messages, and messages for players joining and leaving the game all examples of guaranteed, ordered data. In the diagram above, packet 5 arrives before packet 4. If these consist of guaranteed ordered data, the client will not process packet 5 until packet 4 is first handled.


	Most-Recent State Data (NetObject) - Only the most current version of the data is important. If an update is lost, send the current state, unless it has been sent already. Most scene objects transmit their information in this manner.


	Guaranteed Quickest Data (Move) - Critical data that must get through as soon as possible. An example of this is movement information from the client to the server, which is transmitted with every packet by the Move Manager.







Handling Latency

Latency is a problem in the simulation because the network delay in information transfer (which, for modems, can be up to a quarter of a second or more) makes the client’s view of the world perpetually out-of-sync with the server.

Twitch FPS games, for which Torque was initially designed, require instant control response in order to feel anything but sluggish. Also, fast moving objects can be difficult for highly latent players to hit. In order to solve these problems Torque employs several strategies:


	Interpolation is used to smoothly move an object from where the client thinks it is to where the server says it is.


	Extrapolation is used to guess where the object is going based on its state and rules of movement.


	Prediction is used to form an educated guess about where an object is going based on rules of movement and client input.




The network architecture is layered: at the bottom is the platform layer, above that the notify protocol layer, followed by the NetConnection object and event management layer.




On Ghosting and Scoping

One of the most powerful aspects of Torque’s networking code is its support for ghosting and prioritized, most-recent-state network updates. The way this works is a bit complex, but it is immensely efficient. Let’s run through the steps that the server goes through for each client in this part of Torque’s networking:


	First, the server determines what objects are in-scope for the client. This is done by calling onCameraScopeQuery() on the object which is considered the “scope” object. This is usually the player object, but it can be something else. (For instance, the current vehicle, or an object we’re remote controlling.)


	Second, it ghosts them to the client. A ghost is the client’s representation of the server’s object, and only maintains data that the client requires for the simulation. Ghosts come and go on the client according to the scope rules in the first step above.


	Finally, the server sends updates as needed, by checking the dirty list and packing updates. By only sending dirty data and using bit packing, no excess bandwidth is wasted. The order of ghost updates and their frequency is prioritized by the results of the object’s getUpdatePriority() method.




Each object ghosted is assigned a ghost ID; the client is only aware of the ghost ID. This acts to enhance game security, as it becomes difficult to map objects from one connection to another, or to reliably identify objects from ID alone. IDs are also reassigned based on need, making it hard to track objects that have fallen out of scope (as any object which the player shouldn’t see would).

NetConnection::resolveGhostID() is used on the client side, and NetConnection::resolveObjectFromGhostIndex() on the server side, to turn ghost IDs into object references. NetConnection::getGhostID() is used in the other direction to determine an object’s ghost ID based on its SimObject ID. There is a cap on the maximum number of ghosts per client. Ghost IDs are currently sent via a 12-bit field, ergo, there is a cap of 4096 objects ghosted per client. This can be easily raised; see the GhostConstants enum in the source code.


See also

NetObject for a further description of ghosting and individual objects.






NetConnection Group

The NetConnection is a SimGroup. On the client side, it contains all the objects which have been ghosted to that client. On the server side, it is empty. It can be used (typically in script) to hold objects related to the connection. For instance, you might place an observation camera in the NetConnnection, or the current Player obejct. In both cases, when the connection is destroyed, so are the contained objects.


See also

NetConnection, the basis for implementing a multiplayer game protocol. Also see NetObject, which is the superclass for ghostable objects, and ShapeBase, which is the base for player and vehicle classes.






Local Connections

It is possible to run both the server and client within the same process. This is typically done while developing your multiplayer game, and is often required when using Torque’s built-in world creation tools. This is also how a single player game is run. Having both a server and client together is known as a local connection.

Any time a player launches the game and chooses to host a mission, they are also making use of a local connection. All other players joining the game use a regular, networked connection, and are considered clients.

Internally, a local connection short-circuits the networking layer and allows for data to pass immediately between the internal server and client. However, it should be noted that there is still the additional overhead of having seperate server and client branches within the code, even when creating a single player game. When developing your single player game, you need to be mindful that a client and server still exist within the engine.


See also

NetConnection, the basis for implementing a multiplayer game protocol.






Monitoring the Network

If you are interested in seeing Torque’s various network statistics, use the Net Graph.

[image: ../_images/networkingNetGraph.png]
The Net Graph is from a client, or ServerConnection, point of view. To activate the Net Graph, either press the ‘n’ key, or open the console and type ‘toggleNetGraph();’. The Net Graph presents a number of networking statistics, as described below:


	Ghosts Active - The number of active ghosts on the connection.


	Ghost Updates - The total number of ghosts added, removed or updated since the last update.


	Bytes Sent - The total number of bytes sent to the server since the last update.


	Bytes Received - The total number of bytes received from the server since the last update.


	Latency - The average round trip time (in ms) for the connection. Also known as ping.


	Packet Loss - The percentage of packets lost since the last update.









Classes



	AIClient

	AIConnection

	GameConnection

	HTTPObject

	NetConnection

	NetObject

	SimpleMessageEvent

	SimpleNetObject

	TCPObject

	BanList








Functions


	
string addTaggedString(string str)


	Use the addTaggedString function to tag a new string and add it to the NetStringTable.


	Parameters

	str – The string to be tagged and placed in the NetStringTable. Tagging ignores case, so tagging the same string (excluding case differences) will be ignored as a duplicated tag.



	Returns

	Returns a string( containing a numeric value) equivalent to the string ID for the newly tagged string










	
string buildTaggedString(string format, ...)


	Build a string using the specified tagged string format. This function takes an already tagged string (passed in as a tagged string ID) and one or more additional strings. If the tagged string contains argument tags that range from %1 through %9, then each additional string will be substituted into the tagged string. The final (non-tagged) combined string will be returned. The maximum length of the tagged string plus any inserted additional strings is 511 characters.


	Parameters

	
	format – A tagged string ID that contains zero or more argument tags, in the form of %1 through %9.


	... – A variable number of arguments that are insterted into the tagged string based on the argument tags within the format string.






	Returns

	An ordinary string that is a combination of the original tagged string with any additional strings passed in inserted in place of each argument tag.





Example:

// Create a tagged string with argument tags
%taggedStringID = addTaggedString("Welcome %1 to the game!");

// Some point later, combine the tagged string with some other string
%string = buildTaggedString(%taggedStringID, %playerName);
echo(%string);










	
void closeNetPort()


	Closes the current network port.






	
void commandToClient(NetConnection client, string func, ...)


	Send a command from the server to the client.


	Parameters

	
	client – The numeric ID of a client GameConnection


	func – Name of the client function being called


	... – Various parameters being passed to client command








Example:

// Set up the client command.  Needs to be executed on the client, such as
// within scripts/client/client.cs
// Update the Ammo Counter with current ammo, if not any then hide the counter.
function clientCmdSetAmmoAmountHud(%amount)
{
   if (!%amount)
     AmmoAmount.setVisible(false);
   else
   {
     AmmoAmount.setVisible(true);
     AmmoAmount.setText("Ammo: "@%amount);
   }
}

// Call it from a server function.
// Needs to be executed on the server,
// such as within scripts/server/game.cs
function GameConnection::setAmmoAmountHud(%client, %amount)
{
   commandToClient(%client, SetAmmoAmountHud, %amount);
}










	
void commandToServer(string func, ...)


	Send a command to the server.


	Parameters

	
	func – Name of the server command being called


	... – Various parameters being passed to server command








Example:

// Create a standard function.
// Needs to be executed on the client, such
// as within scripts/client/default.bind.cs
function toggleCamera(%val)
{
   // If key was down, call a server command named ToggleCamera
   if (%val)
      commandToServer(ToggleCamera);
}

// Server command being called from above.  Needs to be executed on the
// server, such as within scripts/server/commands.cs
function serverCmdToggleCamera(%client)
{
   if (%client.getControlObject() == %client.player)
   {
     %client.camera.setVelocity("0 0 0");
     %control = %client.camera;
   }
   else
   {
     %client.player.setVelocity("0 0 0");
     %control = %client.player;
  }
   %client.setControlObject(%control);
   clientCmdSyncEditorGui();
}










	
string detag(string str)


	Returns the string from a tag string. Should only be used within the context of a function that receives a tagged string, and is not meant to be used outside of this context. Use getTaggedString() to convert a tagged string ID back into a regular string at any time.

Example:

// From scripts/client/message.cs
function clientCmdChatMessage(%sender, %voice, %pitch, %msgString, %a1, %a2, %a3, %a4, %a5, %a6, %a7, %a8, %a9, %a10)
{
   onChatMessage(detag(%msgString), %voice, %pitch);
}










	
void DNetSetLogging(bool enabled)


	Enables logging of the connection protocols. When enabled a lot of network debugging information is sent to the console.


	Parameters

	enabled – True to enable, false to disable










	
void dumpNetStats()


	Dumps network statistics for each class to the console. The returned avg , min and max values are in bits sent per update. The num value is the total number of events collected.






	
void dumpNetStringTable()


	Dump the current contents of the networked string table to the console. The results are returned in three columns. The first column is the network string ID. The second column is the string itself. The third column is the reference count to the network string.






	
string getTag(string textTagString)


	Extracts the tag from a tagged string. Should only be used within the context of a function that receives a tagged string, and is not meant to be used outside of this context.


	Parameters

	textTagString – The tagged string to extract.



	Returns

	The tag ID of the string.










	
string getTaggedString(string tag)


	Use the getTaggedString function to convert a tag to a string. This is not the same as detag() which can only be used within the context of a function that receives a tag. This function can be used any time and anywhere to convert a tag to a string.


	Parameters

	tag – A numeric tag ID.



	Returns

	The string as found in the Net String table.










	
void onDataBlockObjectReceived(int index, int total)


	Called on the client each time a datablock has been received. This callback is typically used to notify the player of how far along in the datablock download process they are.


	Parameters

	
	index – The index of the datablock just received.


	total – The total number of datablocks to be received.













	
void onLightManagerActivate(string name)


	A callback called by the engine when a light manager is activated.


	Parameters

	name – The name of the light manager being activated.










	
void onLightManagerDeactivate(string name)


	A callback called by the engine when a light manager is deactivated.


	Parameters

	name – The name of the light manager being deactivated.










	
void pathOnMissionLoadDone()


	Load all Path information from the mission. This function is usually called from the loadMissionStage2() server-side function after the mission file has loaded. Internally it places all Paths into the server’s PathManager. From this point the Paths are ready for transmission to the clients.

Example:

// Inform the engine to load all Path information from the mission.
pathOnMissionLoadDone();










	
void removeTaggedString(int tag)


	Remove a tagged string from the Net String Table.


	Parameters

	tag – The tag associated with the string










	
bool setNetPort(int port, bool bind)


	Set the network port for the game to use.


	Parameters

	
	port – The port to use.


	bind – True if bind() should be called on the port.






	Returns

	True if the port was successfully opened. This will trigger a windows firewall prompt. If you don’t have firewall tunneling tech you can set this to false to avoid the prompt.












Variables


	
void allowConnections


	Sets whether or not the global NetInterface allows connections from remote hosts. allowConnections(bool allow);


	Parameters

	allow – Set to true to allow remote connections.










	
int $pref::Net::LagThreshold

	How long between received packets before the client is considered as lagging (in ms). This is used by GameConnection to determine if the client is lagging. If the client is indeed lagging, setLagIcon() is called to inform the user in some way. i.e. display an icon on screen.






	
int $Stats::netBitsReceived

	The number of bytes received during the last packet process operation.






	
int $Stats::netBitsSent

	The number of bytes sent during the last packet send operation.






	
int $Stats::netGhostUpdates

	The total number of ghosts added, removed, and/or updated on the client during the last packet process operation.






	
int $pref::Net::PacketRateToClient

	Sets how often packets are sent from the server to a client. It is possible to control how often packets may be sent to the clients. This may be used to throttle the amount of bandwidth being used, but should be adjusted with caution. The actual formula used to calculate the delay between sending packets to a client is:






	
int $pref::Net::PacketRateToServer

	Sets how often packets are sent from the client to the server. It is possible to control how often packets may be sent to the server. This may be used to throttle the amount of bandwidth being used, but should be adjusted with caution. The actual formula used to calculate the delay between sending packets to the server is:






	
int $pref::Net::PacketSize

	Sets the maximum size in bytes an individual network packet may be. It is possible to control how large each individual network packet may be. Increasing its size from the default allows for more data to be sent on each network send. However, this value should be changed with caution as too large a value will cause packets to be split up by the networking platform or hardware, which is something Torque cannot handle. A minimum packet size of 100 bytes is enforced in the source code. There is no enforced maximum. The default value is 200 bytes.











          

      

      

    

  

    
      
          
            
  
Objects

The most complex aspect of TorqueScript involves dealing with game objects. Much of your object creation will be performed in the World Editor, but you should still know how to manipulate objects at a script level. One thing to remember is that everything in TorqueScript is an object: players, vehicles, items, etc.

Every object added in the level is saved to a mission file, which is written entirely in TorqueScript. This also means every game object is accessible from script.


Syntax

Even though objects are originally created in C++, they are exposed to script in a way that allows them to be declared using the following syntax:

%objectID = new ObjectType(Name : CopySource, arg0, ..., argn)
{
   <datablock = DatablockIdentifier;>

   [existing_field0 = InitialValue0;]
   ...
   [existing_fieldN = InitialValueN;]

   [dynamic_field0 = InitialValue0;]
   ...
   [dynamic_fieldN = InitialValueN;]
};






	%objectID

	Is the variable where the object’s handle will be stored.



	new

	Is a key word telling the engine to create an instance of the following ObjectType.



	ObjectType

	Is any class declared in the engine or in script that has been derived from SimObject or a subclass of SimObject. SimObject-derived objects are what we were calling “game world objects” above.



	Name (optional)

	Is any expression evaluating to a string, which will be used as the object’s name.



	CopySource (optional)

	The name of an object which is previously defined somewhere in script. Existing field values will be copied from CopySource to the new object being created. Any dynamic fields defined in CopySource will also be defined in the new object, and their values will be copied. Note: If CopySource is of a different ObjectType than the object being created, only CopySource’s dynamic fields will be copied.



	arg0, …, argn (optional)

	Is a comma separated list of arguments to the class constructor (if it takes any).



	datablock

	Many objects (those derived from GameBase, or children of GameBase) require datablocks to initialize specific attributes of the new object. Datablocks are discussed below.



	existing_fieldN

	In addition to initializing values with a datablock, you may also initialize existing class members (fields) here. In order to modify a member of a C++-defined class, the member must be exposed to the Console.



	dynamic_fieldN

	Lastly, you may create new fields (which will exist only in Script) for your new object. These will show up as dynamic fields in the World Editor Inspector.





The main object variants you can create are SimObjects without a datablock, and game objects which require a datablock. The most basic SimObject can be created in a single line of code:

// Create a SimObject without any name, argument, or fields.
$exampleSimObject = new SimObject();





The $exampleSimObject variable now has access to all the properties and functions of a basic SimObject. Usually, when you are creating a SimObject you will want custom fields to define features:

// Create a SimObject with a custom field
$exampleSimObject = new SimObject()
{
   catchPhrase = "Hello world!";
};





As with the previous example, the above code creates a SimObject without a name which can be referenced by the global variable $exampleSimObject. This time, we have added a user defined field called “catchPhrase.” There is not a single stock Torque 3D object that has a field called “catchPhrase.” However, by adding this field to the SimObject it is now stored as long as that object exists.

The other game object variant mentioned previously involves the usage of datablocks. Datablocks contain static information used by a game object with a similar purpose. Datablocks are transmitted from a server to client, which means they cannot be modified while the game is running.

We will cover datablocks in more detail later, but the following syntax shows how to create a game object using a datablock:

// create a StaticShape using a datablock
datablock StaticShapeData(ceiling_fan)
{
   category = "Misc";
   shapeFile = "art/shapes/undercity/cfan.dts";
   isInvincible = true;
};

new StaticShape(CistFan)
{
   dataBlock = "ceiling_fan";
   position = "12.5693 35.5857 59.5747";
   rotation = "1 0 0 0";
   scale = "1 1 1";
};





Once you have learned about datablocks, the process is quite simple:


	Create a datablock in script, or using the datablock editor


	Add a shape to the scene from script or using the World Editor


	Assign the new object a datablock







Handles vs Names

Every game object added to a level can be accessed by two parameters:


	Handle

	A unique numeric ID generated when the object is created



	Name

	This is an optional parameter given to an object when it is created. You can assign a name to an object from the World Editor, or do so in TorqueScript.





Example:

// In this example, CistFan is the name of the object
new StaticShape(CistFan)
{
   dataBlock = "ceiling_fan";
   position = "12.5693 35.5857 59.5747";
   rotation = "1 0 0 0";
   scale = "1 1 1";
};





While in the World Editor, you will not be allowed to assign the same name to multiple, separate objects. The editor will ignore the attempt. If you manually name two objects the same thing in script, the game will only load the first object and ignore the second.




Singletons

If you need a global script object with only a single instance, you can use the singleton keyword. Singletons, in TorqueScript, are mostly used for unique shaders, materials, and other client-side only objects.

For example, SSAO (screen space ambient occlusion) is a post-processing effect. The game will only ever need a single instance of the shader, but it needs to be globally accessible on the client. The declaration of the SSAO shader in TorqueScript can be shown below:

singleton ShaderData( SSAOShader )
{
   DXVertexShaderFile   = "shaders/common/postFx/postFxV.hlsl";
   DXPixelShaderFile    = "shaders/common/postFx/ssao/SSAO_P.hlsl";
   pixVersion = 3.0;
};








Fields

Objects instantiated via script may have data members, referred to as Fields.




Methods

In addition to the creation of stand-alone functions, TorqueScript allows you to create and call methods attached to objects. Some of the more important Console Methods are already written in C++, then exposed to script. You can call these methods by using the dot . notation:

objHandle.function_name();

objName.function_name();





Example:

new StaticShape(CistFan)
{
   dataBlock = "ceiling_fan";
   position = "12.5693 35.5857 59.5747";
   rotation = "1 0 0 0";
   scale = "1 1 1";
};

// Write all the objects methods to the console log
CistFan.dump();

// Get the ID of an object, using the object's name
$objID = CistFan.getID();

// Print the ID to the console
echo("Object ID: ", $objID);

// Get the object's position, using the object's handle
%position = $objID.getPosition();

// Print the position to the console
echo("Object Position: ", %position);





The above example shows how you can call an object’s method by using its name or a variable containing its handle (unique ID number). Additionally, TorqueScript supports the creation of methods that have no associated C++ counterpart:

// function - Is a keyword telling TorqueScript we are defining a new function.
// ClassName::- Is the class type this function is supposed to work with.
// function_name - Is the name of the function we are creating.
// ... - Is any number of additional arguments.
// statements - Your custom logic executed when function is called
// %this- Is a variable that will contain the handle of the 'calling object'.
// return val - The value the function will give back after it has completed. Optional.

function Classname::func_name(%this, [arg0],...,[argn])
{
   statements;
   [return val;]
}





At a minimum, Console Methods require that you pass them an object handle. You will often see the first argument named %this. People use this as a hint, but you can name it anything you want. As with Console Functions any number of additional arguments can be specified separated by commas.

As a simple example, let’s say there is an object called Samurai, derived from the Player class. It is likely that a specific appearance and play style will be given to the samurai, so custom ConsoleMethods can be written. Here is a sample:

function Samurai::sheatheSword(%this)
{
    echo("Katana sheathed");
}





When you add a Samurai object to your level via the World Editor, it will be given an ID. Let’s pretend the handle (ID number) is 1042. We can call its ConsoleMethod once it is defined, using the period syntax:

1042.sheatheSword();

OUTPUT: "Katana sheathed"





Notice that no parameters were passed into the function. The %this parameter is inherent, and the original function did not require any other parameters.







          

      

      

    

  

    
      
          
            
  
Operators

Operators in TorqueScript behave very similarly to operators in real world math and other programming languages. You should recognize quite a few of these from math classes you took in school, but with small syntactical changes. The rest of this section will explain the syntax and show a brief example, but we will cover these in depth in later guides.


Arithmetic Operators

These are your basic math ops.









	Operator

	Name

	Example

	Explanation





	*

	multiplication

	$a * $b

	Multiply $a and $b.



	/

	division

	$a / $b

	Divide $a by $b.



	%

	modulo

	$a % $b

	Remainder of $a divided by $b.



	+

	addition

	$a + $b

	Add $a and $b.



	-

	subtraction

	$a - $b

	Subtract $b from $a.



	++

	auto-increment

(post-fix only)


	$a++

	Increment $a.



	--

	auto-decrement

(post-fix only)


	$b--

	Decrement $b.







Note

++$a is illegal. The value of $a++ is that of the incremented variable: auto-increment is post-fix in syntax, but pre-increment in sematics (the variable is incremented, before the return value is calculated). This behavior is unlike that of C and C++.




Note

--$b is illegal. The value of $a-- is that of the decremented variable: auto-decrement is post-fix in syntax, but pre-decrement in sematics (the variable is decremented, before the return value is calculated). This behavior is unlike that of C and C++.






Relational Operators

Used in comparing values and variables against each other.









	Operator

	Name

	Example

	Explanation





	<

	Less than

	$a < $b

	1 if $a is less than $b



	>

	More than

	$a > $b

	1 if $a is greater than $b



	<=

	Less than or Equal to

	$a <= $b

	1 if $a is less than or equal to $b



	>=

	More than or Equal to

	$a >= $b

	1 if $a is greater than or equal to $b



	==

	Equal to

	$a == $b

	1 if $a is equal to $b



	!=

	Not equal to

	$a != $b

	1 if $a is not equal to $b



	!

	Logical NOT

	!$a

	1 if $a is 0



	&&

	Logical AND

	$a && $b

	1 if $a and $b are both non-zero



	||

	Logical OR

	$a || $b

	1 if either $a or $b is non-zero



	$=

	String equal to

	$c $= $d

	1 if $c equal to $d.



	!$=

	String not equal to

	$c !$= $d

	1 if $c not equal to $d.









Bitwise Operators

Used for comparing and shifting bits.









	Operator

	Name

	Example

	Explanation





	~

	Bitwise complement

	~$a

	flip bits 1 to 0 and 0 to 1



	&

	Bitwise AND

	$a & $b

	composite of elements where bits in same position are 1



	|

	Bitwise OR

	$a | $b

	composite of elements where bits 1 in either of the two elements



	^

	Bitwise XOR

	$a ^ $b

	composite of elements where bits in same position are opposite



	<<

	Left Shift

	$a << 3

	element shifted left by 3 and padded with zeros



	>>

	Right Shift

	$a >> 3

	element shifted right by 3 and padded with zeros









Assignment Operators

Used for setting the value of variables.









	Operator

	Name

	Example

	Explanation





	=

	Assignment

	$a = $b;

	Assign value of $b to $a



	op=

	Assignment Operators

	$a op= $b;

	Equivalent to $a = $a op $b, where op can be any of:  * / % + - & | ^ << >>








Note

The value of an assignment is the value being assigned, so $a = $b = $c is legal.









String Operators

There are special values you can use to concatenate strings and variables. Concatenation refers to the joining of multiple values into a single variable. The following is the basic syntax:

"string 1" operation "string 2"





You can use string operators similarly to how you use mathematical operators (=, +, -, *). You have four operators at your disposal:









	Operator

	Name

	Example

	Explanation





	@

	String concatenation

	$c @ $d

	Concatenates strings $c and $d into a single string. Numeric literals/variables convert to strings.



	NL

	New Line

	$c NL $d

	Concatenates strings $c and $d into a single string separated by new-line. Such a string can be decomposed with getRecord()



	TAB

	Tab

	$c TAB $d

	Concatenates strings $c and $d into a single string separated by tab. Such a string can be decomposed with getField()



	SPC

	Space

	$c SPC $d

	Concatenates strings $c and $d into a single string separated by space. Such a string can be decomposed with getWord()









Miscellaneous Operators

General programming operators.









	Operator

	Name

	Example

	Explanation





	? :

	Conditional

	x ? y : z

	Evaluates to y if x equal to 1, else evaluates to z



	[]

	Array element

	$a[5]

	Synonymous with $a5



	( )

	Delimiting, Grouping

	t2dGetMin(%a, %b)

if ( $a == $b )

($a+$b)*($c-$d)


	Argument list for function call

Used with if, for, while, switch keywords

Control associativity in expressions




	{}

	Compound statement

	if (1) {$a = 1; $b = 2;}

function foo() {$a = 1;}


	Delimit multiple statements, optional for if, else, for, while

Required for switch, datablock, new, function




	,

	Listing

	t2dGetMin(%a, %b)

%M[1,2]


	Delimiter for arguments



	::

	Namespace

	Item::onCollision()

	This definition of the onCollision() function is in the Item namespace



	.

	Field/Method selection

	%obj.field

%obj.method()


	Select a console method or field



	//

	Single-line comment

	// This is a comment

	Used to comment out a single line of code



	/* */

	Multi-line comment

	/*This is a a

multi-line

comment*/


	Used to comment out multiple consecutive lines

/* opens the comment, and */ closes it








Note

There is no “comma operator”, as defined in C/C++; $a = 1, $b = 2; is a parse error.









          

      

      

    

  

    
      
          
            
  
Packages

The package keyword tells the console that the subsequent block of code is to be declared but not loaded. Packages provide dynamic function-polymorphism in TorqueScript. In short, a function defined in a package will over-ride the prior definition of a same named function when the is activated. When the package is subsequently de-activated, the previous definition of any overridden functions will be re-asserted.

A package has the following syntax:

package package_name
{
   function function_definition0()
   {
      // code
   }
   function function_definitionN()
   {
      // code
   }
};





Some things to know:


	The same function can be defined in multiple packages.


	Only functions can be packaged.


	Datablocks cannot be packaged.


	Packages ‘stack’ meaning that deactivating packages activated prior to the currently active (s) will deactivate all packages activated prior to the being deactivated (see example below).


	Functions in a package may activate and deactivate packages.




In order to use the functions in a package, the package must be activated:

activatePackage(package_name);





Subsequently a package can be deactivated:

deactivatePackage(package_name);





First, define a function and two packages, each of which provides an alternative definition by the same name:

function testFunction()
{
   echo( "testFunction() - unpackaged." );
}
package MyPackage0
{
  function testFunction()
  {
      echo( "testFunction() - MyPackage0." );
  }
};
package MyPackage1
{
  function testFunction()
  {
      echo( "testFunction() - MyPackage1." );
  }
};





Now invoke the testFunction() function from the console under three different conditions:

==> testFunction();
testFunction() - unpackaged.
==> activatePackage( MyPackage0 );
==> testFunction();
testFunction() - MyPackage0.
==> activatePackage( MyPackage1 );
==> testFunction();
testFunction() - MyPackage1.
==> deactivatePackage( MyPackage0 );  // MyPackage1 is automatically deactivated.
==> testFunction();
testFunction() - unpackaged.









          

      

      

    

  

    
      
          
            
  
Platform


Enumeration


	
enum MBButtons

	Which buttons to display on a message box.


	Parameters

	
	Ok – 


	OkCancel – 


	RetryCancel – 


	SaveDontSave – 


	SaveDontSaveCancel – 













	
enum MBIcons

	What icon to show on a message box.


	Parameters

	
	Information – 


	Warning – 


	Stop – 


	Question – 













	
enum MBReturnVal

	Return value for messageBox() indicating which button was pressed by the user.


	Parameters

	
	OK – 


	Cancelled – 


	Retry – 


	DontSave – 















Functions


	
bool displaySplashWindow(string path = "art/gui/splash.bmp")


	Display a startup splash window suitable for showing while the engine still starts up.

Note: This is currently only implemented on Windows.


	Returns

	True if the splash window could be successfully initialized.










	
int getRealTime()


	
	Returns

	Return the current real time in milliseconds. Real time is platform defined; typically time since the computer booted.










	
int getSimTime()


	Sim time is time since the game started.


	Returns

	Return the current sim time in milliseconds.










	
bool getWebDeployment()


	Test whether Torque is running in web-deployment mode.

In this mode, Torque will usually run within a browser and certain restrictions apply (e.g. Torque will not be able to enter fullscreen exclusive mode).


	Returns

	True if Torque is running in web-deployment mode.










	
void gotoWebPage(string address)


	Open the given URL or file in the user’s web browser.


	Parameters

	address – The address to open. If this is not prefixed by a protocol specifier (“…://”), then the function checks whether the address refers to a file or directory and if so, prepends “file://” to adress; if the file check fails, “http://” is prepended to address.





Example:

gotoWebPage( "http://www.garagegames.com" );










	
bool isDebugBuild()


	Test whether the engine has been compiled with TORQUE_DEBUG, i.e. if it includes debugging functionality.


	Returns

	True if this is a debug build; false otherwise.










	
bool isShippingBuild()


	Test whether the engine has been compiled with TORQUE_SHIPPING, i.e. in a form meant for final release.


	Returns

	True if this is a shipping build; false otherwise.










	
bool isToolBuild()


	Test whether the engine has been compiled with TORQUE_TOOLS, i.e. if it includes tool-related functionality.


	Returns

	True if this is a tool build; false otherwise.










	
int messageBox(string title, string message, MBButtons buttons = MBOkCancel, MBIcons icons = MIInformation)


	Display a modal message box using the platform’s native message box implementation.


	Parameters

	
	title – The title to display on the message box window.


	message – The text message to display in the box.


	buttons – Which buttons to put on the message box.


	icons – Which icon to show next to the message.






	Returns

	One of $MROK, $MRCancel, $MRRetry, and $MRDontSave identifying the button that the user pressed.





Example:

messageBox( "Error", "" );










	
void playJournal(string filename)


	Begin playback of a journal from a specified field.


	Parameters

	filename – Name and path of file journal file










	
void quit()


	Shut down the engine and exit its process. This function cleanly uninitializes the engine and then exits back to the system with a process exit status indicating a clean exit.






	
void quitWithErrorMessage(string message)


	Display an error message box showing the given message and then shut down the engine and exit its process. This function cleanly uninitialized the engine and then exits back to the system with a process exit status indicating an error.


	Parameters

	message – The message to log to the console and show in an error message box.










	
void saveJournal(string filename)


	Save the journal to the specified file.






	
bool shellExecute(string executable, string args, string directory)


	Launches an outside executable or batch file.


	Parameters

	
	executable – Name of the executable or batch file


	args – Optional list of arguments, in string format, to pass to the executable


	directory – Optional string containing path to output or shell















Variables


	
int $MRCancel

	Determines the cancel button press state in a message box.






	
int $MRDontSave

	Determines the don’t save button press state in a message box.






	
int $MROk

	Determines the ok button press state in a message box.






	
int $MRRetry

	Determines the retry button press state in a message box.






	
int $platform::backgroundSleepTime

	Controls processor time usage when the game window is out of focus.






	
int $platform::timeManagerProcessInterval

	Controls processor time usage when the game window is in focus.











          

      

      

    

  

    
      
          
            
  
Render Binning

The render sorting and batching system.


Classes



	RenderBinManager

	RenderGlowMgr

	RenderImposterMgr

	RenderMeshMgr

	RenderObjectMgr

	RenderOcclusionMgr

	RenderParticleMgr

	RenderPassManager

	RenderPassStateBin

	RenderPassStateToken

	RenderPrePassMgr

	RenderTerrainMgr

	RenderTexTargetBinManager

	RenderTranslucentMgr








Description

In Torque we use a binning system to do the initial ordering and batching of rendering operations.

When rendering a pass is made thru all the game objects visible in the scene. The game objects will each submit one or more RenderInst to the RenderPassManager. The pass manager maintains an ordered list of RenderBinManagers each which get a chance to consume the RenderInst.

After all the game objects have been processed the RenderPassManager lets each bin sort then render the RenderInsts they contain.

Currently from script you can only define and change the order of the bins in the RenderPassManager. To create new types of bins or add new rendering methods you will need C++ source access.


See also

The file corescriptsclientrenderManager.cs.






Enumeration


	
enum  RenderTexTargetSize

	What size to render the target texture. Sizes are based on the Window the render is occuring in.


	Parameters

	
	windowsize – Render to the size of the window.


	windowsizescaled – Render to the size of the window, scaled to the render target’s size.


	fixedsize – Don’t scale the target texture, and render to its default size.















Variables


	
bool RenderOcclusionMgr::debugRender[static, inherited]


	A debugging feature which renders the occlusion volumes to the scene.






	
bool RenderTerrainMgr::renderWireframe[static, inherited]


	Used to enable wireframe rendering on terrain for debugging.











          

      

      

    

  

    
      
          
            
  
Rendering

All rendering related functionality.


Classes



	BarrelDistortionPostEffect

	PostEffect

	TheoraTextureObject








Enumeration


	
enum  PFXRenderTime

	When to process this effect during the frame.


	Parameters

	
	PFXBeforeBin – Before a RenderInstManager bin.


	PFXAfterBin – After a RenderInstManager bin.


	PFXAfterDiffuse – After the diffuse rendering pass.


	PFXEndOfFrame – When the end of the frame is reached.


	PFXTexGenOnDemand – This PostEffect is not processed by the manager. It will generate its texture when it is requested.













	
enum  PFXTargetClear

	Describes when the target texture should be cleared.


	Parameters

	
	PFXTargetClear_None – Never clear the PostEffect target.


	PFXTargetClear_OnCreate – Clear once on create.


	PFXTargetClear_OnDraw – Clear before every draw.













	
enum  PFXTargetViewport

	Specifies how the viewport should be set up for a PostEffect’s target.


	Parameters

	
	PFXTargetViewport_TargetSize – Set viewport to match target size (default).


	PFXTargetViewport_GFXViewport – Use the current GFX viewport (scaled to match target size).


	PFXTargetViewport_NamedInTexture0 – Use the input texture 0 if it is named (scaled to match target size), otherwise revert to PFXTargetViewport_TargetSize if there is none.















Functions


	
void addGlobalShaderMacro(string name, string value)


	Adds a global shader macro which will be merged with the script defined macros on every shader. The macro will replace the value of an existing macro of the same name. For the new macro to take effect all the shaders in the system need to be reloaded.






	
void beginSampling()


	Takes a string informing the backend where to store sample data and optionally a name of the specific logging backend to use. The default is the CSV backend. In most cases, the logging store will be a file name.

Example:

beginSampling( "mysamples.csv" );










	
void enableSamples()


	Enable sampling for all keys that match the given name pattern. Slashes are treated as separators.






	
int getActiveDDSFiles()


	Returns the count of active DDSs files in memory.






	
String getBitmapInfo(string filename)


	Returns image info in the following format: width TAB height TAB bytesPerPixel. It will return an empty string if the file is not found.






	
void initDisplayDeviceInfo()


	Initializes variables that track device and vendor information/IDs.






	
void playJournalToVideo(string journalFile, string videoFile, string encoder, float framerate, Point2I resolution)


	Load a journal file and capture it video.






	
void removeGlobalShaderMacro(string name)


	Removes an existing global macro by name.






	
void startVideoCapture(GuiCanvas canvas, string filename, string encoder, float framerate, Point2I resolution)


	Begins a video capture session.






	
void stopSampling()


	Stops the rendering sampler.






	
void stopVideoCapture()


	Stops the video capture session.








Variables


	
bool $pref::imposter::canShadow

	User preference which toggles shadows from imposters. Defaults to true.






	
float $pref::TS::detailAdjust

	User perference for scaling the TSShape level of detail. The smaller the value the closer the camera must get to see the highest LOD. This setting can have a huge impact on performance in mesh heavy scenes. The default value is 1.






	
bool $Scene::disableTerrainOcclusion

	Used to disable the somewhat expensive terrain occlusion testing.






	
bool $Scene::disableZoneCulling

	If true, zone culling will be disabled and the scene contents will only be culled against the root frustum.






	
int $TSControl::frameCount

	The number of frames that have been rendered since this control was created.






	
int $pref::Reflect::frameLimitMS

	ReflectionManager tries not to spend more than this amount of time updating reflections per frame.






	
int $Sampler::frequency

	Samples taken every nth frame.






	
bool $Scene::lockCull

	Debug tool which locks the frustum culling to the current camera location.






	
int $pref::TS::maxInstancingVerts

	Enables mesh instancing on non-skin meshes that have less that this count of verts. The default value is 200. Higher values can degrade performance.






	
int $Scene::maxOccludersPerZone

	Maximum number of occluders that will be concurrently allowed into the scene culling state of any given zone.






	
float $Scene::occluderMinHeightPercentage

	TODO.






	
float $Scene::occluderMinWidthPercentage

	TODO.






	
float $pref::Reflect::refractTexScale

	RefractTex has dimensions equal to the active render target scaled in both x and y by this float.






	
bool $Scene::renderBoundingBoxes

	If true, the bounding boxes of objects will be displayed.






	
int $pref::TS::skipLoadDLs

	User perference which causes TSShapes to skip loading higher lods. This potentialy reduces the GPU resources and materials generated as well as limits the LODs rendered. The default value is 0.






	
int $pref::TS::skipRenderDLs

	User perference which causes TSShapes to skip rendering higher lods. This will reduce the number of draw calls and triangles rendered and improve rendering performance when proper LODs have been created for your models. The default value is 0.






	
float $pref::TS::smallestVisiblePixelSize

	User perference which sets the smallest pixel size at which TSShapes will skip rendering. This will force all shapes to stop rendering when they get smaller than this size. The default value is -1 which disables it.






	
float $pref::windEffectRadius

	Radius to affect the wind.











          

      

      

    

  

    
      
          
            
  
Shaders

Classes, structures, functions, and variables related to Torque 3D’s shader system.


Classes



	ShaderData











          

      

      

    

  

    
      
          
            
  
Sound

A broad range of functionality for creating rich game audio.


Classes



	SFXAmbience

	SFXController

	SFXDescription

	SFXEmitter

	SFXEnvironment

	SFXParameter

	SFXPlayList

	SFXProfile

	SFXSound

	SFXSource

	SFXSpace

	SFXState

	SFXTrack








Enumeration


	
enum  SFXChannel

	Channels are individual properties of sound sources that may be animated over time.


	Parameters

	
	Volume – Channel controls volume level of attached sound sources. See also:SFXDescription::volume


	Pitch – Channel controls pitch of attached sound sources. See also:SFXDescription::pitch


	Priority – Channel controls virtualizaton priority level of attached sound sources. See also:SFXDescription::priority


	PositionX – Channel controls X coordinate of 3D sound position of attached sources.


	PositionY – Channel controls Y coordinate of 3D sound position of attached sources.


	PositionZ – Channel controls Z coordinate of 3D sound position of attached sources.


	RotationX – Channel controls X rotation (in degrees) of 3D sound orientation of attached sources.


	RotationY – Channel controls Y rotation (in degrees) of 3D sound orientation of attached sources.


	RotationZ – Channel controls Z rotation (in degrees) of 3D sound orientation of attached sources.


	VelocityX – Channel controls X coordinate of 3D sound velocity vector of attached sources.


	VelocityY – Channel controls Y coordinate of 3D sound velocity vector of attached sources.


	VelocityZ – Channel controls Z coordinate of 3D sound velocity vector of attached sources.


	ReferenceDistance – Channel controls reference distance of 3D sound of attached sources. See also:SFXDescription::referenceDistance


	MaxDistance – Channel controls max volume attenuation distance of 3D sound of attached sources. See also:SFXDescription::maxDistance


	ConeInsideAngle – Channel controls angle (in degrees) of 3D sound inner volume cone of attached sources. See also:SFXDescription::coneInsideAngle


	ConeOutsideAngle – Channel controls angle (in degrees) of 3D sound outer volume cone of attached sources. See also:SFXDescription::coneOutsideAngle


	ConeOutsideVolume – Channel controls volume outside of 3D sound outer cone of attached sources. See also:SFXDescription::coneOutsideVolume


	Cursor – Channel controls playback cursor of attached sound sources. Note:Be aware that different types of sound sources interpret play cursor positions differently or do not actually have play cursors (these sources will ignore the channel).


	Status – Channel controls playback status of attached sound sources. The channel’s value is rounded down to the nearest integer and interpreted in the following way:1: Play2: Stop3: Pause


	User0 – Channel available for custom use. By default ignored by sources. Note:For FMOD Designer event sources (SFXFMODEventSource), this channel is used for event parameters defined in FMOD Designer and should not be used otherwise.See also:SFXSource::onParameterValueChange


	User1 – Channel available for custom use. By default ignored by sources. See also:SFXSource::onParameterValueChange


	User2 – Channel available for custom use. By default ignored by sources. See also:SFXSource::onParameterValueChange


	User3 – Channel available for custom use. By default ignored by sources. See also:SFXSource::onParameterValueChange













	
enum  SFXDistanceModel

	Type of volume distance attenuation curve. The distance model determines the falloff curve applied to the volume of 3D sounds over distance.


	Parameters

	
	Linear – Volume attenuates linearly from the references distance onwards to max distance where it reaches zero.


	Logarithmic – Volume attenuates logarithmically starting from the reference distance and halving every reference distance step from there on. Attenuation stops at max distance but volume won’t reach zero.













	
enum  SFXPlayListLoopMode

	Playlist behavior when description is set to loop.


	Parameters

	
	All – Loop over all slots, i.e. jump from last to first slot after all slots have played.


	Single – Loop infinitely over the current slot. Only useful in combination with either states or manual playlist control.













	
enum  SFXPlayListRandomMode

	Randomization pattern to apply to playlist slot playback order.


	Parameters

	
	NotRandom – Play slots in sequential order. No randomization.


	StrictRandom – Play a strictly random selection of slots. In this mode, a set of numSlotsToPlay random numbers between 0 and numSlotsToPlay-1 (inclusive), i.e. in the range of valid slot indices, is generated and playlist slots are played back in the order of this list. This allows the same slot to occur multiple times in a list and, consequentially, allows for other slots to not appear at all in a given slot ordering.


	OrderedRandom – Play all slots in the list in a random order. In this mode, the numSlotsToPlay slots from the list with valid tracks assigned are put into a random order and played. This guarantees that each slots is played exactly once albeit at a random position in the total ordering.













	
enum  SFXPlayListReplayMode

	Behavior when hitting the play stage of a slot that is still playing from a previous cycle.


	Parameters

	
	IgnorePlaying – Ignore any sources that may already be playing on the slot and just create a new source.


	RestartPlaying – Restart all sources that was last created for the slot.


	KeepPlaying – Keep playing the current source(s) as if the source started last on the slot was created in this cycle. For this, the sources associated with the slot are brought to the top of the play stack.


	StartNew – Stop all sources currently playing on the slot and then create a new source.


	SkipIfPlaying – If there are sources already playing on the slot, skip the play stage.













	
enum  SFXPlayListStateMode

	Reaction behavior when a state is changed incompatibly on a slot that has already started playing.


	Parameters

	
	StopWhenDeactivated – Stop the sources playing on the slot when a state changes to a setting that is incompatible with the slot’s state setting.


	PauseWhenDeactivated – Pause all sources playing on the slot when a state changes to a setting that is incompatible with the slot’s state setting. When the slot’s state is reactivated again, the sources will resume playback.


	IgnoreWhenDeactivated – Ignore when a state changes to a setting incompatible with the slot’s state setting and just keep playing sources attached to the slot.













	
enum  SFXPlayListTransitionMode

	Playlist behavior when transitioning in and out of invididual slots. Transition behaviors apply when the playback controller starts processing a playlist slot and when it ends processing a slot. Using transition behaviors, playback can be synchronized.


	Parameters

	
	None – No transition. Immediately move on to processing the slot or immediately move on to the next slot.


	Wait – Wait for the sound source spawned last by this playlist to finish playing. Then proceed.


	WaitAll – Wait for all sound sources currently spawned by the playlist to finish playing. Then proceed.


	Stop – Stop the sound source spawned last by this playlist. Then proceed.


	StopAll – Stop all sound sources spawned by the playlist. Then proceed.













	
enum  SFXStatus

	Playback status of sound source.


	Parameters

	
	Playing – The source is currently playing.


	Stopped – Playback of the source is stopped. When transitioning to Playing state, playback will start at the beginning of the source.


	Paused – Playback of the source is paused. Resuming playback will play from the current playback position.















Functions


	
bool sfxCreateDevice(string provider, string device, bool useHardware, int maxBuffers)


	Try to create a new sound device using the given properties. If a sound device is currently initialized, it will be uninitialized first. However, be aware that in this case, if this function fails, it will not restore the previously active device but rather leave the sound system in an uninitialized state. Sounds that are already playing while the new device is created will be temporarily transitioned to virtualized playback and then resume normal playback once the device has been created. In the core scripts, sound is automatically set up during startup in the sfxStartup() function. Providers and Devices


	Parameters

	
	provider – The name of the device provider as returned by sfxGetAvailableDevices().


	device – The name of the device as returned by sfxGetAvailableDevices().


	useHardware – Whether to enabled hardware mixing on the device or not. Only relevant if supported by the given device.


	maxBuffers – The maximum number of concurrent voices for this device to use or -1 for the device to pick its own reasonable default.






	Returns

	True if the initialization was successful, false if not.










	
SFXSource sfxCreateSource(SFXTrack track)


	Create a new source that plays the given track. The source will be returned in stopped state. Call SFXSource::play() to start playback. In contrast to play-once sources, the source object will not be automatically deleted once playback stops. Call delete() to release the source object. This function will automatically create the right SFXSource type for the given SFXTrack .


	Parameters

	track – The track the source should play.



	Returns

	for playback of the given track or 0 if no source could be created from the given track.





Example:

// Create and play a source from a pre-existing profile:
%source = sfxCreateSource( SoundFileProfile );
%source.play();










	
SFXSource sfxCreateSource(SFXTrack track, float x, float y, float z)


	Create a new source that plays the given track and position its 3D sounds source at the given coordinates (if it is a 3D sound). The source will be returned in stopped state. Call SFXSource::play() to start playback. In contrast to play-once sources, the source object will not be automatically deleted once playback stops. Call delete() to release the source object. This function will automatically create the right SFXSource type for the given SFXTrack .


	Parameters

	
	track – The track the source should play.


	x – The X coordinate of the 3D sound position.


	y – The Y coordinate of the 3D sound position.


	z – The Z coordinate of the 3D sound position.






	Returns

	for playback of the given track or 0 if no source could be created from the given track.





Example:

// Create and play a source from a pre-existing profile and position it at (100, 200, 300):
%source = sfxCreateSource( SoundFileProfile, 100, 200, 300 );
%source.play();










	
SFXSound sfxCreateSource(SFXDescription description, string filename)


	Create a temporary SFXProfile from the given description and filename and then create and return a new source that plays the profile. The source will be returned in stopped state. Call SFXSource::play() to start playback. In contrast to play-once sources, the source object will not be automatically deleted once playback stops. Call delete() to release the source object.


	Parameters

	
	description – The description to use for setting up the temporary SFXProfile.


	filename – Path to the sound file to play.






	Returns

	for playback of the given track or 0 if no source or no temporary profile could be created.





Example:

// Create a source for a music track:
%source = sfxCreateSource( AudioMusicLoop2D, "art/sound/backgroundMusic" );
%source.play();










	
SFXSound sfxCreateSource(SFXDescription description, string filename, float x, float y, float z)


	Create a temporary SFXProfile from the given description and filename and then create and return a new source that plays the profile. Position the sound source at the given coordinates (if it is a 3D sound). The source will be returned in stopped state. Call SFXSource::play() to start playback. In contrast to play-once sources, the source object will not be automatically deleted once playback stops. Call delete() to release the source object.


	Parameters

	
	description – The description to use for setting up the temporary SFXProfile.


	filename – Path to the sound file to play.


	x – The X coordinate of the 3D sound position.


	y – The Y coordinate of the 3D sound position.


	z – The Z coordinate of the 3D sound position.






	Returns

	for playback of the given track or 0 if no source or no temporary profile could be created.





Example:

// Create a source for a music track and position it at (100, 200, 300):
%source = sfxCreateSource( AudioMusicLoop3D, "art/sound/backgroundMusic", 100, 200, 300 );
%source.play();










	
void sfxDeleteDevice()


	Delete the currently active sound device and release all its resources. SFXSources that are still playing will be transitioned to virtualized playback mode. When creating a new device, they will automatically transition back to normal playback. In the core scripts, this is done automatically for you during shutdown in the sfxShutdown() function. Providers and Devices






	
void sfxDeleteWhenStopped(SFXSource source)


	Mark the given source for deletion as soon as it moves into stopped state. This function will retroactively turn the given source into a play-once source (see Play-Once Sources ).


	Parameters

	source – A sound source.










	
void sfxDumpSources(bool includeGroups)


	Dump information about all current SFXSource instances to the console. The dump includes information about the playback status for each source, volume levels, virtualization, etc.


	Parameters

	includeGroups – If true, direct instances of SFXSources (which represent logical sound groups) will be included. Otherwise only instances of subclasses of SFXSources are included in the dump.










	
string sfxDumpSourcesToString(bool includeGroups)


	Dump information about all current SFXSource instances to a string. The dump includes information about the playback status for each source, volume levels, virtualization, etc.


	Parameters

	includeGroups – If true, direct instances of SFXSources (which represent logical sound groups) will be included. Otherwise only instances of subclasses of SFXSources are included in the dump.



	Returns

	A string containing a dump of information about all currently instantiated SFXSources.










	
string sfxGetActiveStates()


	Return a newline-separated list of all active states.


	Returns

	where each element is the name of an active state object.





Example:

// Disable all active states.
foreach$( %state in sfxGetActiveStates() )
   %state.disable();










	
string sfxGetAvailableDevices()


	Get a list of all available sound devices. The return value will be a newline-separated list of entries where each line describes one available sound device. Each such line will have the following format:


	Returns

	A newline-separated list of information about all available sound devices.










	
string sfxGetDeviceInfo()


	Return information about the currently active sound device. The return value is a tab-delimited string of the following format:


	Returns

	A tab-separated list of properties of the currently active sound device or the empty string if no sound device has been initialized.










	
SFXDistanceModel sfxGetDistanceModel()


	Get the falloff curve type currently being applied to 3D sounds. Volume Attenuation 3D Audio


	Returns

	The current distance model type.










	
float sfxGetDopplerFactor()


	Get the current global doppler effect setting. Doppler Effect


	Returns

	=0).










	
float sfxGetRolloffFactor()


	Get the current global scale factor applied to volume attenuation of 3D sounds in the logarithmic model. Volume Attenuation 3D Audio


	Returns

	The current scale factor for logarithmic 3D sound falloff curves.










	
SFXSource sfxPlay(SFXSource source)


	Start playback of the given source. This is the same as calling SFXSource::play() directly.


	Parameters

	source – The source to start playing.



	Returns

	.







Example:

// Create and play a source from a pre-existing profile:
%source = sfxCreateSource( SoundFileProfile );
%source.play();










	
void sfxPlay(SFXTrack track)


	Create a new play-once source for the given track and start playback of the source. This is equivalent to calling sfxCreateSource() on  and SFXSource::play() on the resulting source. Play-Once Sources


	Parameters

	track – The sound datablock to play.



	Returns

	The newly created play-once source or 0 if the creation failed.










	
void sfxPlay(SFXTrack track, float x, float y, float z)


	Create a new play-once source for the given track , position its 3D sound at the given coordinates (if the track’s description is set up for 3D sound) and start playback of the source. This is equivalent to calling sfxCreateSource() on  and SFXSource::play() on the resulting source. Play-Once Sources


	Parameters

	
	track – The sound datablock to play.


	x – The X coordinate of the 3D sound position.


	y – The Y coordinate of the 3D sound position.


	z – The Z coordinate of the 3D sound position.






	Returns

	The newly created play-once source or 0 if the creation failed.










	
SFXSource sfxPlayOnce(SFXTrack track)


	Create a play-once source for the given track . Once playback has finished, the source will be automatically deleted in the next sound system update. Play-Once Sources


	Parameters

	track – The sound datablock.



	Returns

	A newly created temporary source in “Playing” state or 0 if the operation failed.










	
SFXSource sfxPlayOnce(SFXTrack track, float x, float y, float z, float fadeInTime)


	Create a play-once source for the given given track and position the source’s 3D sound at the given coordinates only if the track’s description is set up for 3D sound). Once playback has finished, the source will be automatically deleted in the next sound system update. Play-Once Sources


	Parameters

	
	track – The sound datablock.


	x – The X coordinate of the 3D sound position.


	y – The Y coordinate of the 3D sound position.


	z – The Z coordinate of the 3D sound position.


	fadeInTime – If >=0, this overrides the SFXDescription::fadeInTime value on the track’s description.






	Returns

	A newly created temporary source in “Playing” state or 0 if the operation failed.





Example:

// Immediately start playing the given track.  Fade it in to full volume over 5 seconds.
sfxPlayOnce( MusicTrack, 0, 0, 0, 5.f );










	
SFXSource sfxPlayOnce(SFXDescription description, string filename)


	Create a new temporary SFXProfile from the given description and filename , then create a play-once source for it and start playback. Once playback has finished, the source will be automatically deleted in the next sound system update. If not referenced otherwise by then, the temporary SFXProfile will also be deleted. Play-Once Sources


	Parameters

	
	description – The description to use for playback.


	filename – Path to the sound file to play.






	Returns

	A newly created temporary source in “Playing” state or 0 if the operation failed.





Example:

// Play a sound effect file once.
sfxPlayOnce( AudioEffects, "art/sound/weapons/Weapon_pickup" );










	
SFXSource sfxPlayOnce(SFXDescription description, string filename, float x, float y, float z, float fadeInTime)


	Create a new temporary SFXProfile from the given description and filename , then create a play-once source for it and start playback. Position the source’s 3D sound at the given coordinates (only if the description is set up for 3D sound). Once playback has finished, the source will be automatically deleted in the next sound system update. If not referenced otherwise by then, the temporary SFXProfile will also be deleted. Play-Once Sources


	Parameters

	
	description – The description to use for playback.


	filename – Path to the sound file to play.


	x – The X coordinate of the 3D sound position.


	y – The Y coordinate of the 3D sound position.


	z – The Z coordinate of the 3D sound position.


	fadeInTime – If >=0, this overrides the SFXDescription::fadeInTime value on the track’s description.






	Returns

	A newly created temporary source in “Playing” state or 0 if the operation failed.





Example:

// Play a sound effect file once using a 3D sound with a default falloff placed at the origin.
sfxPlayOnce( AudioDefault3D, "art/sound/weapons/Weapon_pickup", 0, 0, 0 );










	
void sfxSetDistanceModel(SFXDistanceModel model)


	Set the falloff curve type to use for distance-based volume attenuation of 3D sounds.


	Parameters

	model – The distance model to use for 3D sound.










	
void sfxSetDopplerFactor(float value)


	Set the global doppler effect scale factor. Doppler Effect


	Parameters

	value – The new doppler shift scale factor.










	
void sfxSetRolloffFactor(float value)


	Set the global scale factor to apply to volume attenuation of 3D sounds in the logarithmic model. Volume Attenuation 3D Audio


	Parameters

	value – The new scale factor for logarithmic 3D sound falloff curves.










	
void sfxStop(SFXSource source)


	Stop playback of the given source . This is equivalent to calling SFXSource::stop() .


	Parameters

	source – The source to put into stopped state.










	
void sfxStopAndDelete(SFXSource source)


	Stop playback of the given source (if it is not already stopped) and delete the source . The advantage of this function over directly calling delete() is that it will correctly handle volume fades that may be configured on the source. Whereas calling delete() would immediately stop playback and delete the source, this functionality will wait for the fade-out to play and only then stop the source and delete it. Volume Fades


	Parameters

	source – A sound source.












Variables


	
int $SFX::ambientUpdateTime

	Milliseconds spent on the last ambient audio update. Sound System Updates Ambient Audio






	
int $SFX::DEVICE_CAPS_DSPEFFECTS

	Sound device capability flag indicating that the sound device supports adding DSP effect chains to sounds.






	
int $SFX::DEVICE_CAPS_FMODDESIGNER

	Sound device capability flag indicating that the sound device supports FMOD Designer audio projects. FMOD Designer Audio






	
int $SFX::DEVICE_CAPS_MULTILISTENER

	Sound device capability flag indicating that the sound device supports multiple concurrent listeners.






	
int $SFX::DEVICE_CAPS_OCCLUSION

	Sound device capability flag indicating that the sound device implements sound occlusion.






	
int $SFX::DEVICE_CAPS_REVERB

	Sound device capability flag indicating that the sound device supports reverb. Audio Reverb






	
int $SFX::DEVICE_CAPS_VOICEMANAGEMENT

	Sound device capability flag indicating that the sound device implements its own voice virtualization. For these devices, the sound system will deactivate its own voice management and leave voice virtualization entirely to the device. Sounds and Voices






	
int $SFX::DEVICE_INFO_CAPS

	Index of device capability flags in device info string.






	
int $SFX::DEVICE_INFO_MAXBUFFERS

	Index of buffer limit number in device info string.






	
int $SFX::DEVICE_INFO_NAME

	Index of device name field in device info string.






	
int $SFX::DEVICE_INFO_PROVIDER

	Index of sound provider field in device info string.






	
int $SFX::DEVICE_INFO_USEHARDWARE

	Index of use hardware flag in device info string.






	
int $SFX::numCulled

	Number of SFXSounds that are currently in virtualized playback mode. Sounds and Voices






	
int $SFX::numPlaying

	Number of SFXSources that are currently in playing state.






	
int $SFX::numSounds

	Number of SFXSound type objects (i.e. actual single-file sounds) that are currently instantiated.






	
int $SFX::numSources

	Number of SFXSource type objects that are currently instantiated.






	
int $SFX::numVoices

	Number of voices that are currently allocated on the sound device.






	
int $SFX::parameterUpdateTime

	Milliseconds spent on the last SFXParameter update loop. Sound System Updates Interactive Audio






	
ColorI SFXEmitter::renderColorInnerCone[static, inherited]


	The color with which to render dots in the inner sound cone (Editor only).






	
ColorI SFXEmitter::renderColorOuterCone[static, inherited]


	The color with which to render dots in the outer sound cone (Editor only).






	
ColorI SFXEmitter::renderColorOutsideVolume[static, inherited]


	The color with which to render dots outside of the outer sound cone (Editor only).






	
ColorI SFXEmitter::renderColorPlayingInRange[static, inherited]


	The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is playing and in range of the listener.






	
ColorI SFXEmitter::renderColorPlayingOutOfRange[static, inherited]


	The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is playing but out of the range of the listener.






	
ColorI SFXEmitter::renderColorRangeSphere[static, inherited]


	The color of the range sphere with which to render sound emitters in the editor.






	
ColorI SFXEmitter::renderColorStoppedInRange[static, inherited]


	The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is not playing but the emitter is in range of the listener.






	
ColorI SFXEmitter::renderColorStoppedOutOfRange[static, inherited]


	The color with which to render a sound emitter’s marker cube in the editor when the emitter’s sound is not playing and the emitter is out of range of the listener.






	
bool SFXEmitter::renderEmitters[static, inherited]


	Whether to render enhanced range feedback in the editor on all emitters regardless of selection state.






	
float SFXEmitter::renderPointDistance[static, inherited]


	The distance between individual points in the sound emitter rendering in the editor as the points move from the emitter’s center away to maxDistance.






	
float SFXEmitter::renderRadialIncrements[static, inherited]


	The stepping (in degrees) for the radial sweep along the axis of the XY plane sweep for sound emitter rendering in the editor.






	
float SFXEmitter::renderSweepIncrements[static, inherited]


	The stepping (in degrees) for the radial sweep on the XY plane for sound emitter rendering in the editor.






	
int $SFX::sourceUpdateTime

	Milliseconds spent on the last SFXSource update loop. Sound System Updates








FMOD

Functionality specific to the FMOD SFX implementation.


Classes



	SFXFMODEvent

	SFXFMODEventGroup

	SFXFMODEventSource

	SFXFMODProject








Description

When using FMOD for audio output in combination with Torque’s sound system, an extended set of features is available to the user. This includes:


	Reverb support


	Enhanced voice virtualization


	Support for multiple listeners


	Enhanced sound format support: .aiff, .asf, .asx, .dls, .flac .fsb, .it, .m3u, .mid, .mod, .mp2, .mp3, .ogg, .pls, .s3m, .vag, .wav, .wax, .wma, .xm, .xma (on Xbox only)


	FMOD Designer enhanced audio design support







Functions


	
void fmodDumpDSPInfo()


	Dump information about the standard DSP effects.






	
void fmodDumpMemoryStats()


	
	Returns

	Prints the current memory consumption of the FMOD module












Variables


	
bool $pref::SFX::FMOD::disableSoftware

	Whether to disable the FMOD software mixer to conserve memory. All sounds not created with SFXDescription::useHardware or using DSP effects will fail to load.






	
string $pref::SFX::FMOD::DSoundHRTF

	The type of HRTF to use for hardware-mixed 3D sounds when FMOD is using DirectSound for sound output and hardware-acceleration is not available. Options are


	“none”: simple stereo panning/doppler/attenuation


	“light”: slightly higher quality than “none”


	“full”: full quality 3D playback









	
bool $pref::SFX::FMOD::enableProfile

	Whether to enable support for FMOD’s profiler. Using the FMOD Profiler with Torque






	
int $SFX::Device::fmodCoreMem

	Current number of bytes allocated by the core FMOD sound system.






	
int $SFX::Device::fmodEventMem

	Current number of bytes allocated by the FMOD Designer event system.






	
int $SFX::Device::fmodNumEventSources

	The current number of SFXFMODEventSource instances in the system. This tells the number of sounds in the system that are currently playing FMOD Designer events.






	
string $pref::SFX::FMOD::pluginPath

	Path to additional FMOD plugins.






	
bool $pref::SFX::FMOD::useSoftwareHRTF

	Whether to enable HRTF in FMOD’s software mixer. This will add a lowpass filter effect to the DSP effect chain of all sounds mixed in software.













          

      

      

    

  

    
      
          
            
  
Strings

Functions for dealing with string values. Since in TorqueScript any value is implicitly also a string, these functions can be used with all values.


Functions


	
string collapseEscape(string text)


	Replace all escape sequences in text with their respective character codes. This function replaces all escape sequences (n, t, etc) in the given string with the respective characters they represent. The primary use of this function is for converting strings from their literal form into their compiled/translated form, as is normally done by the TorqueScript compiler.


	Parameters

	text – A string.



	Returns

	with all escape sequences replaced by their respective character codes.





Example:

// Print:
//    str
//    ing
// to the console.  Note how the backslash in the string must be escaped here
// in order to prevent the TorqueScript compiler from collapsing the escape
// sequence in the resulting string.
echo( collapseEscape( "str\ning" ) );










	
void dumpStringMemStats()


	Dumps information about String memory usage.






	
bool endsWith(string str, string suffix, bool caseSensitive)


	Test whether the given string ends with the given suffix.


	Parameters

	
	str – The string to test.


	suffix – The potential suffix of str.


	caseSensitive – If true, the comparison will be case-sensitive; if false, differences in casing will not be taken into account.






	Returns

	True if the last characters in str match the complete contents of suffix; false otherwise.





Example:

startsWith( "TEST123", "123" ) // Returns true.










	
string expandEscape(string text)


	Replace all characters in text that need to be escaped for the string to be a valid string literal with their respective escape sequences. All characters in text that cannot appear in a string literal will be replaced by an escape sequence (n, t, etc). The primary use of this function is for converting strings suitable for being passed as string literals to the TorqueScript compiler. expandEscape( “str” NL “ing” ) // Returns “strning”.


	Parameters

	text – A string



	Returns

	A duplicate of the text parameter with all unescaped characters that cannot appear in string literals replaced by their respective escape sequences.










	
string getSubStr(string str, int start, int numChars)


	Return a substring of str starting at start and continuing either through to the end of str (if numChars is -1) or for numChars characters (except if this would exceed the actual source string length).


	Parameters

	
	str – The string from which to extract a substring.


	start – The offset at which to start copying out characters.


	numChars – Optional argument to specify the number of characters to copy. If this is -1, all characters up the end of the input string are copied.






	Returns

	A string that contains the given portion of the input string.





Example:

getSubStr( "foobar", 1, 2 ) // Returns "oo".










	
int getTrailingNumber(string str)


	Get the numeric suffix of the given input string.


	Parameters

	str – The string from which to read out the numeric suffix.



	Returns

	The numeric value of the number suffix of str or -1 if str has no such suffix.





Example:

getTrailingNumber( "test123" ) // Returns 123.










	
bool isalnum(string str, int index)


	Test whether the character at the given position is an alpha-numeric character. Alpha-numeric characters are characters that are either alphabetic (a-z, A-Z) or numbers (0-9).


	Parameters

	
	str – The string to test.


	index – The index of a character in str.






	Returns

	True if the character at the given index in str is an alpha-numeric character; false otherwise.










	
bool isspace(string str, int index)


	Test whether the character at the given position is a whitespace character. Characters such as tab, space, or newline are considered whitespace.


	Parameters

	
	str – The string to test.


	index – The index of a character in str.






	Returns

	True if the character at the given index in str is a whitespace character; false otherwise.










	
string ltrim(string str)


	Remove leading whitespace from the string.


	Parameters

	str – A string.



	Returns

	A string that is the same as str but with any leading (i.e. leftmost) whitespace removed.





Example:

ltrim( "   string  " ); // Returns "string  ".










	
string nextToken(string str, string token, string delimiters)


	Tokenize a string using a set of delimiting characters. This function first skips all leading charaters in str that are contained in delimiters . From that position, it then scans for the next character in str that is contained in delimiters and stores all characters from the starting position up to the first delimiter in a variable in the current scope called token . Finally, it skips all characters in delimiters after the token and then returns the remaining string contents in str . To scan out all tokens in a string, call this function repeatedly by passing the result it returns each time as the new str until the function returns “”.


	Parameters

	
	str – A string.


	token – The name of the variable in which to store the current token. This variable is set in the scope in which nextToken is called.


	delimiters – A string of characters. Each character is considered a delimiter.






	Returns

	The remainder of str after the token has been parsed out or “” if no more tokens were found in str.





Example:

// Prints:
// a
// b
// c
%str = "a   b c";
while ( %str !$= "" )
{
   // First time, stores "a" in the variable %token and sets %str to "b c".
   %str = nextToken( %str, "token", "" );
   echo( %token );
}










	
string rtrim(string str)


	Remove trailing whitespace from the string.


	Parameters

	str – A string.



	Returns

	A string that is the same as str but with any trailing (i.e. rightmost) whitespace removed.





Example:

rtrim( "   string  " ); // Returns "   string".










	
bool startsWith(string str, string prefix, bool caseSensitive)


	Test whether the given string begins with the given prefix.


	Parameters

	
	str – The string to test.


	prefix – The potential prefix of str.


	caseSensitive – If true, the comparison will be case-sensitive; if false, differences in casing will not be taken into account.






	Returns

	True if the first characters in str match the complete contents of prefix; false otherwise.





Example:

startsWith( "TEST123", "test" ) // Returns true.










	
int strasc(string chr)


	Return the integer character code value corresponding to the first character in the given string.


	Parameters

	chr – a (one-character) string.



	Returns

	The UTF32 code value for the first character in the given string.










	
string strchr(string str, string chr)


	Find the first occurrence of the given character in str .


	Parameters

	
	str – The string to search.


	chr – The character to search for. Only the first character from the string is taken.






	Returns

	The remainder of the input string starting with the given character or the empty string if the character could not be found.










	
int strchrpos(string str, string chr, int start)


	Find the first occurrence of the given character in the given string.


	Parameters

	
	str – The string to search.


	chr – The character to look for. Only the first character of this string will be searched for.


	start – The index into str at which to start searching for the given character.






	Returns

	The index of the first occurrence of chr in str or -1 if str does not contain the given character.





Example:

strchrpos( "test", "s" ) // Returns 2.










	
int strcmp(string str1, string str2)


	Compares two strings using case- sensitive comparison.


	Parameters

	
	str1 – The first string.


	str2 – The second string.






	Returns

	0 if both strings are equal, a value <0 if the first character different in str1 has a smaller character code value than the character at the same position in str2, and a value >1 otherwise.





Example:

if( strcmp( %var, "foobar" ) == 0 )
   echo( "%var is equal to foobar" );










	
string strformat(string format, string value)


	Format the given value as a string using printf-style formatting.


	Parameters

	
	format – A printf-style format string.


	value – The value argument matching the given format string.








Example:

// Convert the given integer value to a string in a hex notation.
%hex = strformat( "%x", %value );










	
int stricmp(string str1, string str2)


	Compares two strings using case- insensitive comparison.


	Parameters

	
	str1 – The first string.


	str2 – The second string.






	Returns

	0 if both strings are equal, a value <0 if the first character different in str1 has a smaller character code value than the character at the same position in str2, and a value >0 otherwise.





Example:

if( stricmp( "FOObar", "foobar" ) == 0 )
   echo( "this is always true" );










	
int strinatcmp(string str1, string str2)


	Compares two strings using “natural order” case-insensitive comparison. Natural order means that rather than solely comparing single character code values, strings are ordered in a natural way. For example, the string “hello10” is considered greater than the string “hello2” even though the first numeric character in “hello10” actually has a smaller character value than the corresponding character in “hello2”. However, since 10 is greater than 2, strnatcmp will put “hello10” after “hello2”.


	Parameters

	
	str1 – The first string.


	str2 – The second string.






	Returns

	0 if the strings are equal, a value >0 if str1 comes after str2 in a natural order, and a value <0 if str1 comes before str2 in a natural order.





Example:

// Bubble sort 10 elements of %array using natural orderdo
{
   %swapped = false;
   for( %i = 0; %i < 10 - 1; %i ++ )
      if( strnatcmp( %array[ %i ], %array[ %i + 1 ] ) > 0 )
      {
         %temp = %array[ %i ];
         %array[ %i ] = %array[ %i + 1 ];
         %array[ %i + 1 ] = %temp;
         %swapped = true;
      }
}
while( %swapped );










	
string stripChars(string str, string chars)


	Remove all occurrences of characters contained in chars from str .


	Parameters

	
	str – The string to filter characters out from.


	chars – A string of characters to filter out from str.






	Returns

	A version of str with all occurrences of characters contained in chars filtered out.





Example:

stripChars( "teststring", "se" ); // Returns "tttring".










	
String stripTrailingNumber(string str)


	Strip a numeric suffix from the given string.


	Parameters

	str – The string from which to strip its numeric suffix.



	Returns

	The string str without its number suffix or the original string str if it has no such suffix.





Example:

stripTrailingNumber( "test123" ) // Returns "test".










	
bool strIsMatchExpr(string pattern, string str, bool caseSensitive)


	Match a pattern against a string.


	Parameters

	
	pattern – The wildcard pattern to match against. The pattern can include characters, ‘*’ to match any number of characters and ‘?’ to match a single character.


	str – The string which should be matched against pattern.


	caseSensitive – If true, characters in the pattern are matched in case-sensitive fashion against this string. If false, differences in casing are ignored.






	Returns

	True if str matches the given pattern.





Example:

strIsMatchExpr( "f?o*R", "foobar" ) // Returns true.










	
bool strIsMatchMultipleExpr(string patterns, string str, bool caseSensitive)


	Match a multiple patterns against a single string.


	Parameters

	
	patterns – A tab-separated list of patterns. Each pattern can include charaters, ‘*’ to match any number of characters and ‘?’ to match a single character. Each of the patterns is tried in turn.


	str – The string which should be matched against patterns.


	caseSensitive – If true, characters in the pattern are matched in case-sensitive fashion against this string. If false, differences in casing are ignored.






	Returns

	True if str matches any of the given patterns.





Example:

strIsMatchMultipleExpr( "*.cs *.gui *.mis", "mymission.mis" ) // Returns true.










	
int strlen(string str)


	Get the length of the given string in bytes.


	Parameters

	str – A string.



	Returns

	The length of the given string in bytes.










	
string strlwr(string str)


	Return an all lower-case version of the given string.


	Parameters

	str – A string.



	Returns

	A version of str with all characters converted to lower-case.





Example:

strlwr( "TesT1" ) // Returns "test1"










	
int strnatcmp(string str1, string str2)


	Compares two strings using “natural order” case-sensitive comparison. Natural order means that rather than solely comparing single character code values, strings are ordered in a natural way. For example, the string “hello10” is considered greater than the string “hello2” even though the first numeric character in “hello10” actually has a smaller character value than the corresponding character in “hello2”. However, since 10 is greater than 2, strnatcmp will put “hello10” after “hello2”.


	Parameters

	
	str1 – The first string.


	str2 – The second string.






	Returns

	0 if the strings are equal, a value >0 if str1 comes after str2 in a natural order, and a value <0 if str1 comes before str2 in a natural order.





Example:

// Bubble sort 10 elements of %array using natural orderdo
{
   %swapped = false;
   for( %i = 0; %i < 10 - 1; %i ++ )
      if( strnatcmp( %array[ %i ], %array[ %i + 1 ] ) > 0 )
      {
         %temp = %array[ %i ];
         %array[ %i ] = %array[ %i + 1 ];
         %array[ %i + 1 ] = %temp;
         %swapped = true;
      }
}
while( %swapped );










	
int strpos(string haystack, string needle, int offset)


	Find the start of needle in haystack searching from left to right beginning at the given offset.


	Parameters

	
	haystack – The string to search.


	needle – The string to search for.






	Returns

	The index at which the first occurrence of needle was found in haystack or -1 if no match was found.





Example:

strpos( "b ab", "b", 1 ) // Returns 3.










	
string strrchr(string str, string chr)


	Find the last occurrence of the given character in str .


	Parameters

	
	str – The string to search.


	chr – The character to search for. Only the first character from the string is taken.






	Returns

	The remainder of the input string starting with the given character or the empty string if the character could not be found.










	
int strrchrpos(string str, string chr, int start)


	Find the last occurrence of the given character in the given string.


	Parameters

	
	str – The string to search.


	chr – The character to look for. Only the first character of this string will be searched for.


	start – The index into str at which to start searching for the given character.






	Returns

	The index of the last occurrence of chr in str or -1 if str does not contain the given character.





Example:

strrchrpos( "test", "t" ) // Returns 3.










	
string strrepeat(string str, int numTimes, string delimiter)


	Return a string that repeats str numTimes number of times delimiting each occurrence with delimiter .


	Parameters

	
	str – The string to repeat multiple times.


	numTimes – The number of times to repeat str in the result string.


	delimiter – The string to put between each repetition of str.






	Returns

	A string containing str repeated numTimes times.





Example:

strrepeat( "a", 5, "b" ) // Returns "ababababa".










	
string strreplace(string source, string from, string to)


	Replace all occurrences of from in source with to .


	Parameters

	
	source – The string in which to replace the occurrences of from.


	from – The string to replace in source.


	to – The string with which to replace occurrences of .






	Returns

	A string with all occurrences of from in source replaced by to.





Example:

strreplace( "aabbccbb", "bb", "ee" ) // Returns "aaeeccee".










	
int strstr(string string, string substring)


	Find the start of substring in the given string searching from left to right.


	Parameters

	
	string – The string to search.


	substring – The string to search for.






	Returns

	The index into string at which the first occurrence of substring was found or -1 if substring could not be found.





Example:

strstr( "abcd", "c" ) // Returns 2.










	
string strupr(string str)


	Return an all upper-case version of the given string.


	Parameters

	str – A string.



	Returns

	A version of str with all characters converted to upper-case.





Example:

strupr( "TesT1" ) // Returns "TEST1"










	
string trim(string str)


	Remove leading and trailing whitespace from the string.


	Parameters

	str – A string.



	Returns

	A string that is the same as str but with any leading (i.e. leftmost) and trailing (i.e. rightmost) whitespace removed.





Example:

trim( "   string  " ); // Returns "string".












Field Manipulators

Functions to deal with whitespace-separated lists of values in strings. TorqueScript extensively uses strings to represent lists of values. The functions in this group simplify working with these lists and allow to easily extract individual values from their strings.

The list strings are segregated into three groups according to the delimiters used to separate invididual values in the strings:


	Strings of words: Elements are separated by newlines (n), spaces, or tabs (t).


	Strings of fields: Elements are sepaerated by newlines (n) or tabs (t).


	Strings of records: Elements are separated by newlines (n).




Aside from the functions here, another useful means to work with strings of words is TorqueScript’s foreach$ statement.


Functions


	
string firstWord(string text)


	Return the first word in text .


	Parameters

	text – A list of words separated by newlines, spaces, and/or tabs.



	Returns

	The word at index 0 in text or “” if text is empty.










	
string getField(string text, int index)


	Extract the field at the given index in the newline and/or tab separated list in text . Fields in text must be separated by newlines and/or tabs.


	Parameters

	
	text – A list of fields separated by newlines and/or tabs.


	index – The zero-based index of the field to extract.






	Returns

	The field at the given index or “” if the index is out of range.





Example:

getField( "a b" TAB "c d" TAB "e f", 1 ) // Returns "c d"










	
int getFieldCount(string text)


	Return the number of newline and/or tab separated fields in text .


	Parameters

	text – A list of fields separated by newlines and/or tabs.



	Returns

	.







Example:

getFieldCount( "a b" TAB "c d" TAB "e f" ) // Returns 3










	
string getFields(string text, int startIndex, int endIndex)


	Extract a range of fields from the given startIndex onwards thru endIndex . Fields in text must be separated by newlines and/or tabs.


	Parameters

	
	text – A list of fields separated by newlines and/or tabs.


	startIndex – The zero-based index of the first field to extract from text.


	endIndex – The zero-based index of the last field to extract from text. If this is -1, all fields beginning with startIndex are extracted from text.






	Returns

	The number of newline and/or tab sepearated elements in text.





Example:

getFields( "a b" TAB "c d" TAB "e f", 1 ) // Returns "c d" TAB "e f"










	
string getRecord(string text, int index)


	Extract the record at the given index in the newline-separated list in text . Records in text must be separated by newlines.


	Parameters

	
	text – A list of records separated by newlines.


	index – The zero-based index of the record to extract.






	Returns

	The record at the given index or “” if index is out of range.





Example:

getRecord( "a b" NL "c d" NL "e f", 1 ) // Returns "c d"










	
int getRecordCount(string text)


	Return the number of newline-separated records in text .


	Parameters

	text – A list of records separated by newlines.



	Returns

	The number of newline-sepearated elements in text.





Example:

getRecordCount( "a b" NL "c d" NL "e f" ) // Returns 3










	
string getRecords(string text, int startIndex, int endIndex)


	Extract a range of records from the given startIndex onwards thru endIndex . Records in text must be separated by newlines.


	Parameters

	
	text – A list of records separated by newlines.


	startIndex – The zero-based index of the first record to extract from text.


	endIndex – The zero-based index of the last record to extract from text. If this is -1, all records beginning with startIndex are extracted from text.






	Returns

	A string containing the specified range of records from text or “” if startIndex is out of range or greater than endIndex.





Example:

getRecords( "a b" NL "c d" NL "e f", 1 ) // Returns "c d" NL "e f"










	
string getWord(string text, int index)


	Extract the word at the given index in the whitespace-separated list in text . Words in text must be separated by newlines, spaces, and/or tabs.


	Parameters

	
	text – A whitespace-separated list of words.


	index – The zero-based index of the word to extract.






	Returns

	The word at the given index or “” if the index is out of range.





Example:

getWord( "a b c", 1 ) // Returns "b"










	
int getWordCount(string text)


	Return the number of whitespace-separated words in text . Words in text must be separated by newlines, spaces, and/or tabs.


	Parameters

	text – A whitespace-separated list of words.



	Returns

	.







Example:

getWordCount( "a b c d e" ) // Returns 5










	
string getWords(string text, int startIndex, int endIndex)


	Extract a range of words from the given startIndex onwards thru endIndex . Words in text must be separated by newlines, spaces, and/or tabs.


	Parameters

	
	text – A whitespace-separated list of words.


	startIndex – The zero-based index of the first word to extract from text.


	endIndex – The zero-based index of the last word to extract from text. If this is -1, all words beginning with startIndex are extracted from text.






	Returns

	A string containing the specified range of words from text or “” if startIndex is out of range or greater than endIndex.





Example:

getWords( "a b c d", 1, 2, ) // Returns "b c"










	
string removeField(string text, int index)


	Remove the field in text at the given index . Fields in text must be separated by newlines and/or tabs.


	Parameters

	
	text – A list of fields separated by newlines and/or tabs.


	index – The zero-based index of the field in text.






	Returns

	A new string with the field at the given index removed or the original string if index is out of range.





Example:

removeField( "a b" TAB "c d" TAB "e f", 1 ) // Returns "a b" TAB "e f"










	
string removeRecord(string text, int index)


	Remove the record in text at the given index . Records in text must be separated by newlines.


	Parameters

	
	text – A list of records separated by newlines.


	index – The zero-based index of the record in text.






	Returns

	is out of range.





Example:

removeRecord( "a b" NL "c d" NL "e f", 1 ) // Returns "a b" NL "e f"










	
string removeWord(string text, int index)


	Remove the word in text at the given index . Words in text must be separated by newlines, spaces, and/or tabs.


	Parameters

	
	text – A whitespace-separated list of words.


	index – The zero-based index of the word in text.






	Returns

	A new string with the record at the given index removed or the original string if index is out of range.





Example:

removeWord( "a b c d", 2 ) // Returns "a b d"










	
string restWords(string text)


	Return all but the first word in text .


	Parameters

	text – A list of words separated by newlines, spaces, and/or tabs.



	Returns

	Text with the first word removed.










	
string setField(string text, int index, string replacement)


	Replace the field in text at the given index with replacement . Fields in text must be separated by newlines and/or tabs.


	Parameters

	
	text – A list of fields separated by newlines and/or tabs.


	index – The zero-based index of the field to replace.


	replacement – The string with which to replace the field.






	Returns

	is out of range.





Example:

setField( "a b" TAB "c d" TAB "e f", 1, "g h" ) // Returns "a b" TAB "g h" TAB "e f"










	
string setRecord(string text, int index, string replacement)


	Replace the record in text at the given index with replacement . Records in text must be separated by newlines.


	Parameters

	
	text – A list of records separated by newlines.


	index – The zero-based index of the record to replace.


	replacement – The string with which to replace the record.






	Returns

	A new string with the field at the given index replaced by replacement or the original string if index is out of range.





Example:

setRecord( "a b" NL "c d" NL "e f", 1, "g h" ) // Returns "a b" NL "g h" NL "e f"










	
string setWord(string text, int index, string replacement)


	Replace the word in text at the given index with replacement . Words in text must be separated by newlines, spaces, and/or tabs.


	Parameters

	
	text – A whitespace-separated list of words.


	index – The zero-based index of the word to replace.


	replacement – The string with which to replace the word.






	Returns

	A new string with the record at the given index replaced by replacement or the original string if index is out of range.





Example:

setWord( "a b c d", 2, "f" ) // Returns "a b f d"

















          

      

      

    

  

    
      
          
            
  
Basic Syntax

Like other languages, TorqueScript has certain syntactical rules you need to follow. The language is very forgiving, easy to debug, and is not as strict as a low level language like C++. Observe the following line in a script:

// Create test variable with a temporary variable
%testVariable = 3;





The three most simple rules obeyed in the above code are:


	Ending a line with a semi-colon ;


	Proper use of white space.


	Commenting.




The engine will parse code line by line, stopping whenever it reaches a semi-colon. This is referred to as a statement terminator, common to other programming languages such as C++, JavaScript, etc. The following code will produce an error that may cause your entire script to fail:

%testVariable = 3
%anotherVariable = 4;





To the human eye, you are able to discern two separate lines of code with different actions. Here is how the script compiler will read it:

%testVariable = 3%anotherVariable = 4;





This is obviously not what the original code was meant to do. There are exemptions to this rule, but they come into play when multiple lines of code are supposed to work together for a single action:

if(%testVariable == 4)
        echo("Variable equals 4");





We have not covered conditional operators or echo commands yet, but you should notice that the first line does not have a semi-colon. The easiest explanation is that the code is telling the compiler: “Read the first line, do the second line if we meet the requirements.” In other words, perform operations between semi-colons. Complex operations require multiple lines of code working together.

The second rule, proper use of whitespace, is just as easy to remember. Whitespace refers to how your script code is separated between operations. Let’s look at the first example again:

%testVariable = 3;





The code is storing a value 3 in a local variable %testVariable. It is doing so by using a common mathematical operator, the equal sign. TorqueScript recognizes the equal sign and performs the action just as expected. It does not care if there are spaces in the operation:

%testVariable=3;





The above code works just as well, even without the spaces between the variable, the equal sign, and the 3. The whitespace rule makes a lot more sense when combined with the semi-colon rule and multiple lines of code working together. The following will compile and run without error:

if(%testVariable == 4) echo("Variable equals 4");






Comments

The last rule is optional, but should be used as often as possible if you want to create clean code. Whenever you write code, you should try to use comments. Comments are a way for you to leave notes in code which are not compiled into the game. The compiler will essentially skip over these lines.

There are two different comment syntax styles. The first one uses the two slashes, //. This is used for single line comments:

// This comment line will be ignored
// This second line will also be ignored
%testVariable = 3;
// This third line will also be ignored





In the last example, the only line of code that will be executed has to do with %testVariable. If you need to comment large chunks of code, or leave a very detailed message, you can use the /*comment*/ syntax. The /* starts the commenting, the */ ends the commenting, and anything in between will be considered a comment:

/*
While attending school, an instructor taught a mantra I still use:

"Read. Read Code. Code."

Applying this to Torque 3D development is easy:

READ the documentation first.

READ CODE written by other Torque developers.

CODE your own prototypes based on what you have learned.
*/





As you can see, the comment makes full use of whitespace and multiple lines. While it is important to comment what the code does, you can also use this to temporarily remove unwanted code until a better solution is found:

// Why are you using multiple if statements. Why not use a switch$?
/*
if(%testVariable == "Mich")
  echo("User name: ", %testVariable);

if(%testVariable == "Heather")
  echo("User Name: ", %testVariable);

if(%testVariable == "Nikki")
  echo("User Name: ", %testVariable);
*/











          

      

      

    

  

    
      
          
            
  
Tutorials


Simple



	Echo

	Calling Functions

	Math

	String Manipulation

	Looping Structures

	Array Manipulation

	Switch Statements








Advanced



	Player Class

	Player Datablock

	Shapebase Class

	Turrest

	Weapons

	Proximity Mines

	Camera Modes

	RTS Prototype

	TShapeConstructor

	Engine to Script

	Projectiles

	Networking











          

      

      

    

  

    
      
          
            
  
Types

TorqueScript implicitly supports several variable data-types: numbers, strings, booleans, arrays and vectors. If you wish to test the various data types, you can use the echo(...) command. For example:

%meaningOfLife = 42;
echo(%meaningOfLife);

$name = "Heather";
echo($name);





The echo will post the results in the console, which can be accessed by pressing the tilde key ~ while in game.


Numbers

TorqueScript handles standard numeric types:

123     (Integer)
1.234   (floating point)
1234e-3 (scientific notation)
0xc001  (hexadecimal)








Strings

Text, such as names or phrases, are supported as strings. Numbers can also be stored in string format. Standard strings are stored in double-quotes:

"abcd"    (string)





Example:

$UserName = "Heather";





Strings with single quotes are called “tagged strings”:

'abcd'  (tagged string)





Tagged strings are special in that they contain string data, but also have a special numeric tag associated with them. Tagged strings are used for sending string data across a network. The value of a tagged string is only sent once, regardless of how many times you actually do the sending.

On subsequent sends, only the tag value is sent. Tagged values must be de-tagged when printing. You will not need to use a tagged string often unless you are in need of sending strings across a network often, like a chat system:

$a = 'This is a tagged string';
echo("  Tagged string: ", $a);
echo("Detagged string: ", detag($a));





The output will be similar to this:

Tagged string: 24
Detagged string:





The second echo will be blank unless the string has been passed to you over a network.




Booleans

Like most programming languages, TorqueScript also supports booleans. Boolean numbers have only two values- true or false:

true    (1)
false   (0)





Again, as in many programming languages the constant “true” evaluates to the number 1 in TorqueScript, and the constant “false” evaluates to the number zero. However, non-zero values are also considered true. Think of booleans as “on/off” switches, often used in conditional statements:

$lightsOn = true;

if($lightsOn)
  echo("Lights are turned on");








Arrays

Arrays are data structures used to store consecutive values of the same data type:

$TestArray[n]   (Single-dimension)
$TestArray[m,n] (Multidimensional)
$TestArray[m_n] (Multidimensional)





If you have a list of similar variables you wish to store together, try using an array to save time and create cleaner code. The syntax displayed above uses the letters n and m to represent where you will input the number of elements in an array. The following example shows code that could benefit from an array:

$firstUser = "Heather";
$secondUser = "Nikki";
$thirdUser = "Mich";

echo($firstUser);
echo($secondUser);
echo($thirdUser);





Instead of using a global variable for each user name, we can put those values into a single array:

$userNames[0] = "Heather";
$userNames[1] = "Nikki";
$userNames[2] = "Mich";

echo($userNames[0]);
echo($userNames[1]);
echo($userNames[2]);





Now, let’s break the code down. Like any other variable declaration, you can create an array by giving it a name and value:

$userNames[0] = "Heather";





What separates an array declaration from a standard variable is the use of brackets []. The number you put between the brackets is called the index. The index will access a specific element in an array, allowing you to view or manipulate the data. All the array values are stored in consecutive order.

If you were able to see an array on paper, it would look something like this:

[0] [1] [2]





In our example, the data looks like this:

["Heather"] ["Nikki"] ["Mich"]





Like other programming languages, the index is always a numerical value and the starting index is always 0. Just remember, index 0 is always the first element in an array. As you can see in the above example, we create the array by assigning the first index (0) a string value (“Heather”).

The next two lines continue filling out the array, progressing through the index consecutively:

$userNames[1] = "Nikki";
$userNames[2] = "Mich";





The second array element (index 1) is assigned a different string value (“Nikki”), as is the third (index 2). At this point, we still have a single array structure, but it is holding three separate values we can access. Excellent for organization.

The last section of code shows how you can access the data that has been stored in the array. Again, you use a numerical index to point to an element in the array. If you want to access the first element, use 0:

echo($userNames[0]);





In a later section, you will learn about looping structures that make using arrays a lot simpler. Before moving on, you should know that an array does not have to be a single, ordered list. TorqueScript also support multidimensional arrays.

An single-dimensional array contains a single row of values. A multidimensional array is essentially an array of arrays, which introduces columns as well. The following is a visual of what a multidimensional looks like with three rows and three columns:

[x] [x] [x]
[x] [x] [x]
[x] [x] [x]





Defining this kind of array in TorqueScript is simple. The following creates an array with 3 rows and 3 columns:

$testArray[0,0] = "a";
$testArray[0,1] = "b";
$testArray[0,2] = "c";

$testArray[1,0] = "d";
$testArray[1,1] = "e";
$testArray[1,2] = "f";

$testArray[2,0] = "g";
$testArray[2,1] = "h";
$testArray[2,2] = "i";





Notice that we are are now using two indices, both starting at 0 and stopping at 2. We can use these as coordinates to determine which array element we are accessing:

[0,0] [0,1] [0,2]
[1,0] [1,1] [1,2]
[2,0] [2,1] [2,2]





In our example, which progresses through the alphabet, you can visualize the data in the same way:

[a] [b] [c]
[d] [e] [f]
[g] [h] [i]





The first element [0,0] points to the letter ‘a’. The last element [2,2] points to the letter ‘i’.




Vectors

Vectors are a helpful data-type which are used throughout Torque 3D. For example, many fields in the World Editor take numeric values in sets of 3 or 4. These are stored as strings and interpreted as “vectors”:

"1.0 1.0 1.0"   (3 element vector)





The most common example of a vector would be a world position. Like most 3D coordinate systems, an object’s position is stored as (X Y Z). You can use a three element vector to hold this data:

%position = "25.0 32 42.5";





You can separate the values using spaces or tabs (both are acceptable whitespace). Another example is storing color data in a four element vector. The values that make up a color are “Red Blue Green Alpha,” which are all numbers. You can create a vector for color using hard numbers, or variables:

%firstColor = "100 100 100 255";
echo(%firstColor);

%red = 128;
%blue = 255;
%green = 64;
%alpha = 255;

%secondColor = %red SPC %blue SPC %green SPC %alpha;
echo(%secondColor);











          

      

      

    

  

    
      
          
            
  
Utilities

Miscellaneous utility functions.


Functions


	
int countBits(int v)


	Count the number of bits that are set in the given 32 bit integer.


	Parameters

	v – An integer value.



	Returns

	.












	
Torque::UUID generateUUID()


	Generate a new universally unique identifier (UUID).


	Returns

	A newly generated UUID.















          

      

      

    

  

    
      
          
            
  
Variables

A variable is a letter, word, or phrase linked to a value stored in your game’s memory and used during operations. Creating a variable is a one line process. The following code creates a variable by naming it and assigning a value:

%localVariable = 3;





You can assign any type value to the variable you want. This is referred to as a language being type-insensitive. TorqueScript does not care (insensitive) what you put in a variable, even after you have created it. The following code is completely valid:

%localVariable = 27;
%localVariable = "Heather";
%localVariable = "7 7 7";





The main purpose of the code is to show that TorqueScript treats all data types the same way. It will interpret and convert the values internally, so you do not have to worry about typecasting. That may seem a little confusing. After all, when would you want a variable that can store a number, a string, or a vector?

You will rarely need to, which is why you want to start practicing good programming habits. An important practice is proper variable naming. The following code will make a lot more sense, considering how the variables are named:

%userName = "Heather";
%userAge = 27;
%userScores = "7 7 7";





TorqueScript is more forgiving than low level programming languages. While it expects you to obey the basic syntax rules, it will allow you to get away with small mistakes or inconsistency. The best example is variable case sensitivity. With variables, TorqueScript is not case sensitive. You can create a variable and refer to it during operations without adhering to case rules:

%userName = "Heather";
echo(%Username);





In the above code, %userName and %Username       are the same variable, even though they are using different capitalization. You should still try to remain consistent in your variable naming and usage, but you will not be punished if you slip up occasionally.

There are two types of variables you can declare and use in TorqueScript: local and global. Both are created and referenced similarly:

%localVariable = 1;
$globalVariable = 2;





As you can see, local variable names are preceded by the percent sign %. Global variables are preceded by the dollar sign $. Both types can be used in the same manner: operations, functions, equations, etc. The main difference has to do with how they are scoped.

In programming, scoping refers to where in memory a variable exists during its life. A local variable is meant to only exist in specific blocks of code, and its value is discarded when you leave that block. Global variables are meant to exist and hold their value during your entire programs execution. Look at the following code to see an example of a local variable:

function test()
{
   %userName = "Heather";
   echo(%userName);
}





We will cover functions a little later, but you should know that functions are blocks of code that only execute when you call them by name. This means the variable, %userName, does not exist until the test() function is called. When the function has finished all of its logic, the %userName variable will no longer exist. If you were to try to access the %userName variable outside of the function, you will get nothing.

Most variables you will work with are local, but you will eventually want a variables that last for your entire game. These are extremely important values used throughout the project. This is when global variables become useful. For the most part, you can declare global variables whenever you want:

$PlayerName = "Heather";

function printPlayerName()
{
   echo($PlayerName);
}

function setPlayerName()
{
   $PlayerName = "Nikki";
}





The above code makes full use of a global variable that holds a player’s name. The first declaration of the variable happens outside of the functions, written anywhere in your script. Because it is global, you can reference it in other locations, including separate script files. Once declared, your game will hold on to the variable until shutdown.





          

      

      

    

  

    
      
          
            
  
AIClient

Simulated client driven by AI commands.


	Inherit:

	AIConnection






Description

This object is derived from the AIConnection class. It introduces its own Player object to solidify the purpose of this class: Simulated client connecting as a player

To get more specific, if you want a strong alternative to AIPlayer (and wish to make use of the AIConnection structure), consider AIClient. AIClient inherits from AIConnection, contains quite a bit of functionality you will find in AIPlayer, and has its own Player object.




Fields


	
string AIClient::getAimLocation


	ai.getAimLocation();






	
string AIClient::getLocation


	ai.getLocation();






	
string AIClient::getMoveDestination


	ai.getMoveDestination();






	
int AIClient::getTargetObject


	ai.getTargetObject();






	
void AIClient::missionCycleCleanup


	ai.missionCycleCleanup();






	
void AIClient::move


	ai.move();






	
void AIClient::moveForward


	ai.moveForward();






	
void AIClient::setAimLocation


	ai.setAimLocation( x y z );






	
void AIClient::setMoveDestination


	ai.setMoveDestination( x y z );






	
void AIClient::setMoveSpeed


	ai.setMoveSpeed( float );






	
void AIClient::setTargetObject


	ai.setTargetObject( obj );






	
void AIClient::stop


	ai.stop();











          

      

      

    

  

    
      
          
            
  
AIConnection

Special client connection driven by an AI, rather than a human.


	Inherit:

	GameConnection






Description

Unlike other net connections, AIConnection is intended to run unmanned. Rather than gathering input from a human using a device, move events, triggers, and look events are driven through functions like AIConnection::setMove.

In addition to having its own set of functions for managing client move events, a member variable inherited by GameConnection is toggle: mAIControlled. This is useful for a server to determine if a connection is AI driven via the function GameConnection::isAIControlled

AIConnection is an alternative to manually creating an AI driven game object. When you want the server to manage AI, you will create a specific one from script using a class like AIPlayer. If you do not want the server managing the AI and wish to simulate a complete client connection, you will use AIConnection

.To get more specific, if you want a strong alternative to AIPlayer (and wish to make use of the AIConnection structure), consider AIClient. AIClient inherits from AIConnection, contains quite a bit of functionality you will find in AIPlayer, and has its own Player object.

Example:

// Create a new AI client connection
%botConnection = aiConnect("MasterBlaster" @ %i, -1, 0.5, false, "SDF", 1.0);

// In another area of the code, you can locate this and any other AIConnections
// using the isAIControlled function
for(%i = 0; %i < ClientGroup.getCount(); %i++)
{
   %client = ClientGroup.getObject(%i);
   if(%client.isAIControlled())
   {
      // React to this AI controlled client
   }
}








Methods


	
float AIConnection::getMove(string field)


	Get the given field of a move.


	Parameters

	field – One of {‘x’,’y’,’z’,’yaw’,’pitch’,’roll’}



	Returns

	The requested field on the current move.










	
bool AIConnection::getTrigger(int trigger)


	Is the given trigger set?






	
void AIConnection::setFreeLook(bool isFreeLook)


	Enable/disable freelook on the current move.






	
void AIConnection::setMove(string field, float value)


	Set a field on the current move.


	Parameters

	
	field – One of {‘x’,’y’,’z’,’yaw’,’pitch’,’roll’}


	value – Value to set field to.













	
void AIConnection::setTrigger(int trigger, bool set)


	Set a trigger.








Fields


	
string AIConnection::getAddress


	




	
bool AIConnection::getFreeLook


	getFreeLook() Is freelook on for the current move?











          

      

      

    

  

    
      
          
            
  
AIPlayer

A Player object not controlled by conventional input, but by an AI engine.


	Inherit:

	Player






Description

The AIPlayer provides a Player object that may be controlled from script. You control where the player moves and how fast. You may also set where the AIPlayer is aiming at – either a location or another game object.

The AIPlayer class does not have a datablock of its own. It makes use of the PlayerData datablock to define how it looks, etc. As the AIPlayer is an extension of the Player class it can mount objects and fire weapons, or mount vehicles and drive them.

While the PlayerData datablock is used, there are a number of additional callbacks that are implemented by AIPlayer on the datablock. These are listed here:


	void onReachDestination(AIPlayer obj)

	Called when the player has reached its set destination using the setMoveDestination() method. The actual point at which this callback is called is when the AIPlayer is within the mMoveTolerance of the defined destination.



	void onMoveStuck(AIPlayer obj)

	While in motion, if an AIPlayer has moved less than moveStuckTolerance within a single tick, this callback is called. From here you could choose an alternate destination to get the AIPlayer moving again.



	void onTargetEnterLOS(AIPlayer obj)

	When an object is being aimed at (following a call to setAimObject()) and the targeted object enters the AIPlayer’s line of sight, this callback is called. The LOS test is a ray from the AIPlayer’s eye position to the center of the target’s bounding box. The LOS ray test only checks against interiors, statis shapes, and terrain.



	void onTargetExitLOS(AIPlayer obj)

	When an object is being aimed at (following a call to setAimObject()) and the targeted object leaves the AIPlayer’s line of sight, this callback is called. The LOS test is a ray from the AIPlayer’s eye position to the center of the target’s bounding box. The LOS ray test only checks against interiors, statis shapes, and terrain.





Example:

// Create the demo player object
%player = new AiPlayer()
{
   dataBlock = DemoPlayer;
   path = "";
};








Methods


	
void AIPlayer::clearAim()


	Use this to stop aiming at an object or a point.






	
Point3F AIPlayer::getAimLocation()


	Returns the point the AIPlayer is aiming at. This will reflect the position set by setAimLocation() , or the position of the object that the bot is now aiming at. If the bot is not aiming at anything, this value will change to whatever point the bot’s current line-of-sight intercepts.


	Returns

	World space coordinates of the object AI is aiming at. Formatted as “X Y Z”.










	
int AIPlayer::getAimObject()


	Gets the object the AIPlayer is targeting.


	Returns

	is aiming at.










	
Point3F AIPlayer::getMoveDestination()


	Get the AIPlayer’s current destination.


	Returns

	Returns a point containing the “x y z” position of the AIPlayer’s current move destination. If no move destination has yet been set, this returns “0 0 0”.










	
float AIPlayer::getMoveSpeed()


	Gets the move speed of an AI object.


	Returns

	A speed multiplier between 0.0 and 1.0.










	
void AIPlayer::setAimLocation(Point3F target)


	Tells the AIPlayer to aim at the location provided.


	Parameters

	target – An “x y z” position in the game world to target.










	
void AIPlayer::setAimObject(GameBase targetObject, Point3F offset)


	Sets the AIPlayer’s target object. May optionally set an offset from target location.


	Parameters

	
	targetObject – The object to target


	offset – Optional three-element offset vector which will be added to the position of the aim object.








Example:

// Without an offset
%ai.setAimObject(%target);

// With an offset
// Cause our AI object to aim at the target
// offset (0, 0, 1) so you dont aim at the targets feet
%ai.setAimObject(%target, "0 0 1");










	
void AIPlayer::setMoveDestination(Point3F goal, bool slowDown)


	Tells the AI to move to the location provided.


	Parameters

	
	goal – Coordinates in world space representing location to move to.


	slowDown – A boolean value. If set to true, the bot will slow down when it gets within 5-meters of its move destination. If false, the bot will stop abruptly when it reaches the move destination. By default, this is true.













	
void AIPlayer::setMoveSpeed(float speed)


	Sets the move speed for an AI object.


	Parameters

	speed – A speed multiplier between 0.0 and 1.0. This is multiplied by the AIPlayer’s base movement rates (as defined in its PlayerData datablock)










	
void AIPlayer::stop()


	Tells the AIPlayer to stop moving.








Fields


	
float AIPlayer::mMoveTolerance


	Distance from destination before stopping. When the AIPlayer is moving to a given destination it will move to within this distance of the destination and then stop. By providing this tolerance it helps the AIPlayer from never reaching its destination due to minor obstacles, rounding errors on its position calculation, etc. By default it is set to 0.25.






	
int AIPlayer::moveStuckTestDelay


	The number of ticks to wait before testing if the AIPlayer is stuck. When the AIPlayer is asked to move, this property is the number of ticks to wait before the AIPlayer starts to check if it is stuck. This delay allows the AIPlayer to accelerate to full speed without its initial slow start being considered as stuck.






	
float AIPlayer::moveStuckTolerance


	Distance tolerance on stuck check. When the AIPlayer is moving to a given destination, if it ever moves less than this tolerance during a single tick, the AIPlayer is considered stuck. At this point the onMoveStuck() callback is called on the datablock.











          

      

      

    

  

    
      
          
            
  
AITurretShape

Provides an AI controlled turret.


	Inherit:

	TurretShape






Description

Provides an AI controlled turret.

Uses the AITurretShapeData datablock, which is based on the TurretShapeData datablock for common properties.

AITurretShape builds an AI controlled turret. It uses a state machine and properties as defined in AITurretShapeData to decide how to find targets and what to do with them. As with TurretShape (which AITurretShape derives from) the AITurretShape class provides the base on which ShapeBaseImageData weapons may be mounted.




Overview

The AITurretShape functions through the use of a state machine as defined in its AITurretShapeData datablock. It is very similar to how ShapeBaseImageData works. This allows you to customize exactly how the turret behaves while it searches for a target, and what it does once it has a target. But in general, the AI turret goes through a number of stages:

The AI turret usually starts off by scanning for a suitable target. This is done by checking for targets within a pie wedge shaped volume in front of the turret based on where the scanPoint node is placed. The turret takes cover into account when searching for a target so that it doesn’t “cheat”.

Once a target is acquired the turret attempts to follow it. Usually at this point the turret activates its weapon. If a target is lost due to it going behind cover, the turret will attempt to follow and reacquire the target using its last known position and velocity. The amount of time allowed for this attempt is defined by AITurretShapeData::trackLostTargetTime.

If the target is lost (either by going behind cover or it is dead) the turret returns to its scanning mode to find another victim.

If the AI turret is destroyed then it can go into a special state to show the user that it has been destroyed. As with TurretShape turrets a AITurretShape may respawn after a set amount of time (see TurretShape and TurretShape::doRespawn()).

In addition to AI turrets being placed within a mission, it is also possible for a player to deploy a turret such as throwing one from their inventory. When a turret has been tossed it will be in a Thrown state and usually in an inactive mode. Once the turret comes to rest on the ground it moves into a Deploy state where it may unfold to get ready. Once ready the turret begins the scanning process. As the AI turret’s state machine may be customized for your specific circumstances, the way in which turrets are deployed by a player is up to you. An AI turret could be thrown in a fully working state, ready to take out targets before the turret even hits the ground.




Example State Machine

Here is an example AITurretShapeData datablock with a defined state machine and the script to support the state machine. This is just one possible example.

Example:

//-----------------------------------------------------------------------------// AI Turret//-----------------------------------------------------------------------------

datablock AITurretShapeData(AITurret)
{
   category = "Turrets";
   shapeFile = "art/shapes/weapons/Turret/Turret_Legs.DAE";

   maxDamage = 70;
   destroyedLevel = 70;
   explosion = GrenadeExplosion;

   simpleServerCollision = false;

   zRotOnly = false;

   // Rotation settings
   minPitch = 15;
   maxPitch = 80;
   maxHeading = 90;
   headingRate = 50;
   pitchRate = 50;

   // Scan settings
   maxScanPitch = 10;
   maxScanHeading = 30;
   maxScanDistance = 20;
   trackLostTargetTime = 2;

   maxWeaponRange = 30;

   weaponLeadVelocity = 0;

   // Weapon mounting
   numWeaponMountPoints = 1;

   weapon[0] = AITurretHead;
   weaponAmmo[0] = AITurretAmmo;
   weaponAmmoAmount[0] = 10000;

   maxInv[AITurretHead] = 1;
   maxInv[AITurretAmmo] = 10000;

   // Initial start up state
   stateName[0]                     = "Preactivate";
   stateTransitionOnAtRest[0]       = "Scanning";
   stateTransitionOnNotAtRest[0]    = "Thrown";

   // Scan for targets
   stateName[1]                     = "Scanning";
   stateScan[1]                     = true;
   stateTransitionOnTarget[1]       = "Target";
   stateSequence[1]                 = "scan";
   stateScript[1]                   = "OnScanning";

   // Have a target
   stateName[2]                     = "Target";
   stateTransitionOnNoTarget[2]     = "NoTarget";
   stateTransitionOnTimeout[2]      = "Firing";
   stateTimeoutValue[2]             = 2.0;
   stateScript[2]                   = "OnTarget";

   // Fire at target
   stateName[3]                     = "Firing";
   stateFire[3]                     = true;
   stateTransitionOnNoTarget[3]     = "NoTarget";
   stateScript[3]                   = "OnFiring";

   // Lost target
   stateName[4]                     = "NoTarget";
   stateTransitionOnTimeout[4]      = "Scanning";
   stateTimeoutValue[4]             = 2.0;
   stateScript[4]                   = "OnNoTarget";

   // Player thrown turret
   stateName[5]                     = "Thrown";
   stateTransitionOnAtRest[5]       = "Deploy";
   stateSequence[5]                 = "throw";
   stateScript[5]                   = "OnThrown";

   // Player thrown turret is deploying
   stateName[6]                     = "Deploy";
   stateTransitionOnTimeout[6]      = "Scanning";
   stateTimeoutValue[6]             = 2.5;
   stateSequence[6]                 = "deploy";
   stateScaleAnimation[6]           = true;
   stateScript[6]                   = "OnDeploy";

   // Special state that is set when the turret is destroyed.// This state is set in the onDestroyed() callback.
   stateName[7]                     = "Destroyed";
   stateSequence[7]                 = "destroyed";
};

//-----------------------------------------------------------------------------// Deployable AI Turret//-----------------------------------------------------------------------------
datablock AITurretShapeData(DeployableTurret : AITurret)
{
   // Mission editor category
   category = "Weapon";

   className = "DeployableTurretWeapon";

   startLoaded = false;

   // Basic Item properties
   mass = 1.5;
   elasticity = 0.1;
   friction = 0.6;
   simpleServerCollision = false;

   // Dynamic properties defined by the scripts
   PreviewImage = turret.png;
   pickUpName = "a deployable turret";
   description = "Deployable Turret";
   image = DeployableTurretImage;
   reticle = "blank";
   zoomReticle = blank;
};

// ----------------------------------------------------------------------------// AITurretShapeData// ----------------------------------------------------------------------------

function AITurretShapeData::onAdd(%this, %obj)
{
   Parent::onAdd(%this, %obj);

   %obj.mountable = false;
}

// Player has thrown a deployable turret.  This copies from ItemData::onThrow()
function AITurretShapeData::onThrow(%this, %user, %amount)
{
   // Remove the object from the inventoryif (%amount $= "")
      %amount = 1;
   if (%this.maxInventory !$= "")
      if (%amount > %this.maxInventory)
         %amount = %this.maxInventory;
   if (!%amount)
      return 0;
   %user.decInventory(%this,%amount);

   // Construct the actual object in the world, and add it to// the mission group so its cleaned up when the mission is// done.  The turrets rotation matches the players.
   %rot = %user.getEulerRotation();
   %obj = newAITurretShape()
   {
      datablock = %this;
      rotation = "0 0 1 " @ getWord(%rot, 2);
      count = 1;
      sourceObject = %user;
      client = %user.client;
      isAiControlled = true;
   };
   MissionGroup.add(%obj);

   // Let the turret know that were a firend
   %obj.addToIgnoreList(%user);

   // We need to add this turret to a list on the client so that if we die,// the turret will still ignore our player.
   %client = %user.client;
   if (%client)
   {
      if (!%client.ownedTurrets)
      {
         %client.ownedTurrets = newSimSet();
      }

      // Go through the clients owned turret list.  Make sure were// a friend of every turret and every turret is a friend of ours.// Commence hugging!for (%i=0; %i<%client.ownedTurrets.getCount(); %i++)
      {
         %turret = %client.ownedTurrets.getObject(%i);
         %turret.addToIgnoreList(%obj);
         %obj.addToIgnoreList(%turret);
      }

      // Add ourselves to the clients owned list.
      %client.ownedTurrets.add(%obj);
   }

   return %obj;
}

function AITurretShapeData::onDestroyed(%this, %turret, %lastState)
{
   // This method is invoked by the ShapeBase code whenever the// objects damage state changes.

   %turret.playAudio(0, TurretDestroyed);
   %turret.setAllGunsFiring(false);
   %turret.resetTarget();
   %turret.setTurretState( "Destroyed", true );

   // Set the weapons to destoryedfor(%i = 0; %i < %this.numWeaponMountPoints; %i++)
   {
      %turret.setImageGenericTrigger(%i, 0, true);
   }

   Parent::onDestroyed(%this, %turret, %lastState);
}

function AITurretShapeData::OnScanning(%this, %turret)
{
   //echo("AITurretShapeData::OnScanning: " SPC %this SPC %turret);

   %turret.startScanForTargets();
   %turret.playAudio(0, TurretScanningSound);
}

function AITurretShapeData::OnTarget(%this, %turret)
{
   //echo("AITurretShapeData::OnTarget: " SPC %this SPC %turret);

   %turret.startTrackingTarget();
   %turret.playAudio(0, TargetAquiredSound);
}

function AITurretShapeData::OnNoTarget(%this, %turret)
{
   //echo("AITurretShapeData::OnNoTarget: " SPC %this SPC %turret);

   %turret.setAllGunsFiring(false);
   %turret.recenterTurret();
   %turret.playAudio(0, TargetLostSound);
}

function AITurretShapeData::OnFiring(%this, %turret)
{
   //echo("AITurretShapeData::OnFiring: " SPC %this SPC %turret);

   %turret.setAllGunsFiring(true);
}

function AITurretShapeData::OnThrown(%this, %turret)
{
   //echo("AITurretShapeData::OnThrown: " SPC %this SPC %turret);

   %turret.playAudio(0, TurretThrown);
}

function AITurretShapeData::OnDeploy(%this, %turret)
{
   //echo("AITurretShapeData::OnDeploy: " SPC %this SPC %turret);// Set the weapons to loadedfor(%i = 0; %i < %this.numWeaponMountPoints; %i++)
   {
      %turret.setImageLoaded(%i, true);
   }

   %turret.playAudio(0, TurretActivatedSound);
}





And here is the above example state machine’s flow:




Shape File Nodes

In addition to the required TurretBase nodes, AITurretShape makes use of additional nodes within the shape file to allow the AI to do its work. The first is the ‘scanPoint’ node. This is used by the AI to project a pie wedge shaped scanning volume in which to detect possible targets. The scanPoint node is at the apex of the scanning wedge. If the scanPoint node is not present within the shape file then the turret’s world transform is used.

The second is the ‘aimPoint’ node. Once the AI turret has obtained a target the aimPoint is used to point the turret at the target. Specifically, the turret rotates in both pitch and heading such that the aimPoint points at the target. If you’re using a weapon that doesn’t have its muzzle point on the same plane as its mount point (known as an off-axis weapon) then be sure to place the aimPoint at a z position equivalent to the weapon’s muzzle point. This allows for the correct pitch calculation. If the aimPoint is not found on the turret’s shape, then the pitch node will be used.




Ignore List

AI turrets keep track of an ignore list. This is used by default to stop a player deployed turret from targeting its owner, even when that owner is killed and respawns. But this ignore list could also be used to have the turret ignore team mates, squad members, invisible players, etc. Use AITurretShape::addToIgnoreList() and AITurretShape::removeFromIgnoreList() to manipulate this list. You should also look in scripts/server/turret.cs at AITurretShapeData::onThrow() to see how the ignore list is handled and deployed turrets are kept track of on a per connected client basis.




Methods


	
void AITurretShape::activateTurret()


	Activate a turret from a deactive state.






	
void AITurretShape::addToIgnoreList(ShapeBase obj)


	Adds object to the turret’s ignore list. All objects in this list will be ignored by the turret’s targeting.


	Parameters

	obj – The ShapeBase object to ignore.










	
void AITurretShape::deactivateTurret()


	Deactivate a turret from an active state.






	
SimObject AITurretShape::getTarget()


	Get the turret’s current target.


	Returns

	The object that is the target’s current target, or 0 if no target.










	
float AITurretShape::getWeaponLeadVelocity()


	Get the turret’s defined projectile velocity that helps with target leading.


	Returns

	The defined weapon projectile speed, or 0 if leading is disabled.










	
bool AITurretShape::hasTarget()


	Indicates if the turret has a target.


	Returns

	True if the turret has a target.










	
void AITurretShape::recenterTurret()


	Recenter the turret’s weapon.






	
void AITurretShape::removeFromIgnoreList(ShapeBase obj)


	Removes object from the turret’s ignore list. All objects in this list will be ignored by the turret’s targeting.


	Parameters

	obj – The ShapeBase object to once again allow for targeting.










	
void AITurretShape::resetTarget()


	Resets the turret’s target tracking. Only resets the internal target tracking. Does not modify the turret’s facing.






	
void AITurretShape::setAllGunsFiring(bool fire)


	Set the firing state of the turret’s guns.


	Parameters

	fire – Set to true to activate all guns. False to deactivate them.










	
void AITurretShape::setGunSlotFiring(int slot, bool fire)


	Set the firing state of the given gun slot.


	Parameters

	
	slot – The gun to modify. Valid range is 0-3 that corresponds to the weapon mount point.


	fire – Set to true to activate the gun. False to deactivate it.













	
void AITurretShape::setTurretState(string newState, bool force)


	Set the turret’s current state. Normally the turret’s state comes from updating the state machine but this method allows you to override this and jump to the requested state immediately.


	Parameters

	
	newState – The name of the new state.


	force – Is true then force the full processing of the new state even if it is the same as the current state. If false then only the time out value is reset and the state’s script method is called, if any.













	
void AITurretShape::setWeaponLeadVelocity(float velocity)


	Set the turret’s projectile velocity to help lead the target. This value normally comes from AITurretShapeData::weaponLeadVelocity but this method allows you to override the datablock value. This can be useful if the turret changes ammunition, uses a different weapon than the default, is damaged, etc.






	
void AITurretShape::startScanForTargets()


	Begin scanning for a target.






	
void AITurretShape::startTrackingTarget()


	Have the turret track the current target.






	
void AITurretShape::stopScanForTargets()


	Stop scanning for targets.






	
void AITurretShape::stopTrackingTarget()


	Stop the turret from tracking the current target.











          

      

      

    

  

    
      
          
            
  
AITurretShapeData

object.


	Inherit:

	TurretShapeData






Description

Defines properties for an AITurretShape object.




Fields


	
float AITurretShapeData::maxScanDistance


	Maximum distance to scan. When combined with maxScanHeading and maxScanPitch this forms a 3D scanning wedge used to initially locate a target.






	
float AITurretShapeData::maxScanHeading


	Maximum number of degrees to scan left and right.






	
float AITurretShapeData::maxScanPitch


	Maximum number of degrees to scan up and down.






	
float AITurretShapeData::maxWeaponRange


	Maximum distance that the weapon will fire upon a target.






	
int AITurretShapeData::scanTickFrequency


	How often should we perform a full scan when looking for a target. Expressed as the number of ticks between full scans, but no less than 1.






	
int AITurretShapeData::scanTickFrequencyVariance


	Random amount that should be added to the scan tick frequency each scan period. Expressed as the number of ticks to randomly add, but no less than zero.






	
bool AITurretShapeData::stateDirection[31]


	Direction of the animation to play in this state. True is forward, false is backward.






	
bool AITurretShapeData::stateFire[31]


	The first state with this set to true is the state entered by the client when it receives the ‘fire’ event.






	
caseString AITurretShapeData::stateName[31]


	Name of this state.






	
bool AITurretShapeData::stateScaleAnimation[31]


	If true, the timeScale of the stateSequence animation will be adjusted such that the sequence plays for stateTimeoutValue seconds.






	
bool AITurretShapeData::stateScan[31]


	Indicates the turret should perform a continuous scan looking for targets.






	
caseString AITurretShapeData::stateScript[31]


	Method to execute on entering this state. Scoped to AITurretShapeData .






	
string AITurretShapeData::stateSequence[31]


	Name of the sequence to play on entry to this state.






	
float AITurretShapeData::stateTimeoutValue[31]


	Time in seconds to wait before transitioning to stateTransitionOnTimeout.






	
string AITurretShapeData::stateTransitionOnActivated[31]


	Name of the state to transition to when the turret goes from deactivated to activated.






	
string AITurretShapeData::stateTransitionOnAtRest[31]


	Name of the state to transition to when the turret is at rest (static).






	
string AITurretShapeData::stateTransitionOnDeactivated[31]


	Name of the state to transition to when the turret goes from activated to deactivated.






	
string AITurretShapeData::stateTransitionOnNoTarget[31]


	Name of the state to transition to when the turret loses a target.






	
string AITurretShapeData::stateTransitionOnNotAtRest[31]


	Name of the state to transition to when the turret is not at rest (not static).






	
string AITurretShapeData::stateTransitionOnTarget[31]


	Name of the state to transition to when the turret gains a target.






	
string AITurretShapeData::stateTransitionOnTimeout[31]


	Name of the state to transition to when we have been in this state for stateTimeoutValue seconds.






	
bool AITurretShapeData::stateWaitForTimeout[31]


	If false, this state ignores stateTimeoutValue and transitions immediately if other transition conditions are met.






	
float AITurretShapeData::trackLostTargetTime


	How long after the turret has lost the target should it still track it. Expressed in seconds.






	
float AITurretShapeData::weaponLeadVelocity


	Velocity used to lead target. If value lt = 0, don’t lead target.











          

      

      

    

  

    
      
          
            
  
ActionMap

ActionMaps assign platform input events to console commands.


	Inherit:

	SimObject






Description

Any platform input event can be bound in a single, generic way. In theory, the game doesn’t need to know if the event came from the keyboard, mouse, joystick or some other input device. This allows users of the game to map keys and actions according to their own preferences. Game action maps are arranged in a stack for processing so individual parts of the game can define specific actions. For example, when the player jumps into a vehicle it could push a vehicle action map and pop the default player action map.


Creating an ActionMap

The input system allows for the creation of multiple ActionMaps, so long as they have unique names and do not already exist. It’s a simple three step process.


	Check to see if the ActionMap exists


	Delete it if it exists


	Instantiate the ActionMap




The following is an example of how to create a new ActionMap:

Example:

if ( isObject( moveMap ) )
   moveMap.delete();
newActionMap(moveMap);








Binding Functions

Once you have created an ActionMap, you can start binding functionality to events. Currently, Torque 3D supports the following devices out of the box


	Mouse


	Keyboard


	Joystick/Gamepad


	Xbox 360 Controller




The two most commonly used binding methods are bind() and bindCmd(). Both are similar in that they will bind functionality to a device and event, but different in how the event is interpreted. With bind(), you specify a device, action to bind, then a function to be called when the event happens.

Example:

// Simple function that prints to console// %val - Sent by the device letting the user know// if an input was pressed (true) or released (false)
function testInput(%val)
{
   if(%val)
     echo("Key is down");
   elseecho("Key was released");
}

// Bind the K key to the testInput function
moveMap.bind(keyboard, "k", testInput);





bindCmd is an alternative method for binding commands. This function is similar to bind(), except two functions are set to be called when the event is processed.

One will be called when the event is activated (input down), while the other is activated when the event is broken (input release). When using bindCmd(), pass the functions as strings rather than the function names.

Example:

// Print to the console when the spacebar is pressed
function onSpaceDown()
{
   echo("Space bar down!");
}

// Print to the console when the spacebar is released
function onSpaceUp()
{
   echo("Space bar up!");
}

// Bind the commands onSpaceDown and onSpaceUp to spacebar events
moveMap.bindCmd(keyboard, "space", "onSpaceDown();", "onSpaceUp();");








Switching ActionMaps

Let’s say you want to have different ActionMaps activated based on game play situations. A classic example would be first person shooter controls and racing controls in the same game. On foot, spacebar may cause your player to jump. In a vehicle, it may cause some kind of “turbo charge”. You simply need to push/pop the ActionMaps appropriately:

First, create two separate ActionMaps:

Example:

// Create the two ActionMaps
if ( isObject( moveMap ) )
   moveMap.delete();
newActionMap(moveMap);

if ( isObject( carMap ) )
   carMap.delete();
newActionMap(carMap);





Next, create the two separate functions. Both will be bound to spacebar, but not the same ActionMap:

Example:

// Print to the console the player is jumping
function playerJump(%val)
{
   if(%val)
     echo("Player jumping!");
}

// Print to the console the vehicle is charging
function turboCharge()
{
   if(%val)
     echo("Vehicle turbo charging!");
}





You are now ready to bind functions to your ActionMaps’ devices:

Example:

// Bind the spacebar to the playerJump function
// when moveMap is the active ActionMap
moveMap.bind(keyboard, "space", playerJump);

// Bind the spacebar to the turboCharge function
// when carMap is the active ActionMap
carMap.bind(keyboard, "space", turboCharge);





Finally, you can use the push() and pop() commands on each ActionMap to toggle activation. To activate an ActionMap, use push():

Example:

// Make moveMap the active action map
// You should now be able to activate playerJump with spacebar
moveMap.push();





To switch ActionMaps, first pop() the old one. Then you can push() the new one:

Example:

// Deactivate moveMap
moveMap.pop();

// Activate carMap
carMap.push();










Methods


	
bool ActionMap::bind(string device, string action, string command)


	Associates a function to an input event. When the input event is raised, the specified function will be called.


	Parameters

	
	device – The input device, such as mouse or keyboard.


	action – The input event, such as space, button0, etc.


	command – The function to bind to the action. Function must have a single boolean argument.






	Returns

	True if the binding was successful, false if the device was unknown or description failed.





Example:

// Simple function that prints to console
// %val - Sent by the device letting the user know
// if an input was pressed (true) or released (false)
function testInput(%val)
{
   if(%val)
     echo("Key is down");
   elseecho("Key was released");
}

// Bind the K key to the testInput function
moveMap.bind(keyboard, k, testInput);










	
bool ActionMap::bind(string device, string action, string flag, string deadZone, string scale, string command)


	Associates a function and input parameters to an input event. When the input event is raised, the specified function will be called. Modifier flags may be specified to process dead zones, input inversion, and more. Valid modifier flags:


	R - Input is Ranged.


	S - Input is Scaled.


	I - Input is inverted.


	D - Dead zone is present.


	N - Input should be re-fit to a non-linear scale.





	Parameters

	
	device – The input device, such as mouse or keyboard.


	action – The input event, such as space, button0, etc.


	flag – Modifier flag assigned during binding, letting event know there are additional parameters to consider.


	deadZone – Restricted region in which device motion will not be acknowledged.


	scale – Modifies the deadZone region.


	command – The function bound to the action. Must take in a single argument.






	Returns

	True if the binding was successful, false if the device was unknown or description failed.





Example:

// Simple function that adjusts the pitch of the camera
// based on the mouses movement along the X axis.
function testPitch(%val)
{
   %pitchAdj = getMouseAdjustAmount(%val);
    $mvPitch += %pitchAdj;
}

// Bind the mouses X axis to the testPitch function
// DI is flagged, meaning input is inverted and has a deadzone
%this.bind( mouse, "xaxis", "DI", "-0.23 0.23", testPitch );










	
bool ActionMap::bindCmd(string device, string action, string makeCmd, string breakCmd)


	Associates a make command and optional break command to a specified input device action. Must include parenthesis and semicolon in the make and break command strings.


	Parameters

	
	device – The device to bind to. Can be a keyboard, mouse, joystick or gamepad.


	action – The device action to bind to. The action is dependant upon the device. Specify a key for keyboards.


	makeCmd – The command to execute when the device/action is made.


	breakCmd – [optional] The command to execute when the device or action is unmade.






	Returns

	True the bind was successful, false if the device was unknown or description failed.





Example:

// Print to the console when the spacebar is pressed
function onSpaceDown()
{
   echo("Space bar down!");
}

// Print to the console when the spacebar is released
function onSpaceUp()
{
   echo("Space bar up!");
}

// Bind the commands onSpaceDown() and onSpaceUp() to spacebar events

moveMap.bindCmd(keyboard, "space", "onSpaceDown();", "onSpaceUp();");










	
bool ActionMap::bindObj(string device, string action, string command, SimObjectID object)


	Associates a function to an input event for a specified class or object. You must specify a device, the action to bind, a function, and an object to be called when the event happens. The function specified must be set to receive a single boolean value passed.


	Parameters

	
	device – The input device, such as mouse or keyboard.


	action – The input event, such as space, button0, etc.


	command – The function bound to the action.


	object – The object or class bound to the action.






	Returns

	True if the binding was successful, false if the device was unknown or description failed.





Example:

moveMap.bindObj(keyboard, "numpad1", "rangeChange", %player);










	
bool ActionMap::bindObj(string device, string action, string flag, string deadZone, string scale, string command, SimObjectID object)


	Associates a function to an input event for a specified class or object. You must specify a device, the action to bind, a function, and an object to be called when the event happens. The function specified must be set to receive a single boolean value passed. Modifier flags may be specified to process dead zones, input inversion, and more. Valid modifier flags:


	R - Input is Ranged.


	S - Input is Scaled.


	I - Input is inverted.


	D - Dead zone is present.


	N - Input should be re-fit to a non-linear scale.





	Parameters

	
	device – The input device, such as mouse or keyboard.


	action – The input event, such as space, button0, etc.


	flag – Modifier flag assigned during binding, letting event know there are additional parameters to consider.


	deadZone – [Required only when flag is set] Restricted region in which device motion will not be acknowledged.


	scale – [Required only when flag is set] Modifies the deadZone region.


	command – The function bound to the action.


	object – The object or class bound to the action.






	Returns

	True if the binding was successful, false if the device was unknown or description failed.





Example:

// Bind the mouses movement along the x-axis to
// the testInput function of the Player class
// DSI is flagged, meaning input is inverted,
// has scale and has a deadzone
%this.bindObj( mouse, "xaxis", "DSI", %deadZone, %scale, "testInput", %player );










	
string ActionMap::getBinding(string command)


	Gets the ActionMap binding for the specified command. Use getField() on the return value to get the device and action of the binding.


	Parameters

	command – The function to search bindings for.



	Returns

	The binding against the specified command. Returns an empty string(“”) if a binding wasn’t found.





Example:

// Find what the function "jump()" is bound to in moveMap
%bind = moveMap.getBinding( "jump" );

if ( %bind !$= "" )
{
   // Find out what device is used in the binding
   %device = getField( %bind, 0 );

   // Find out what action (such as a key) is used in the binding
   %action = getField( %bind, 1 );
}










	
string ActionMap::getCommand(string device, string action)


	Gets ActionMap command for the device and action.


	Parameters

	
	device – The device that was bound. Can be a keyboard, mouse, joystick or a gamepad.


	action – The device action that was bound. The action is dependant upon the device. Specify a key for keyboards.






	Returns

	The command against the specified device and action.





Example:

// Find what function is bound to a devices action
// In this example, "jump()" was assigned to the space key in another script
%command = moveMap.getCommand("keyboard", "space");

// Should print "jump" in the console
echo(%command)










	
string ActionMap::getDeadZone(string device, string action)


	Gets the Dead zone for the specified device and action.


	Parameters

	
	device – The device that was bound. Can be a keyboard, mouse, joystick or a gamepad.


	action – The device action that was bound. The action is dependant upon the device. Specify a key for keyboards.






	Returns

	The dead zone for the specified device and action. Returns “0 0” if there is no dead zone or an empty string(“”) if the mapping was not found.





Example:

%deadZone = moveMap.getDeadZone( "gamepad", "thumbrx");










	
float ActionMap::getScale(string device, string action)


	Get any scaling on the specified device and action.


	Parameters

	
	device – The device that was bound. Can be keyboard, mouse, joystick or gamepad.


	action – The device action that was bound. The action is dependant upon the device. Specify a key for keyboards.






	Returns

	Any scaling applied to the specified device and action.





Example:

%scale = %moveMap.getScale( "gamepad", "thumbrx");










	
bool ActionMap::isInverted(string device, string action)


	Determines if the specified device and action is inverted. Should only be used for scrolling devices or gamepad/joystick axes.


	Parameters

	
	device – The device that was bound. Can be a keyboard, mouse, joystick or a gamepad.


	action – The device action that was bound. The action is dependant upon the device. Specify a key for keyboards.






	Returns

	True if the specified device and action is inverted.





Example:

%if ( moveMap.isInverted( "mouse", "xaxis"))
   echo("Mouses xAxis is inverted");










	
void ActionMap::pop()


	Pop the ActionMap off the ActionMap stack. Deactivates an ActionMap and removes it from the  stack.

Example:

// Deactivate moveMap
moveMap.pop();










	
void ActionMap::push()


	Push the ActionMap onto the ActionMap stack. Activates an ActionMap and placees it at the top of the ActionMap stack.

Example:

// Make moveMap the active action map
moveMap.push();










	
void ActionMap::save(string fileName, bool append)


	Saves the ActionMap to a file or dumps it to the console.


	Parameters

	
	fileName – The file path to save the ActionMap to. If a filename is not specified the ActionMap will be dumped to the console.


	append – Whether to write the ActionMap at the end of the file or overwrite it.








Example:

// Write out the actionmap into the config.cs file
moveMap.save( "scripts/client/config.cs" );










	
bool ActionMap::unbind(string device, string action)


	Removes the binding on an input device and action.


	Parameters

	
	device – The device to unbind from. Can be a keyboard, mouse, joystick or a gamepad.


	action – The device action to unbind from. The action is dependant upon the device. Specify a key for keyboards.






	Returns

	True if the unbind was successful, false if the device was unknown or description failed.





Example:

moveMap.unbind("keyboard", "space");










	
bool ActionMap::unbindObj(string device, string action, string obj)


	Remove any object-binding on an input device and action.


	Parameters

	
	device – The device to bind to. Can be keyboard, mouse, joystick or gamepad.


	action – The device action to unbind from. The action is dependant upon the device. Specify a key for keyboards.


	obj – The object to perform unbind against.






	Returns

	True if the unbind was successful, false if the device was unknown or description failed.





Example:

moveMap.unbindObj("keyboard", "numpad1", "rangeChange", %player);















          

      

      

    

  

    
      
          
            
  
AdvancedLightBinManager

Rendering Manager responsible for lighting, shadows, and global variables affecing both.


	Inherit:

	RenderTexTargetBinManager






Description

Should not be exposed to TorqueScript as a game object, meant for internal use only







          

      

      

    

  

    
      
          
            
  
ArrayObject

Data structure for storing indexed sequences of key/value pairs.


	Inherit:

	SimObject






Description

This is a powerful array class providing PHP style arrays in TorqueScript.

The following features are supported:


	array pointers: this allows you to move forwards or backwards through the array as if it was a list, including jumping to the start or end.


	sorting: the array can be sorted in either alphabetic or numeric mode, on the key or the value, and in ascending or descending order


	add/remove elements: elements can be pushed/popped from the start or end of the array, or can be inserted/erased from anywhere in the middle


	removal of duplicates: remove duplicate keys or duplicate values


	searching: search the array and return the index of a particular key or value


	counting: count the number of instaces of a particular value or key in the array, as well as the total number of elements


	advanced features: array append, array crop and array duplicate




Array element keys and values can be strings or numbers.




Methods


	
void ArrayObject::add(string key, string value)


	Adds a new element to the end of an array (same as push_back() ).


	Parameters

	
	key – Key for the new element


	value – Value for the new element













	
bool ArrayObject::append(ArrayObject target)


	Appends the target array to the array object.


	Parameters

	target – ArrayObject to append to the end of this array










	
int ArrayObject::count()


	Get the number of elements in the array.






	
int ArrayObject::countKey(string key)


	Get the number of times a particular key is found in the array.


	Parameters

	key – Key value to count










	
int ArrayObject::countValue(string value)


	Get the number of times a particular value is found in the array.


	Parameters

	value – Array element value to count










	
bool ArrayObject::crop(ArrayObject target)


	Removes elements with matching keys from array.


	Parameters

	target – ArrayObject containing keys to remove from this array










	
bool ArrayObject::duplicate(ArrayObject target)


	Alters array into an exact duplicate of the target array.


	Parameters

	target – ArrayObject to duplicate










	
void ArrayObject::echo()


	Echos the array contents to the console.






	
void ArrayObject::empty()


	Emptys all elements from an array.






	
void ArrayObject::erase(int index)


	Removes an element at a specific position from the array.


	Parameters

	index – 0-based index of the element to remove










	
int ArrayObject::getCurrent()


	Gets the current pointer index.






	
int ArrayObject::getIndexFromKey(string key)


	Search the array from the current position for the key.


	Parameters

	value – Array key to search for



	Returns

	Index of the first element found, or -1 if none










	
int ArrayObject::getIndexFromValue(string value)


	Search the array from the current position for the element.


	Parameters

	value – Array value to search for



	Returns

	Index of the first element found, or -1 if none










	
string ArrayObject::getKey(int index)


	Get the key of the array element at the submitted index.


	Parameters

	index – 0-based index of the array element to get



	Returns

	The key associated with the array element at the specified index, or “” if the index is out of range










	
string ArrayObject::getValue(int index)


	Get the value of the array element at the submitted index.


	Parameters

	index – 0-based index of the array element to get



	Returns

	The value of the array element at the specified index, or “” if the index is out of range










	
void ArrayObject::insert(string key, string value, int index)


	Adds a new element to a specified position in the array.


	index = 0 will insert an element at the start of the array (same as push_front())


	index = array. count() will insert an element at the end of the array (same as push_back())





	Parameters

	
	key – Key for the new element


	value – Value for the new element


	index – 0-based index at which to insert the new element













	
int ArrayObject::moveFirst()


	Moves array pointer to start of array.


	Returns

	Returns the new array pointer










	
int ArrayObject::moveLast()


	Moves array pointer to end of array.


	Returns

	Returns the new array pointer










	
int ArrayObject::moveNext()


	Moves array pointer to next position.


	Returns

	Returns the new array pointer, or -1 if already at the end










	
int ArrayObject::movePrev()


	Moves array pointer to prev position.


	Returns

	Returns the new array pointer, or -1 if already at the start










	
void ArrayObject::pop_back()


	Removes the last element from the array.






	
void ArrayObject::pop_front()


	Removes the first element from the array.






	
void ArrayObject::push_back(string key, string value)


	Adds a new element to the end of an array.


	Parameters

	
	key – Key for the new element


	value – Value for the new element













	
void ArrayObject::push_front(string key, string value)


	Adds a new element to the front of an array.






	
void ArrayObject::setCurrent(int index)


	Sets the current pointer index.


	Parameters

	index – New 0-based pointer index










	
void ArrayObject::setKey(string key, int index)


	Set the key at the given index.


	Parameters

	
	key – New key value


	index – 0-based index of the array element to update













	
void ArrayObject::setValue(string value, int index)


	Set the value at the given index.


	Parameters

	
	value – New array element value


	index – 0-based index of the array element to update













	
void ArrayObject::sort(bool ascending)


	Alpha sorts the array by value.


	Parameters

	ascending – [optional] True for ascending sort, false for descending sort










	
void ArrayObject::sorta()


	Alpha sorts the array by value in ascending order.






	
void ArrayObject::sortd()


	Alpha sorts the array by value in descending order.






	
void ArrayObject::sortf(string functionName)


	Sorts the array by value in ascending order using the given callback function.


	Parameters

	functionName – Name of a function that takes two arguments A and B and returns -1 if A is less, 1 if B is less, and 0 if both are equal.





Example:

function mySortCallback(%a, %b)
{
   returnstrcmp( %a.name, %b.name );
}

%array.sortf( "mySortCallback" );










	
void ArrayObject::sortfd(string functionName)


	Sorts the array by value in descending order using the given callback function.


	Parameters

	functionName – Name of a function that takes two arguments A and B and returns -1 if A is less, 1 if B is less, and 0 if both are equal.










	
void ArrayObject::sortfk(string functionName)


	Sorts the array by key in ascending order using the given callback function.


	Parameters

	functionName – Name of a function that takes two arguments A and B and returns -1 if A is less, 1 if B is less, and 0 if both are equal.










	
void ArrayObject::sortfkd(string functionName)


	Sorts the array by key in descending order using the given callback function.


	Parameters

	functionName – Name of a function that takes two arguments A and B and returns -1 if A is less, 1 if B is less, and 0 if both are equal.










	
void ArrayObject::sortk(bool ascending)


	Alpha sorts the array by key.


	Parameters

	ascending – [optional] True for ascending sort, false for descending sort










	
void ArrayObject::sortka()


	Alpha sorts the array by key in ascending order.






	
void ArrayObject::sortkd()


	Alpha sorts the array by key in descending order.






	
void ArrayObject::sortn(bool ascending)


	Numerically sorts the array by value.


	Parameters

	ascending – [optional] True for ascending sort, false for descending sort










	
void ArrayObject::sortna()


	Numerically sorts the array by value in ascending order.






	
void ArrayObject::sortnd()


	Numerically sorts the array by value in descending order.






	
void ArrayObject::sortnk(bool ascending)


	Numerically sorts the array by key.


	Parameters

	ascending – [optional] True for ascending sort, false for descending sort










	
void ArrayObject::sortnka()


	Numerical sorts the array by key in ascending order.






	
void ArrayObject::sortnkd()


	Numerical sorts the array by key in descending order.






	
void ArrayObject::uniqueKey()


	Removes any elements that have duplicated keys (leaving the first instance).






	
void ArrayObject::uniqueValue()


	Removes any elements that have duplicated values (leaving the first instance).








Fields


	
bool ArrayObject::caseSensitive


	Makes the keys and values case-sensitive. By default, comparison of key and value strings will be case-insensitive.






	
caseString ArrayObject::key


	Helper field which allows you to add new key[‘keyname’] = value pairs.











          

      

      

    

  

    
      
          
            
  
BanList

Used for kicking and banning players from a server.


Description

There is only a single instance of BanList. It is very important to note that you do not ever create this object in script like you would other game play objects. You simply reference it via namespace.

For this to be used effectively, make sure you are hooking up other functions to BanList. For example, functions like GameConnection::onConnectRequestRejected( this, msg ) and function GameConnection::onConnectRequest are excellent places to make use of the BanList. Other systems can be used in conjunction for strict control over a server




Methods


	
static void BanList::add(int uniqueId, string transportAddress, int banLength)


	Ban a user for banLength seconds.


	Parameters

	
	uniqueId – Unique ID of the player.


	transportAddress – Address from which the player connected.


	banLength – Time period over which to ban the player.








Example:

// Kick someone off the server
// %client - This is the connection to the person we are kicking
function kick(%client)
{
      // Let the server know what happened
      messageAll( MsgAdminForce, \c2The Admin has kicked %1., %client.playerName);

      // If it is not an AI Player, execute the ban.
      if (!%client.isAIControlled())
         BanList::add(%client.guid, %client.getAddress(), $pref::Server::KickBanTime);

      // Let the player know they messed up
      %client.delete("You have been kicked from this server");
}










	
static void BanList::addAbsolute(int uniqueId, string transportAddress, int banTime)


	Ban a user until a given time.


	Parameters

	
	uniqueId – Unique ID of the player.


	transportAddress – Address from which the player connected.


	banTime – Time at which they will be allowed back in.








Example:

// Kick someone off the server
// %client - This is the connection to the person we are kicking
function kick(%client)
{
      // Let the server know what happened
      messageAll( MsgAdminForce, \c2The Admin has kicked %1., %client.playerName);

      // If it is not an AI Player, execute the ban.
      if (!%client.isAIControlled())
         BanList::addAbsolute(%client.guid, %client.getAddress(), $pref::Server::KickBanTime);

      // Let the player know they messed up
      %client.delete("You have been kicked from this server");
}










	
static void BanList::export(string filename)

	Dump the banlist to a file.


	Parameters

	filename – Path of the file to write the list to.





Example:

BanList::Export("./server/banlist.cs");










	
static bool BanList::isBanned(int uniqueId, string transportAddress)


	Is someone banned?


	Parameters

	
	uniqueId – Unique ID of the player.


	transportAddress – Address from which the player connected.








Example:

// This script function is called before a client connection
// is accepted.  Returning  will accept the connection,
// anything else will be sent back as an error to the client.
// All the connect args are passed also to onConnectRequest
function GameConnection::onConnectRequest( %client, %netAddress, %name )
{
     // Find out who is trying to connect
     echo("Connect request from: " @ %netAddress);

     // Are they allowed in?
     if(BanList::isBanned(%client.guid, %netAddress))
        return"CR_YOUAREBANNED";

     // Is there room for an unbanned player?
     if($Server::PlayerCount >= $pref::Server::MaxPlayers)
        return"CR_SERVERFULL";
     return ;
}










	
static void BanList::removeBan(int uniqueId, string transportAddress)


	Unban someone.


	Parameters

	
	uniqueId – Unique ID of the player.


	transportAddress – Address from which the player connected.








Example:

BanList::removeBan(%userID, %ipAddress);















          

      

      

    

  

    
      
          
            
  
BarrelDistortionPostEffect

A fullscreen shader effect used with the Oculus Rift.


	Inherit:

	PostEffect






Description

A fullscreen shader effect used with the Oculus Rift.




PFXTextureIdentifiers




Fields


	
int BarrelDistortionPostEffect::hmdIndex


	Oculus VR HMD index to reference.






	
float BarrelDistortionPostEffect::scaleOutput


	Used to increase the size of the window into the world at the expense of apparent resolution.






	
int BarrelDistortionPostEffect::sensorIndex


	Oculus VR sensor index to reference.











          

      

      

    

  

    
      
          
            
  
BasicClouds

Renders up to three layers of scrolling cloud-cover textures overhead.


	Inherit:

	SceneObject






Description

BasicClouds always renders overhead, following the camera. It is intended as part of the background of your level, rendering in front of Sky/Sun type objects and behind everything else.

The parameters controlling the rendering of each texture are refered to and grouped as ‘layers’. They are rendered in sequential order, so, layer 1 obscures layer 0, and so on.

BasicClouds is not affected by scene lighting and is therefore not appropriate for scenes in which lighting radically changes, such as day/night.




Fields


	
float BasicClouds::height[3]


	Abstract number which controls the curvature and height of the dome mesh.






	
bool BasicClouds::layerEnabled[3]


	Enable or disable rendering of this layer.






	
Point2F BasicClouds::texDirection[3]


	Texture scroll direction for this layer, relative to the world axis.






	
Point2F BasicClouds::texOffset[3]


	UV offset for this layer.






	
float BasicClouds::texScale[3]


	Texture repeat for this layer.






	
float BasicClouds::texSpeed[3]


	Texture scroll speed for this layer.






	
filename BasicClouds::texture[3]


	Texture for this layer.











          

      

      

    

  

    
      
          
            
  
Camera

Represents a position, direction and field of view to render a scene from.


	Inherit:

	ShapeBase






Description

A camera is typically manipulated by a GameConnection. When set as the connection’s control object, the camera handles all movement actions ($mvForwardAction, $mvPitch, etc.) just like a Player.

Example:

// Set an already created camera as the GameConnections control object
%connection.setControlObject(%camera);






Methods of Operation

The camera has two general methods of operation. The first is the standard mode where the camera starts and stops its motion and rotation instantly. This is the default operation of the camera and is used by most games. It may be specifically set with Camera::setFlyMode() for 6 DoF motion. It is also typically the method used with Camera::setOrbitMode() or one of its helper methods to orbit about a specific object (such as the Player’s dead body) or a specific point.

The second method goes under the name of Newton as it follows Newton’s 2nd law of motion: F=ma. This provides the camera with an ease-in and ease-out feel for both movement and rotation. To activate this method for movement, either use Camera::setNewtonFlyMode() or set the Camera::newtonMode field to true. To activate this method for rotation, set the Camera::newtonRotation to true. This method of operation is not typically used in games, and was developed to allow for a smooth fly through of a game level while recording a demo video. But with the right force and drag settings, it may give a more organic feel to the camera to games that use an overhead view, such as a RTS.

There is a third, minor method of operation but it is not generally used for games. This is when the camera is used with Torque’s World Editor in Edit Orbit Mode. When set, this allows the camera to rotate about a specific point in the world, and move towards and away from this point. See Camera::setEditOrbitMode() and Camera::setEditOrbitPoint(). While in this mode, Camera::autoFitRadius() may also be used.

Example:

// Create a camera in the level and set its position to a given spawn point.
// Note: The camera starts in the standard fly mode.
%cam = newCamera() {
   datablock = "Observer";
};
MissionCleanup.add( %cam );
%cam.setTransform( %spawnPoint.getTransform() );





Example:

// Create a camera at the given spawn point for the specified
// GameConnection i.e. the client.  Uses the standard
// Sim::spawnObject() function to create the camera using the
// defined default settings.
// Note: The camera starts in the standard fly mode.
function GameConnection::spawnCamera(%this, %spawnPoint)
{
   // Set the control object to the default camera
   if (!isObject(%this.camera))
   {
      if (isDefined("$Game::DefaultCameraClass"))
         %this.camera = spawnObject($Game::DefaultCameraClass, $Game::DefaultCameraDataBlock);
   }

   // If we have a camera then set up some properties
   if (isObject(%this.camera))
   {
      // Make sure were cleaned up when the mission ends
      MissionCleanup.add( %this.camera );

      // Make sure the camera is always in scope for the connection
      %this.camera.scopeToClient(%this);

      // Send all user input from the connection to the camera
      %this.setControlObject(%this.camera);

      if (isDefined("%spawnPoint"))
      {
         // Attempt to treat %spawnPoint as an object, such as a
         // SpawnSphere class.
         if (getWordCount(%spawnPoint) == 1 &&isObject(%spawnPoint))
         {
            %this.camera.setTransform(%spawnPoint.getTransform());
         }
         else
         {
            // Treat %spawnPoint as an AngleAxis transform
            %this.camera.setTransform(%spawnPoint);
         }
      }
   }
}








Motion Modes

Beyond the different operation methods, the Camera may be set to one of a number of motion modes. These motion modes determine how the camera will respond to input and may be used to constrain how the Camera moves. The CameraMotionMode enumeration defines the possible set of modes and the Camera’s current may be obtained by using getMode().

Some of the motion modes may be set using specific script methods. These often provide additional parameters to set up the mode in one go. Otherwise, it is always possible to set a Camera’s motion mode using the controlMode property. Just pass in the name of the mode enum. The following table lists the motion modes, how to set them up, and what they offer:










	Mode

	Set From Script

	Input Move

	Input Rotate

	Can Use Newton Mode?



	Stationary

	controlMode property

	No

	No

	No



	FreeRotate

	controlMode property

	No

	Yes

	Rotate Only



	Fly

	setFlyMode()

	Yes

	Yes

	Yes



	OrbitObject

	setOrbitMode()

	Orbits object

	Points to object

	Move only



	OrbitPoint

	setOrbitPoint()

	Orbits point

	Points to location

	Move only



	TrackObject

	setTrackObject()

	No

	Points to object

	Yes



	Overhead

	controlMode property

	Yes

	No

	Yes



	EditOrbit (object selected)

	setEditOrbitMode()

	Orbits object

	Points to object

	Move only



	EditOrbit (no object)

	setEditOrbitMode()

	Yes

	Yes

	Yes









Trigger Input

Passing a move trigger ($mvTriggerCount0, $mvTriggerCount1, etc.) on to a Camera performs different actions depending on which mode the camera is in. While in Fly, Overhead or EditOrbit mode, either trigger0 or trigger1 will cause a camera to move twice its normal movement speed. You can see this in action within the World Editor, where holding down the left mouse button while in mouse look mode (right mouse button is also down) causes the Camera to move faster.

Passing along trigger2 will put the camera into strafe mode. While in this mode a Fly, FreeRotate or Overhead Camera will not rotate from the move input. Instead the yaw motion will be applied to the Camera’s x motion, and the pitch motion will be applied to the Camera’s z motion. You can see this in action within the World Editor where holding down the middle mouse button allows the user to move the camera up, down and side-to-side.

While the camera is operating in Newton Mode, trigger0 and trigger1 behave slightly differently. Here trigger0 activates a multiplier to the applied acceleration force as defined by speedMultiplier. This has the affect of making the camera move up to speed faster. trigger1 has the opposite affect by acting as a brake. When trigger1 is active a multiplier is added to the Camera’s drag as defined by brakeMultiplier.






Methods


	
void Camera::autoFitRadius(float radius)


	Move the camera to fully view the given radius.


	Parameters

	radius – The radius to view.










	
VectorF Camera::getAngularVelocity()


	Get the angular velocity for a Newton mode camera.


	Returns

	The angular velocity in the form of “x y z”.










	
Camera::CameraMotionMode Camera::getMode()


	Returns the current camera control mode.






	
Point3F Camera::getOffset()


	Get the camera’s offset from its orbit or tracking point. The offset is added to the camera’s position when set to CameraMode::OrbitObject.


	Returns

	The offset in the form of “x y z”.










	
Point3F Camera::getPosition()


	Get the camera’s position in the world. Reimplemented from SceneObject .


	Returns

	The position in the form of “x y z”.










	
Point3F Camera::getRotation()


	Get the camera’s Euler rotation in radians.


	Returns

	The rotation in radians in the form of “x y z”.










	
VectorF Camera::getVelocity()


	Get the velocity for the camera. Reimplemented from ShapeBase .


	Returns

	The camera’s velocity in the form of “x y z”.










	
bool Camera::isEditOrbitMode()


	Is the camera in edit orbit mode?


	Returns

	true if the camera is in edit orbit mode.










	
bool Camera::isRotationDamped()


	Is this a Newton Fly mode camera with damped rotation?


	Returns

	is set to true.










	
void Camera::lookAt(Point3F point)


	Point the camera at the specified position. Does not work in Orbit or Track modes.


	Parameters

	point – The position to point the camera at.










	
void Camera::setAngularDrag(float drag)


	Set the angular drag for a Newton mode camera.


	Parameters

	drag – The angular drag applied while the camera is rotating.










	
void Camera::setAngularForce(float force)


	Set the angular force for a Newton mode camera.


	Parameters

	force – The angular force applied when attempting to rotate the camera.










	
void Camera::setAngularVelocity(VectorF velocity)


	Set the angular velocity for a Newton mode camera.


	Parameters

	velocity – The angular velocity infor form of “x y z”.










	
void Camera::setBrakeMultiplier(float multiplier)


	Set the Newton mode camera brake multiplier when trigger[1] is active.


	Parameters

	multiplier – The brake multiplier to apply.










	
void Camera::setDrag(float drag)


	Set the drag for a Newton mode camera.


	Parameters

	drag – The drag applied to the camera while moving.










	
void Camera::setEditOrbitMode()


	Set the editor camera to orbit around a point set with Camera::setEditOrbitPoint() .






	
void Camera::setEditOrbitPoint(Point3F point)


	Set the editor camera’s orbit point.


	Parameters

	point – The point the camera will orbit in the form of “x y z”.










	
void Camera::setFlyForce(float force)


	Set the force applied to a Newton mode camera while moving.


	Parameters

	force – The force applied to the camera while attempting to move.










	
void Camera::setFlyMode()


	Set the camera to fly freely. Allows the camera to have 6 degrees of freedom. Provides for instantaneous motion and rotation unless one of the Newton fields has been set to true. See Camera::newtonMode and Camera::newtonRotation .






	
void Camera::setMass(float mass)


	Set the mass for a Newton mode camera.


	Parameters

	mass – The mass used during ease-in and ease-out calculations.










	
void Camera::setNewtonFlyMode()


	Set the camera to fly freely, but with ease-in and ease-out. This method allows for the same 6 degrees of freedom as Camera::setFlyMode() but activates the ease-in and ease-out on the camera’s movement. To also activate Newton mode for the camera’s rotation, set Camera::newtonRotation to true.






	
void Camera::setOffset(Point3F offset)


	Set the camera’s offset. The offset is added to the camera’s position when set to CameraMode::OrbitObject.


	Parameters

	offset – The distance to offset the camera by in the form of “x y z”.










	
void Camera::setOrbitMode(GameBase orbitObject, TransformF orbitPoint, float minDistance, float maxDistance, float initDistance, bool ownClientObj, Point3F offset, bool locked)


	Set the camera to orbit around the given object, or if none is given, around the given point.


	Parameters

	
	orbitObject – The object to orbit around. If no object is given (0 or blank string is passed in) use the orbitPoint instead


	orbitPoint – The point to orbit around when no object is given. In the form of “x y z ax ay az aa” such as returned by SceneObject::getTransform().


	minDistance – The minimum distance allowed to the orbit object or point.


	maxDistance – The maximum distance allowed from the orbit object or point.


	initDistance – The initial distance from the orbit object or point.


	ownClientObj – [optional] Are we orbiting an object that is owned by us? Default is false.


	offset – [optional] An offset added to the camera’s position. Default is no offset.


	locked – [optional] Indicates the camera does not receive input from the player. Default is false.













	
bool Camera::setOrbitObject(GameBase orbitObject, VectorF rotation, float minDistance, float maxDistance, float initDistance, bool ownClientObject, Point3F offset, bool locked)


	Set the camera to orbit around a given object.


	Parameters

	
	orbitObject – The object to orbit around.


	rotation – The initial camera rotation about the object in radians in the form of “x y z”.


	minDistance – The minimum distance allowed to the orbit object or point.


	maxDistance – The maximum distance allowed from the orbit object or point.


	initDistance – The initial distance from the orbit object or point.


	ownClientObject – [optional] Are we orbiting an object that is owned by us? Default is false.


	offset – [optional] An offset added to the camera’s position. Default is no offset.


	locked – [optional] Indicates the camera does not receive input from the player. Default is false.






	Returns

	false if the given object could not be found.










	
void Camera::setOrbitPoint(TransformF orbitPoint, float minDistance, float maxDistance, float initDistance, Point3F offset, bool locked)


	Set the camera to orbit around a given point.


	Parameters

	
	orbitPoint – The point to orbit around. In the form of “x y z ax ay az aa” such as returned by SceneObject::getTransform().


	minDistance – The minimum distance allowed to the orbit object or point.


	maxDistance – The maximum distance allowed from the orbit object or point.


	initDistance – The initial distance from the orbit object or point.


	offset – [optional] An offset added to the camera’s position. Default is no offset.


	locked – [optional] Indicates the camera does not receive input from the player. Default is false.













	
void Camera::setRotation(Point3F rot)


	Set the camera’s Euler rotation in radians.


	Parameters

	rot – The rotation in radians in the form of “x y z”.










	
void Camera::setSpeedMultiplier(float multiplier)


	Set the Newton mode camera speed multiplier when trigger[0] is active.


	Parameters

	multiplier – The speed multiplier to apply.










	
bool Camera::setTrackObject(GameBase trackObject, Point3F offset)


	Set the camera to track a given object.


	Parameters

	
	trackObject – The object to track.


	offset – [optional] An offset added to the camera’s position. Default is no offset.






	Returns

	false if the given object could not be found.










	
void Camera::setValidEditOrbitPoint(bool validPoint)


	Set if there is a valid editor camera orbit point. When validPoint is set to false the Camera operates as if it is in Fly mode rather than an Orbit mode.


	Parameters

	validPoint – Indicates the validity of the orbit point.










	
void Camera::setVelocity(VectorF velocity)


	Set the velocity for the camera.


	Parameters

	velocity – The camera’s velocity in the form of “x y z”.












Fields


	
float Camera::angularDrag


	Drag on camera when rotating (Newton mode only). Default value is 2.






	
float Camera::angularForce


	Force applied on camera when asked to rotate (Newton mode only). Default value is 100.






	
float Camera::brakeMultiplier


	Speed multiplier when triggering the brake (Newton mode only). Default value is 2.






	
CameraMotionMode Camera::controlMode


	The current camera control mode.






	
float Camera::drag


	Drag on camera when moving (Newton mode only). Default value is 2.






	
float Camera::force


	Force applied on camera when asked to move (Newton mode only). Default value is 500.






	
float Camera::mass


	The camera’s mass (Newton mode only). Default value is 10.






	
bool Camera::newtonMode


	Apply smoothing (acceleration and damping) to camera movements.






	
bool Camera::newtonRotation


	Apply smoothing (acceleration and damping) to camera rotations.






	
float Camera::speedMultiplier


	Speed multiplier when triggering the accelerator (Newton mode only). Default value is 2.











          

      

      

    

  

    
      
          
            
  
CameraData

A datablock that describes a camera.


	Inherit:

	ShapeBaseData






Description

A datablock that describes a camera.

Example:

datablock CameraData(Observer)
{
   mode = "Observer";
};





Datablocks and Networking







          

      

      

    

  

    
      
          
            
  
CloudLayer

A layer of clouds which change shape over time and are affected by scene lighting.


	Inherit:

	SceneObject






Description

CloudLayer always renders overhead, following the camera. It is intended as part of the background of your level, rendering in front of Sky/Sun type objects and behind everything else.

The illusion of clouds forming and changing over time is controlled by the normal/opacity texture and the three sets of texture animation parameters. The texture is sampled three times. The first sample defines overall cloud density, where clouds are likely to form and their general size and shape. The second two samples control how it changes over time; they are combined and used as modifiers to the first sample.

CloudLayer is affected by scene lighting and is designed to be used in scenes with dynamic lighting or time of day changes.




Fields


	
ColorF CloudLayer::baseColor


	Base cloud color before lighting.






	
float CloudLayer::coverage


	Fraction of sky covered by clouds 0-1.






	
float CloudLayer::exposure


	Brightness scale so CloudLayer can be overblown if desired.






	
float CloudLayer::height


	Abstract number which controls the curvature and height of the dome mesh.






	
Point2F CloudLayer::texDirection[3]


	Controls the direction this slot scrolls.






	
float CloudLayer::texScale[3]


	Controls the texture repeat of this slot.






	
float CloudLayer::texSpeed[3]


	Controls the speed this slot scrolls.






	
filename CloudLayer::texture


	An RGBA texture which should contain normals and opacity (density).






	
float CloudLayer::windSpeed


	Overall scalar to texture scroll speed.











          

      

      

    

  

    
      
          
            
  
ConsoleLogger


	Inherit:

	SimObject






Description

A class designed to be used as a console consumer and log the data it receives to a file.




Methods


	
bool ConsoleLogger::attach()


	Attaches the logger to the console and begins writing to file.

Example:

// Create the logger
// Will automatically start writing to testLogging.txt with normal priority
newConsoleLogger(logger, "testLogging.txt", false);

// Send something to the console, with the logger consumes and writes file
echo("This is logged to the file");

// Stop logging, but do not delete the logger
logger.detach();

echo("This is not logged to the file");

// Attach the logger to the console again
logger.attach();

// Logging has resumedecho("Logging has resumed");










	
bool ConsoleLogger::detach()


	Detaches the logger from the console and stops writing to file.

Example:

// Create the logger
// Will automatically start writing to testLogging.txt with normal priority
newConsoleLogger(logger, "testLogging.txt", false);

// Send something to the console, with the logger consumes and writes to file
echo("This is logged to the file");

// Stop logging, but do not delete the logger
logger.detach();

echo("This is not logged to the file");

// Attach the logger to the console again
logger.attach();

// Logging has resumedecho("Logging has resumed");












Fields


	
LogLevel ConsoleLogger::level


	Determines the priority level and attention the logged entry gets when recorded.











          

      

      

    

  

    
      
          
            
  
ConvexShape

A renderable, collidable convex shape defined by a collection of surface planes.


	Inherit:

	SceneObject






Description

ConvexShape is intended to be used as a temporary asset for quickly blocking out a scene or filling in approximate shapes to be later replaced with final assets. This is most easily done by using the WorldEditor’s Sketch Tool.




Fields


	
string ConvexShape::Material


	Material used to render the ConvexShape surface.






	
string ConvexShape::surface


	Do not modify, for internal use.











          

      

      

    

  

    
      
          
            
  
CubemapData

Used to create static or dynamic cubemaps.


	Inherit:

	SimObject






Description

This object is used with Material, WaterObject, and other objects for cubemap reflections.

A simple declaration of a static cubemap:

Example:

singleton CubemapData( SkyboxCubemap )
{
   cubeFace[0] = "./skybox_1";
   cubeFace[1] = "./skybox_2";
   cubeFace[2] = "./skybox_3";
   cubeFace[3] = "./skybox_4";
   cubeFace[4] = "./skybox_5";
   cubeFace[5] = "./skybox_6";
};








Methods


	
string CubemapData::getFilename()


	Returns the script filename of where the CubemapData object was defined. This is used by the material editor. Reimplemented from SimObject .






	
void CubemapData::updateFaces()


	Update the assigned cubemaps faces.








Fields


	
filename CubemapData::cubeFace[6]


	The 6 cubemap face textures for a static cubemap. They are in the following order:


	cubeFace[0] is -X


	cubeFace[1] is +X


	cubeFace[2] is -Z


	cubeFace[3] is +Z


	cubeFace[4] is -Y


	cubeFace[5] is +Y









	
bool CubemapData::dynamic


	Set to true if this is a dynamic cubemap. The default is false.






	
float CubemapData::dynamicFarDist


	The far clip distance used when rendering to the dynamic cubemap.






	
float CubemapData::dynamicNearDist


	The near clip distance used when rendering to the dynamic cubemap.






	
int CubemapData::dynamicObjectTypeMask


	The typemask used to filter the objects rendered to the dynamic cubemap.






	
int CubemapData::dynamicSize


	The size of each dynamic cubemap face in pixels.











          

      

      

    

  

    
      
          
            
  
CustomMaterial

Material object which provides more control over surface properties.


	Inherit:

	Material






Description

CustomMaterials allow the user to specify their own shaders via the ShaderData datablock. Because CustomMaterials are derived from Materials, they can hold a lot of the same properties. It is up to the user to code how these properties are used.

Example:

singleton CustomMaterial( WaterBasicMat )
{
   sampler["reflectMap"] = "$reflectbuff";
   sampler["refractBuff"] = "$backbuff";

   cubemap = NewLevelSkyCubemap;
   shader = WaterBasicShader;
   stateBlock = WaterBasicStateBlock;
   version = 2.0;
};








Fields


	
Material CustomMaterial::fallback


	Alternate material for targeting lower end hardware. If the CustomMaterial requires a higher pixel shader version than the one it’s using, it’s fallback Material will be processed instead. If the fallback material wasn’t defined, Torque 3D will assert and attempt to use a very basic material in it’s place.






	
bool CustomMaterial::forwardLit


	Determines if the material should recieve lights in Basic Lighting. Has no effect in Advanced Lighting.






	
string CustomMaterial::shader


	Name of the ShaderData to use for this effect.






	
GFXStateBlockData CustomMaterial::stateBlock


	Name of a GFXStateBlockData for this effect.






	
string CustomMaterial::target


	String identifier of this material’s target texture.






	
float CustomMaterial::version


	Specifies pixel shader version for hardware. Valid pixel shader versions include 2.0, 3.0, etc.











          

      

      

    

  

    
      
          
            
  
Debris

datablock for properties of individual debris objects.


	Inherit:

	GameBase






Description

Base debris class. Uses the DebrisData datablock for properties of individual debris objects.

Debris is typically made up of a shape and up to two particle emitters. In most cases Debris objects are not created directly. They are usually produced automatically by other means, such as through the Explosion class. When an explosion goes off, its ExplosionData datablock determines what Debris to emit.

Example:

datablock ExplosionData(GrenadeLauncherExplosion)
{
   // Assiging debris data
   debris = GrenadeDebris;

   // Adjust how debris is ejected
   debrisThetaMin = 10;
   debrisThetaMax = 60;
   debrisNum = 4;
   debrisNumVariance = 2;
   debrisVelocity = 25;
   debrisVelocityVariance = 5;

   // Note: other ExplosionData properties are not listed for this example
};








Methods


	
bool Debris::init(string inputPosition, string inputVelocity)


	Manually set this piece of debris at the given position with the given velocity. Usually you do not manually create Debris objects as they are generated through other means, such as an Explosion . This method exists when you do manually create a Debris object and want to have it start moving.


	Parameters

	
	inputPosition – Position to place the debris.


	inputVelocity – Velocity to move the debris after it has been placed.






	Returns

	Always returns true.





Example:

// Define the position
%position = "1.0 1.0 1.0";

// Define the velocity
%velocity = "1.0 0.0 0.0";

// Inform the debris object of its new position and velocity
%debris.init(%position,%velocity);












Fields


	
float Debris::lifetime


	Length of time for this debris object to exist. When expired, the object will be deleted. The initial lifetime value comes from the DebrisData datablock.











          

      

      

    

  

    
      
          
            
  
DebrisData

Stores properties for an individual debris type.


	Inherit:

	GameBaseData






Description

Stores properties for an individual debris type.

DebrisData defines the base properties for a Debris object. Typically you’ll want a Debris object to consist of a shape and possibly up to two particle emitters. The DebrisData datablock provides the definition for these items, along with physical properties and how a Debris object will react to other game objects, such as water and terrain.

Example:

datablock DebrisData(GrenadeDebris)
{
   shapeFile = "art/shapes/weapons/ramrifle/debris.dts";
   emitters[0] = GrenadeDebrisFireEmitter;
   elasticity = 0.4;
   friction = 0.25;
   numBounces = 3;
   bounceVariance = 1;
   explodeOnMaxBounce = false;
   staticOnMaxBounce = false;
   snapOnMaxBounce = false;
   minSpinSpeed = 200;
   maxSpinSpeed = 600;
   lifetime = 4;
   lifetimeVariance = 1.5;
   velocity = 15;
   velocityVariance = 5;
   fade = true;
   useRadiusMass = true;
   baseRadius = 0.3;
   gravModifier = 1.0;
   terminalVelocity = 20;
   ignoreWater = false;
};








Fields


	
float DebrisData::baseRadius


	Radius at which the standard elasticity and friction apply. Only used when useRaduisMass is true.






	
int DebrisData::bounceVariance


	Allowed variance in the value of numBounces. Must be less than numBounces.






	
float DebrisData::elasticity


	A floating-point value specifying how ‘bouncy’ this object is. Must be in the range of -10 to 10.






	
ParticleEmitterData DebrisData::emitters[2]


	List of particle emitters to spawn along with this debris object. These are optional. You could have Debris made up of only a shape.






	
bool DebrisData::explodeOnMaxBounce


	If true, this debris object will explode after it has bounced max times. Be sure to provide an ExplosionData datablock for this to take effect.






	
ExplosionData DebrisData::Explosion


	ExplosionData to spawn along with this debris object. This is optional as not all Debris explode.






	
bool DebrisData::fade


	If true, this debris object will fade out when destroyed. This fade occurs over the last second of the Debris’ lifetime.






	
float DebrisData::friction


	A floating-point value specifying how much velocity is lost to impact and sliding friction. Must be in the range of -10 to 10.






	
float DebrisData::gravModifier


	How much gravity affects debris.






	
bool DebrisData::ignoreWater


	If true, this debris object will not collide with water, acting as if the water is not there.






	
float DebrisData::lifetime


	Amount of time until this debris object is destroyed. Must be in the range of 0 to 1000.






	
float DebrisData::lifetimeVariance


	Allowed variance in the value of lifetime. Must be less than lifetime.






	
float DebrisData::maxSpinSpeed


	Maximum speed that this debris object will rotate. Must be in the range of -10000 to 10000.






	
float DebrisData::minSpinSpeed


	Minimum speed that this debris object will rotate. Must be in the range of -10000 to 1000, and must be less than maxSpinSpeed.






	
int DebrisData::numBounces


	How many times to allow this debris object to bounce until it either explodes, becomes static or snaps (defined in explodeOnMaxBounce, staticOnMaxBounce, snapOnMaxBounce). Must be within the range of 0 to 10000.






	
filename DebrisData::shapeFile


	Object model to use for this debris object. This shape is optional. You could have Debris made up of only particles.






	
bool DebrisData::snapOnMaxBounce


	If true, this debris object will snap into a resting position on the last bounce.






	
bool DebrisData::staticOnMaxBounce


	If true, this debris object becomes static after it has bounced max times.






	
float DebrisData::terminalVelocity


	Max velocity magnitude.






	
string DebrisData::texture


	Texture imagemap to use for this debris object. Not used any more.






	
bool DebrisData::useRadiusMass


	Use mass calculations based on radius. Allows for the adjustment of elasticity and friction based on the Debris size.






	
float DebrisData::velocity


	Speed at which this debris object will move.






	
float DebrisData::velocityVariance


	Allowed variance in the value of velocity. Must be less than velocity.











          

      

      

    

  

    
      
          
            
  
DebugDrawer

A debug helper for rendering debug primitives to the scene.


	Inherit:

	SimObject






Description

The DebugDrawer is used to render debug primitives to the scene for testing. It is often useful when debugging collision code or complex 3d algorithms to have them draw debug information, like culling hulls or bounding volumes, normals, simple lines, and so forth.

A key feature of the DebugDrawer is that each primitive gets a “time to live” (TTL) which allows them to continue to render to the scene for a fixed period of time. You can freeze or resume the system at any time to allow you to examine the output.

Example:

DebugDraw.drawLine( %player.getMuzzlePoint( 0 ), %hitPoint );
DebugDraw.setLastTTL( 5000 ); // 5 seconds.





The DebugDrawer renders solely in world space and all primitives are rendered with the cull mode disabled.




Methods


	
void DebugDrawer::drawBox(Point3F a, Point3F b, ColorF color)


	Draws an axis aligned box primitive within the two 3d points.






	
void DebugDrawer::drawLine(Point3F a, Point3F b, ColorF color)


	Draws a line primitive between two 3d points.






	
void DebugDrawer::setLastTTL(int ms)


	Sets the “time to live” (TTL) for the last rendered primitive.






	
void DebugDrawer::setLastZTest(bool enabled)


	Sets the z buffer reading state for the last rendered primitive.






	
void DebugDrawer::toggleDrawing()


	Toggles the rendering of DebugDrawer primitives.






	
void DebugDrawer::toggleFreeze()


	Toggles freeze mode which keeps the currently rendered primitives from expiring.











          

      

      

    

  

    
      
          
            
  
DecalData

A datablock describing an individual decal.


	Inherit:

	SimDataBlock






Description

A datablock describing an individual decal.

The textures defined by the decal Material can be divided into multiple rectangular sub-textures as shown below, with a different sub-texture selected by all decals using the same DecalData (via frame) or each decal instance (via randomize).

Example of a Decal imagemap

Example:

datablock DecalData(BulletHoleDecal)
{
   material = "DECAL_BulletHole";
   size = "5.0";
   lifeSpan = "50000";
   randomize = "1";
   texRows = "2";
   texCols = "2";
   clippingAngle = "60";
};








Methods


	
void DecalData::postApply()


	Recompute the imagemap sub-texture rectangles for this DecalData .

Example:

// Inform the decal object to reload its imagemap and frame data.
%decalData.texRows = 4;
%decalData.postApply();












Fields


	
float DecalData::clippingAngle


	The angle in degrees used to clip geometry that faces away from the decal projection direction.






	
float DecalData::fadeEndPixelSize


	LOD value - size in pixels at which decals of this type are fully faded out. This should be a smaller value than fadeStartPixelSize .






	
float DecalData::fadeStartPixelSize


	LOD value - size in pixels at which decals of this type begin to fade out. This should be a larger value than fadeEndPixelSize . However, you may also set this to a negative value to disable lod-based fading.






	
int DecalData::fadeTime


	Time (in milliseconds) over which to fade out the decal before deleting it at the end of its lifetime.






	
int DecalData::frame


	Index of the texture rectangle within the imagemap to use for this decal.






	
int DecalData::lifeSpan


	Time (in milliseconds) before this decal will be automatically deleted.






	
string DecalData::Material


	Material to use for this decal.






	
bool DecalData::randomize


	If true, a random frame from the imagemap is selected for each instance of the decal.






	
char DecalData::renderPriority


	Default renderPriority for decals of this type (determines draw order when decals overlap).






	
float DecalData::size


	Width and height of the decal in meters before scale is applied.






	
int DecalData::texCols


	Number of columns in the supplied imagemap. Use texRows and texCols if the imagemap frames are arranged in a grid; use textureCoords to manually specify UV coordinates for irregular sized frames.






	
int DecalData::texRows


	Number of rows in the supplied imagemap. Use texRows and texCols if the imagemap frames are arranged in a grid; use textureCoords to manually specify UV coordinates for irregular sized frames.






	
int DecalData::textureCoordCount


	Number of individual frames in the imagemap (maximum 16).






	
RectF DecalData::textureCoords[16]


	An array of RectFs (topleft.x topleft.y extent.x extent.y) representing the UV coordinates for each frame in the imagemap.











          

      

      

    

  

    
      
          
            
  
DecalManager

The object that manages all of the decals in the active mission.


	Inherit:

	SceneObject






Description

The object that manages all of the decals in the active mission.







          

      

      

    

  

    
      
          
            
  
DecalRoad

A strip shaped decal defined by spine nodes which clips against Terrain objects.


	Inherit:

	SceneObject






Description

A strip shaped decal defined by spine nodes which clips against Terrain objects.

DecalRoad is for representing a road or path ( or other inventive things ) across a TerrainBlock. It renders as a decal and is therefore only for features that do not need geometric depth.

The Material assigned to DecalRoad should tile vertically.




Methods


	
void DecalRoad::postApply()


	Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit the material and other fields ( not including nodes ) to client objects.






	
void DecalRoad::regenerate()


	Intended as a helper to developers and editor scripts. Force DecalRoad to update it’s spline and reclip geometry.








Fields


	
float DecalRoad::breakAngle


	Angle in degrees - DecalRoad will subdivided the spline if its curve is greater than this threshold.






	
bool DecalRoad::discardAll[static]


	For use by the Decal Editor.






	
bool DecalRoad::EditorOpen[static]


	For use by the Decal Editor.






	
string DecalRoad::Material


	Material used for rendering.






	
string DecalRoad::Node


	Do not modify, for internal use.






	
int DecalRoad::renderPriority


	DecalRoad(s) are rendered in descending renderPriority order.






	
bool DecalRoad::showBatches[static]


	For use by the Decal Editor.






	
bool DecalRoad::showRoad[static]


	For use by the Decal Editor.






	
bool DecalRoad::showSpline[static]


	For use by the Decal Editor.






	
float DecalRoad::textureLength


	The length in meters of textures mapped to the DecalRoad .






	
int DecalRoad::updateDelay[static]


	For use by the Decal Editor.






	
bool DecalRoad::wireframe[static]


	For use by the Decal Editor.











          

      

      

    

  

    
      
          
            
  
EventManager

The EventManager class is a wrapper for the standard messaging system.


	Inherit:

	SimObject






Description

It provides functionality for management of event queues, events, and subscriptions. Creating an EventManager is as simple as calling new EventManager and specifying a queue name.

Example:

// Create the EventManager.
$MyEventManager = newEventManager() { queue = "MyEventManager"; };

// Create an event.
$MyEventManager.registerEvent( "SomeCoolEvent" );

// Create a listener and subscribe.
$MyListener = newScriptMsgListener() { class = MyListener; };
$MyEventManager.subscribe( $MyListener, "SomeCoolEvent" );

function MyListener::onSomeCoolEvent( %this, %data )
{
     echo( "onSomeCoolEvent Triggered" );
}

// Trigger the event.
$MyEventManager.postEvent( "SomeCoolEvent", "Data" );








Methods


	
void EventManager::dumpEvents()


	Print all registered events to the console.






	
void EventManager::dumpSubscribers(String event)


	Print all subscribers to an event to the console.


	Parameters

	event – The event whose subscribers are to be printed. If this parameter isn’t specified, all events will be dumped.










	
bool EventManager::isRegisteredEvent(String event)


	Check if an event is registered or not.


	Parameters

	event – The event to check.



	Returns

	Whether or not the event exists.










	
bool EventManager::postEvent(String event, String data)


	~Trigger an event.


	Parameters

	
	event – The event to trigger.


	data – The data associated with the event.






	Returns

	Whether or not the event was dispatched successfully.










	
bool EventManager::registerEvent(String event)


	Register an event with the event manager.


	Parameters

	event – The event to register.



	Returns

	Whether or not the event was registered successfully.










	
void EventManager::remove(SimObject listener, String event)


	Remove a listener from an event.


	Parameters

	
	listener – The listener to remove.


	event – The event to be removed from.













	
void EventManager::removeAll(SimObject listener)


	Remove a listener from all events.


	Parameters

	listener – The listener to remove.










	
bool EventManager::subscribe(SimObject listener, String event, String callback)


	Subscribe a listener to an event.


	Parameters

	
	listener – The listener to subscribe.


	event – The event to subscribe to.


	callback – Optional method name to receive the event notification. If this is not specified, “on[event]” will be used.






	Returns

	Whether or not the subscription was successful.










	
void EventManager::unregisterEvent(String event)


	Remove an event from the EventManager .


	Parameters

	event – The event to remove.












Fields


	
string EventManager::queue


	List of events currently waiting.











          

      

      

    

  

    
      
          
            
  
Explosion

object.


	Inherit:

	GameBase






Description

The emitter for an explosion effect, with properties defined by a ExplosionData object.

The object will initiate the explosion effects automatically after being added to the simulation.

Example:

datablock ExplosionData( GrenadeSubExplosion )
{
   offset = 0.25;
   emitter[0] = GrenadeExpSparkEmitter;

   lightStartRadius = 4.0;
   lightEndRadius = 0.0;
   lightStartColor = "0.9 0.7 0.7";
   lightEndColor = "0.9 0.7 0.7";
   lightStartBrightness = 2.0;
   lightEndBrightness = 0.0;
};

datablock ExplosionData( GrenadeLauncherExplosion )
{
   soundProfile = GrenadeLauncherExplosionSound;
   lifeTimeMS = 400; // Quick flash, short burn, and moderate dispersal// Volume particles
   particleEmitter = GrenadeExpFireEmitter;
   particleDensity = 75;
   particleRadius = 2.25;

   // Point emission
   emitter[0] = GrenadeExpDustEmitter;
   emitter[1] = GrenadeExpSparksEmitter;
   emitter[2] = GrenadeExpSmokeEmitter;

   // Sub explosion objects
   subExplosion[0] = GrenadeSubExplosion;

   // Camera Shaking
   shakeCamera = true;
   camShakeFreq = "10.0 11.0 9.0";
   camShakeAmp = "15.0 15.0 15.0";
   camShakeDuration = 1.5;
   camShakeRadius = 20;

   // Exploding debris
   debris = GrenadeDebris;
   debrisThetaMin = 10;
   debrisThetaMax = 60;
   debrisNum = 4;
   debrisNumVariance = 2;
   debrisVelocity = 25;
   debrisVelocityVariance = 5;

   lightStartRadius = 4.0;
   lightEndRadius = 0.0;
   lightStartColor = "1.0 1.0 1.0";
   lightEndColor = "1.0 1.0 1.0";
   lightStartBrightness = 4.0;
   lightEndBrightness = 0.0;
   lightNormalOffset = 2.0;
};

function createExplosion()
{
   // Create a new explosion - it will explode automatically
   %pos = "0 0 100";
   %obj = newExplosion()
   {
      position = %pos;
      dataBlock = GrenadeLauncherExplosion;
   };
}

// schedule an explosionschedule(1000, 0, createExplosion);











          

      

      

    

  

    
      
          
            
  
ExplosionData

: particleEmitters, debris, lighting and camera shake effects.


	Inherit:

	GameBaseData






Description

Defines the attributes of an Explosion: particleEmitters, debris, lighting and camera shake effects.




Fields


	
Point3F ExplosionData::camShakeAmp


	Amplitude of camera shaking, defined in the “X Y Z” axes. Set any value to 0 to disable shaking in that axis.






	
float ExplosionData::camShakeDuration


	Duration (in seconds) to shake the camera.






	
float ExplosionData::camShakeFalloff


	Falloff value for the camera shake.






	
Point3F ExplosionData::camShakeFreq


	Frequency of camera shaking, defined in the “X Y Z” axes.






	
float ExplosionData::camShakeRadius


	Radial distance that a camera’s position must be within relative to the center of the explosion to be shaken.






	
DebrisData ExplosionData::Debris


	List of DebrisData objects to spawn with this explosion.






	
int ExplosionData::debrisNum


	Number of debris objects to create.






	
int ExplosionData::debrisNumVariance


	Variance in the number of debris objects to create (must be from 0 - debrisNum).






	
float ExplosionData::debrisPhiMax


	Maximum reference angle, from the vertical plane, to eject debris from.






	
float ExplosionData::debrisPhiMin


	Minimum reference angle, from the vertical plane, to eject debris from.






	
float ExplosionData::debrisThetaMax


	Maximum angle, from the horizontal plane, to eject debris from.






	
float ExplosionData::debrisThetaMin


	Minimum angle, from the horizontal plane, to eject debris from.






	
float ExplosionData::debrisVelocity


	Velocity to toss debris at.






	
float ExplosionData::debrisVelocityVariance


	Variance in the debris initial velocity (must be gt = 0).






	
int ExplosionData::delayMS


	Amount of time, in milliseconds, to delay the start of the explosion effect from the creation of the Explosion object.






	
int ExplosionData::delayVariance


	Variance, in milliseconds, of delayMS.






	
ParticleEmitterData ExplosionData::emitter[4]


	List of additional ParticleEmitterData objects to spawn with this explosion.






	
Point3F ExplosionData::explosionScale


	“X Y Z” scale factor applied to the explosionShape model at the start of the explosion.






	
filename ExplosionData::explosionShape


	Optional DTS or DAE shape to place at the center of the explosion. The ambient animation of this model will be played automatically at the start of the explosion.






	
bool ExplosionData::faceViewer


	Controls whether the visual effects of the explosion always face the camera.






	
int ExplosionData::lifetimeMS


	Lifetime, in milliseconds, of the Explosion object.






	
int ExplosionData::lifetimeVariance


	Variance, in milliseconds, of the lifetimeMS of the Explosion object.






	
float ExplosionData::lightEndBrightness


	Final brightness of the PointLight created by this explosion.






	
ColorF ExplosionData::lightEndColor


	Final color of the PointLight created by this explosion.






	
float ExplosionData::lightEndRadius


	Final radius of the PointLight created by this explosion.






	
float ExplosionData::lightNormalOffset


	Distance (in the explosion normal direction) of the PointLight position from the explosion center.






	
float ExplosionData::lightStartBrightness


	Initial brightness of the PointLight created by this explosion. Brightness is linearly interpolated from lightStartBrightness to lightEndBrightness over the lifetime of the explosion.






	
ColorF ExplosionData::lightStartColor


	Initial color of the PointLight created by this explosion. Color is linearly interpolated from lightStartColor to lightEndColor over the lifetime of the explosion.






	
float ExplosionData::lightStartRadius


	Initial radius of the PointLight created by this explosion. Radius is linearly interpolated from lightStartRadius to lightEndRadius over the lifetime of the explosion.






	
float ExplosionData::offset


	Offset distance (in a random direction) of the center of the explosion from the Explosion object position. Most often used to create some variance in position for subExplosion effects.






	
int ExplosionData::particleDensity


	Density of the particle cloud created at the start of the explosion.






	
ParticleEmitterData ExplosionData::ParticleEmitter


	Emitter used to generate a cloud of particles at the start of the explosion. Explosions can generate two different particle effects. The first is a single burst of particles at the start of the explosion emitted in a spherical cloud using particleEmitter. The second effect spawns the list of ParticleEmitters given by the emitter[] field. These emitters generate particles in the normal way throughout the lifetime of the explosion.






	
float ExplosionData::particleRadius


	Radial distance from the explosion center at which cloud particles are emitted.






	
float ExplosionData::playSpeed


	Time scale at which to play the explosionShape ambient sequence.






	
bool ExplosionData::shakeCamera


	Controls whether the camera shakes during this explosion.






	
Point3F ExplosionData::sizes[4]


	“X Y Z” size keyframes used to scale the explosionShape model. The explosionShape (if defined) will be scaled using the times/sizes keyframes over the lifetime of the explosion.






	
SFXTrack ExplosionData::soundProfile


	Non-looping sound effect that will be played at the start of the explosion.






	
ExplosionData ExplosionData::subExplosion[5]


	List of additional ExplosionData objects to create at the start of the explosion.






	
float ExplosionData::times[4]


	Time keyframes used to scale the explosionShape model. Values should be in increasing order from 0.0 - 1.0, and correspond to the life of the Explosion where 0 is the beginning and 1 is the end of the explosion lifetime.











          

      

      

    

  

    
      
          
            
  
FileDialog

Base class responsible for displaying an OS file browser.


	Inherit:

	SimObject






Description

FileDialog is a platform agnostic dialog interface for querying the user for file locations. It is designed to be used through the exposed scripting interface.

FileDialog is the base class for Native File Dialog controls in Torque. It provides these basic areas of functionality:

FileDialog is not intended to be used directly in script and is only exposed to script to expose generic file dialog attributes.

This base class is usable in TorqueScript, but is does not specify what functionality is intended (open or save?). Its children, OpenFileDialog and SaveFileDialog, do make use of DialogStyle flags and do make use of specific funcationality. These are the preferred classes to use

However, the FileDialog base class does contain the key properties and important method for file browing. The most important function is Execute(). This is used by both SaveFileDialog and OpenFileDialog to initiate the browser.

Example:

// NOTE: This is not he preferred class to use, but this still works
// Create the file dialog
%baseFileDialog = newFileDialog()
{
   // Allow browsing of all file typesfilters = "*.*";

   // No default filedefaultFile = ;

   // Set default path relative to projectdefaultPath = "./";

   // Set the titletitle = "Durpa";

   // Allow changing of path you are browsingchangePath = true;
};

 // Launch the file dialog
 %baseFileDialog.Execute();

 // Dont forget to cleanup
 %baseFileDialog.delete();








Methods


	
bool FileDialog::Execute()


	Launches the OS file browser. After an Execute() call, the chosen file name and path is available in one of two areas. If only a single file selection is permitted, the results will be stored in the fileName attribute. If multiple file selection is permitted, the results will be stored in the files array. The total number of files in the array will be stored in the fileCount attribute.


	Returns

	True if the file was selected was successfully found (opened) or declared (saved).





Example:

// NOTE: This is not he preferred class to use, but this still works
// Create the file dialog
%baseFileDialog = newFileDialog()
{
   // Allow browsing of all file typesfilters = "*.*";

   // No default filedefaultFile = ;

   // Set default path relative to projectdefaultPath = "./";

   // Set the titletitle = "Durpa";

   // Allow changing of path you are browsingchangePath = true;
};

 // Launch the file dialog
 %baseFileDialog.Execute();

 // Dont forget to cleanup
 %baseFileDialog.delete();


 // A better alternative is to use the
 // derived classes which are specific to file open and save
 // Create a dialog dedicated to opening files
 %openFileDlg = newOpenFileDialog()
 {
    // Look for jpg image files
    // First part is the descriptor|second part is the extension
    Filters = "Jepg Files|*.jpg";
    // Allow browsing through other folders
    ChangePath = true;

    // Only allow opening of one file at a time
    MultipleFiles = false;
 };

 // Launch the open file dialog
 %result = %openFileDlg.Execute();

 // Obtain the chosen file name and pathif ( %result )
 {
    %seletedFile = %openFileDlg.file;
 }
 else
 {
    %selectedFile = "";
 }
 // Cleanup
 %openFileDlg.delete();


 // Create a dialog dedicated to saving a file
 %saveFileDlg = newSaveFileDialog()
 {
    // Only allow for saving of COLLADA files
    Filters = "COLLADA Files (*.dae)|*.dae|";

    // Default save path to where the WorldEditor last saved
    DefaultPath = $pref::WorldEditor::LastPath;

    // No default file specified
    DefaultFile = "";

    // Do not allow the user to change to a new directory
    ChangePath = false;

    // Prompt the user if they are going to overwrite an existing file
    OverwritePrompt = true;
 };

 // Launch the save file dialog
 %result = %saveFileDlg.Execute();

 // Obtain the file name
 %selectedFile = "";
 if ( %result )
    %selectedFile = %saveFileDlg.file;

 // Cleanup
 %saveFileDlg.delete();












Fields


	
bool FileDialog::changePath


	True/False whether to set the working directory to the directory returned by the dialog.






	
string FileDialog::defaultFile


	The default file path when the dialog is shown.






	
string FileDialog::defaultPath


	The default directory path when the dialog is shown.






	
string FileDialog::fileName


	The default file name when the dialog is shown.






	
string FileDialog::filters


	The filter string for limiting the types of files visible in the dialog. It makes use of the pipe symbol ‘|’ as a delimiter. For example: ‘All Files|*.*’ ‘Image Files|*.png;*.jpg|Png Files|*.png|Jepg Files|*.jpg’






	
string FileDialog::title


	The title for the dialog.











          

      

      

    

  

    
      
          
            
  
FileObject

This class is responsible opening, reading, creating, and saving file contents.


	Inherit:

	SimObject






Description

FileObject acts as the interface with OS level files. You create a new FileObject and pass into it a file’s path and name. The FileObject class supports three distinct operations for working with files:

Before you may work with a file you need to use one of the three above methods on the FileObject.

Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%result = %fileWrite.OpenForWrite("./test.txt");

if ( %result )
{
   // Write a line to the text files
   %fileWrite.writeLine("READ. READ CODE. CODE");
}

// Close the file when finished
%fileWrite.close();

// Cleanup the file object
%fileWrite.delete();


// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%result = %fileRead.OpenForRead("./test.txt");

if ( %result )
{
   // Read in the first line
   %line = %fileRead.readline();

   // Print the line we just readecho(%line);
}

// Close the file when finished
%fileRead.close();

// Cleanup the file object
%fileRead.delete();








Methods


	
void FileObject::close()


	Close the file. It is EXTREMELY important that you call this function when you are finished reading or writing to a file. Failing to do so is not only a bad programming practice, but could result in bad data or corrupt files. Remember: Open, Read/Write, Close, Delete…in that order!

Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Peek the first line
%line = %fileRead.peekLine();

// Print the line we just peekedecho(%line);
// If we peek again...
%line = %fileRead.peekLine();

// We will get the same output as the first time
// since the stream did not move forwardecho(%line);

// Close the file when finished
%fileWrite.close();

// Cleanup the file object
%fileWrite.delete();










	
bool FileObject::isEOF()


	Determines if the parser for this FileObject has reached the end of the file.


	Returns

	True if the parser has reached the end of the file, false otherwise





Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Keep reading until we reach the end of the file
while(!%fileRead.isEOF())
{
   %line = %fileRead.readline();
   echo(%line);
}

// Made it to the endecho("Finished reading file");










	
bool FileObject::openForAppend(string filename)


	Open a specified file for writing, adding data to the end of the file. There is no limit as to what kind of file you can write. Any format and data is allowable, not just text. Unlike openForWrite() , which will erase an existing file if it is opened, openForAppend() preserves data in an existing file and adds to it.


	Parameters

	filename – Path, name, and extension of file to append to



	Returns

	True if file was successfully opened, false otherwise





Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
// If it does exist, whatever we write will be added to the end
%result = %fileWrite.OpenForAppend("./test.txt");










	
bool FileObject::openForRead(string filename)


	Open a specified file for reading. There is no limit as to what kind of file you can read. Any format and data contained within is accessible, not just text


	Parameters

	filename – Path, name, and extension of file to be read



	Returns

	True if file was successfully opened, false otherwise





Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%result = %fileRead.OpenForRead("./test.txt");










	
bool FileObject::openForWrite(string filename)


	Open a specified file for writing. There is no limit as to what kind of file you can write. Any format and data is allowable, not just text


	Parameters

	filename – Path, name, and extension of file to write to



	Returns

	True if file was successfully opened, false otherwise





Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%result = %fileWrite.OpenForWrite("./test.txt");










	
string FileObject::peekLine()


	Read a line from the file without moving the stream position. Emphasis on line, as in you cannot parse individual characters or chunks of data. There is no limitation as to what kind of data you can read. Unlike readLine, the parser does not move forward after reading.


	Parameters

	filename – Path, name, and extension of file to be read



	Returns

	String containing the line of data that was just peeked





Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Peek the first line
%line = %fileRead.peekLine();

// Print the line we just peekedecho(%line);
// If we peek again...
%line = %fileRead.peekLine();

// We will get the same output as the first time
// since the stream did not move forward
echo(%line);










	
string FileObject::readLine()


	Read a line from file. Emphasis on line, as in you cannot parse individual characters or chunks of data. There is no limitation as to what kind of data you can read.


	Returns

	String containing the line of data that was just read





Example:

// Create a file object for reading
%fileRead = newFileObject();

// Open a text file, if it exists
%fileRead.OpenForRead("./test.txt");

// Read in the first line
%line = %fileRead.readline();

// Print the line we just read
echo(%line);










	
void FileObject::writeLine(string text)


	Write a line to the file, if it was opened for writing. There is no limit as to what kind of text you can write. Any format and data is allowable, not just text. Be careful of what you write, as whitespace, current values, and literals will be preserved.


	Parameters

	text – The data we are writing out to file.



	Returns

	True if file was successfully opened, false otherwise





Example:

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%fileWrite.OpenForWrite("./test.txt");

// Write a line to the text files
%fileWrite.writeLine("READ. READ CODE. CODE");










	
void FileObject::writeObject(SimObject object)


	Write an object to a text file. Unlike a simple writeLine using specified strings, this function writes an entire object to file, preserving its type, name, and properties. This is similar to the save() functionality of the SimObject class, but with a bit more control.


	Parameters

	object – The SimObject being written to file, properties, name, and all.





Example:

// Lets assume this SpawnSphere was created and currently
// exists in the running level
newSpawnSphere(TestSphere)
{
   spawnClass = "Player";
   spawnDatablock = "DefaultPlayerData";
   autoSpawn = "1";
   radius = "5";
   sphereWeight = "1";
   indoorWeight = "1";
   outdoorWeight = "1";
   dataBlock = "SpawnSphereMarker";
   position = "-42.222 1.4845 4.80334";
   rotation = "0 0 -1 108";
   scale = "1 1 1";
   canSaveDynamicFields = "1";
};

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%fileWrite.OpenForWrite("./spawnSphers.txt");

// Write out the TestSphere
%fileWrite.writeObject(TestSphere);

// Close the text file
%fileWrite.close();

// Cleanup
%fileWrite.delete();










	
void FileObject::writeObject(SimObject object, string prepend)


	Write an object to a text file, with some data added first. Unlike a simple writeLine using specified strings, this function writes an entire object to file, preserving its type, name, and properties. This is similar to the save() functionality of the SimObject class, but with a bit more control.


	Parameters

	
	object – The SimObject being written to file, properties, name, and all.


	prepend – Data or text that is written out before the SimObject.








Example:

// Lets assume this SpawnSphere was created and currently
// exists in the running level
newSpawnSphere(TestSphere)
{
   spawnClass = "Player";
   spawnDatablock = "DefaultPlayerData";
   autoSpawn = "1";
   radius = "5";
   sphereWeight = "1";
   indoorWeight = "1";
   outdoorWeight = "1";
   dataBlock = "SpawnSphereMarker";
   position = "-42.222 1.4845 4.80334";
   rotation = "0 0 -1 108";
   scale = "1 1 1";
   canSaveDynamicFields = "1";
};

// Create a file object for writing
%fileWrite = newFileObject();

// Open a file to write to, if it does not exist it will be created
%fileWrite.OpenForWrite("./spawnSphers.txt");

// Write out the TestSphere, with a prefix
%fileWrite.writeObject(TestSphere, "$mySphere = ");

// Close the text file
%fileWrite.close();

// Cleanup
%fileWrite.delete();















          

      

      

    

  

    
      
          
            
  
FileStreamObject

A wrapper around StreamObject for parsing text and data from files.


	Inherit:

	StreamObject






Description

FileStreamObject inherits from StreamObject and provides some unique methods for working with strings. If you’re looking for general file handling, you may want to use FileObject.

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Get the status and print it
%status = %fsObject.getStatus();
echo(%status);

// Always remember to close a file stream when finished
%fsObject.close();








Methods


	
void FileStreamObject::close()


	Close the file. You can no longer read or write to it unless you open it again.

Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Always remember to close a file stream when finished
%fsObject.close();










	
bool FileStreamObject::open(string filename, string openMode)


	Open a file for reading, writing, reading and writing, or appending. Using “Read” for the open mode allows you to parse the contents of file, but not making modifications. “Write” will create a new file if it does not exist, or erase the contents of an existing file when opened. Write also allows you to modify the contents of the file. “ReadWrite” will provide the ability to parse data (read it in) and manipulate data (write it out) interchangeably. Keep in mind the stream can move during each operation. Finally, “WriteAppend” will open a file if it exists, but will not clear the contents. You can write new data starting at the end of the files existing contents.


	Parameters

	
	filename – Name of file to open


	openMode – One of “Read”, “Write”, “ReadWrite” or “WriteAppend”






	Returns

	True if the file was successfully opened, false if something went wrong





Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Get the status and print it
%status = %fsObject.getStatus();
echo(%status);

// Always remember to close a file stream when finished
%fsObject.close();















          

      

      

    

  

    
      
          
            
  
FlyingVehicle

A flying vehicle.


	Inherit:

	Vehicle






Description

The model used for the FlyingVehicle should contain the elements shown below. Only the collision mesh is actually required for the object to be added to the simulation, but particle emitters will not work unless the relevant nodes are present.

The example below shows the datablock required for a simple FlyingVehicle. The script should be executed on the server, and the vehicle can then be added to the simulation programmatically from the level startup scripts, or by selecting the JetFighter datablock from the World Editor (Library->ScriptedObjects->Vehicles).

Example:

datablock FlyingVehicleData( JetFighter )
{
   category = "Vehicles";
   shapeFile = "art/shapes/fighterjet.dae";

   createHoverHeight       = 20;

   // 3rd person camera settings
   cameraRoll              = true;
   cameraMaxDist           = 16;
   cameraOffset            = 1.0;
   cameraLag               =  0.1;
   cameraDecay             = 1.25;

   // Rigid Body
   mass                    = 100;
   massCenter              = "0 -0.2 0";
   massBox                 = "0 0 0";
   integration             = 3;
   collisionTol            = 0.6;
   contactTol              = 0.4;

   bodyFriction            = 0;
   bodyRestitution         = 0.8;
   minRollSpeed            = 2000;
   minImpactSpeed          = 5;
   softImpactSpeed         = 3;
   hardImpactSpeed         = 15;

   drag                    = 0.25;
   minDrag                 = 40;
   rotationalDrag          = 20;

   // Autostabilizer
   maxAutoSpeed            = 6;
   autoAngularForce        = 400;
   autoLinearForce         = 300;
   autoInputDamping        = 0.55;

   // Maneuvering
   maxSteeringAngle        = 3;
   horizontalSurfaceForce  = 20;
   verticalSurfaceForce    = 20;
   maneuveringForce        = 6400;
   steeringForce           = 500;
   steeringRollForce       = 200;
   rollForce               = 10;
   hoverHeight             = 0.5;
   createHoverHeight       = 0.5;
   maxForwardSpeed         = 90;

   // Vertical jetting
   maxEnergy               = 100;
   jetForce                = 3000;
   minJetEnergy            = 28;
   jetEnergyDrain          = 2.8;
   vertThrustMultiple      = 3.0;

   // Emitters
   forwardJetEmitter       = FighterJettingEmitter;
   backwardJetEmitter      = FighterJettingEmitter;
   downJetEmitter          = FighterJettingEmitter;
   trailEmitter            = FighterContrailEmitter;
   minTrailSpeed           = 10;

   // Sounds
   engineSound             = FighterEngineSnd;
   jetSound                = FighterJettingSnd;
};

// This function is executed when the FlyingVehicle object is added to the simulation.
function JetFighter::onAdd( %this, %obj )
{
   Parent::onAdd( %this, %obj );

   // Allow jetting energy to recharge over time
   %obj.setRechargeRate( 2 );
}








Methods


	
void FlyingVehicle::useCreateHeight(bool enabled)


	Set whether the vehicle should temporarily use the createHoverHeight specified in the datablock. This can help avoid problems with spawning.


	Parameters

	enabled – true to use the datablock createHoverHeight, false otherwise















          

      

      

    

  

    
      
          
            
  
FlyingVehicleData

Defines the properties of a FlyingVehicle.


	Inherit:

	VehicleData






Description

Defines the properties of a FlyingVehicle.




Fields


	
float FlyingVehicleData::autoAngularForce


	Corrective torque applied to level out the vehicle when moving at less than maxAutoSpeed. The torque is inversely proportional to vehicle speed.






	
float FlyingVehicleData::autoInputDamping


	Scale factor applied to steering input if speed is less than maxAutoSpeed to.improve handling at very low speeds. Smaller values make steering less sensitive.






	
float FlyingVehicleData::autoLinearForce


	Corrective force applied to slow the vehicle when moving at less than maxAutoSpeed. The force is inversely proportional to vehicle speed.






	
ParticleEmitterData FlyingVehicleData::backwardJetEmitter


	Emitter to generate particles for backward jet thrust. Backward jet thrust particles are emitted from model nodes JetNozzleX and JetNozzleY.






	
float FlyingVehicleData::createHoverHeight


	The vehicle’s height off the ground when useCreateHeight is active. This can help avoid problems with spawning the vehicle.






	
ParticleEmitterData FlyingVehicleData::downJetEmitter


	Emitter to generate particles for downward jet thrust. Downward jet thrust particles are emitted from model nodes JetNozzle2 and JetNozzle3.






	
SFXProfile FlyingVehicleData::engineSound


	Looping engine sound.






	
ParticleEmitterData FlyingVehicleData::forwardJetEmitter


	Emitter to generate particles for forward jet thrust. Forward jet thrust particles are emitted from model nodes JetNozzle0 and JetNozzle1.






	
float FlyingVehicleData::horizontalSurfaceForce


	Damping force in the opposite direction to sideways velocity. Provides “bite” into the wind for climbing/diving and turning).






	
float FlyingVehicleData::hoverHeight


	The vehicle’s height off the ground when at rest.






	
SFXProfile FlyingVehicleData::jetSound


	Looping sound to play while the vehicle is jetting.






	
float FlyingVehicleData::maneuveringForce


	Maximum X and Y (horizontal plane) maneuvering force. The actual force applied depends on the current thrust.






	
float FlyingVehicleData::maxAutoSpeed


	Maximum speed for automatic vehicle control assistance - vehicles travelling at speeds above this value do not get control assitance.






	
float FlyingVehicleData::minTrailSpeed


	Minimum speed at which to start generating contrail particles.






	
float FlyingVehicleData::rollForce


	Damping torque against rolling maneuvers (rotation about the y-axis), proportional to linear velocity. Acts to adjust roll to a stable position over time as the vehicle moves.






	
float FlyingVehicleData::rotationalDrag


	Rotational drag factor (slows vehicle rotation speed in all axes).






	
float FlyingVehicleData::steeringForce


	Maximum X and Z (sideways and vertical) steering force. The actual force applied depends on the current steering input.






	
float FlyingVehicleData::steeringRollForce


	Roll force induced by sideways steering input value (controls how much the vehicle rolls when turning).






	
ParticleEmitterData FlyingVehicleData::trailEmitter


	Emitter to generate contrail particles from model nodes contrail0 - contrail3.






	
float FlyingVehicleData::verticalSurfaceForce


	Damping force in the opposite direction to vertical velocity. Controls side slip; lower numbers give more slide.






	
float FlyingVehicleData::vertThrustMultiple


	Multiplier applied to the jetForce (defined in VehicleData ) when thrusting vertically.











          

      

      

    

  

    
      
          
            
  
Forest

Forest is a global-bounds scene object provides collision and rendering for a (.forest) data file.


	Inherit:

	SceneObject






Description

Forest is a global-bounds scene object provides collision and rendering for a (.forest) data file.

Forest is designed to efficiently render a large number of static meshes: trees, rocks plants, etc. These cannot be moved at game-time or play animations but do support wind effects using vertex shader transformations guided by vertex color in the asset and user placed wind emitters ( or weapon explosions ).

Script level manipulation of forest data is not possible through Forest, it is only the rendering/collision. All editing is done through the world editor.




Methods


	
void Forest::clear()


	




	
bool Forest::isDirty()


	




	
void Forest::regenCells()


	






Fields


	
filename Forest::dataFile


	The source forest data file.






	
float Forest::lodReflectScalar


	Scalar applied to the farclip distance when Forest renders into a reflection.






	
bool Forest::saveDataFile


	saveDataFile( [path] )











          

      

      

    

  

    
      
          
            
  
ForestBrushElement

Represents a type of ForestItem and parameters for how it is placed when painting with a ForestBrush that contains it.


	Inherit:

	SimObject






Description

Represents a type of ForestItem and parameters for how it is placed when painting with a ForestBrush that contains it.




Fields


	
float ForestBrushElement::elevationMax


	The max world space elevation this item will be placed.






	
float ForestBrushElement::elevationMin


	The min world space elevation this item will be placed.






	
ForestItemData ForestBrushElement::ForestItemData


	The type of ForestItem this element holds placement parameters for.






	
float ForestBrushElement::probability


	The probability that this element will be created during an editor brush stroke is the sum of all element probabilities in the brush divided by the probability of this element.






	
float ForestBrushElement::rotationRange


	The max rotation in degrees that items will be placed.






	
float ForestBrushElement::scaleExponent


	An exponent used to bias between the minimum and maximum random sizes.






	
float ForestBrushElement::scaleMax


	The maximum random size of each item.






	
float ForestBrushElement::scaleMin


	The minimum random size for each item.






	
float ForestBrushElement::sinkMax


	Max variation in the sink radius.






	
float ForestBrushElement::sinkMin


	Min variation in the sink radius.






	
float ForestBrushElement::sinkRadius


	This is the radius used to calculate how much to sink the trunk at its base and is used to sink the tree into the ground when its on a slope.






	
float ForestBrushElement::slopeMax


	The max surface slope in degrees this item will be placed on.






	
float ForestBrushElement::slopeMin


	The min surface slope in degrees this item will be placed on.











          

      

      

    

  

    
      
          
            
  
ForestItemData

Base class for defining a type of ForestItem. It does not implement loading or rendering of the shapeFile.


	Inherit:

	SimDataBlock






Description

Base class for defining a type of ForestItem. It does not implement loading or rendering of the shapeFile.




Fields


	
float ForestItemData::branchAmp


	Amplitude of the effect on larger branches.






	
bool ForestItemData::collidable


	Can other objects or spacial queries hit items of this type.






	
float ForestItemData::dampingCoefficient


	Coefficient used in calculating spring forces on the trunk. Causes oscillation and forces to decay faster over time.






	
float ForestItemData::detailAmp


	Amplitude of the winds effect on leafs/fronds.






	
float ForestItemData::detailFreq


	Frequency (speed) of the effect on leafs/fronds.






	
float ForestItemData::mass


	Mass used in calculating spring forces on the trunk. Generally how springy a plant is.






	
float ForestItemData::radius


	Radius used during placement to ensure items are not crowded.






	
float ForestItemData::rigidity


	Rigidity used in calculating spring forces on the trunk. How much the plant resists the wind force.






	
filename ForestItemData::shapeFile


	Shape file for this item type.






	
float ForestItemData::tightnessCoefficient


	Coefficient used in calculating spring forces on the trunk. How much the plant resists bending.






	
float ForestItemData::trunkBendScale


	Overall bend amount of the tree trunk by wind and impacts.






	
float ForestItemData::windScale


	Overall scale to the effect of wind.











          

      

      

    

  

    
      
          
            
  
ForestWindEmitter

Object responsible for simulating wind in a level.


	Inherit:

	SceneObject






Description

When placed in the level, a ForestWindEmitter will cause tree branches to bend and sway, leaves to flutter, and create vertical bending on the tree’s trunk.

Example:

// The following is a full declaration of a wind emitternewForestWindEmitter()
{
   position = "497.739 765.821 102.395";
   windEnabled = "1";
   radialEmitter = "1";
   strength = "1";
   radius = "3";
   gustStrength = "0.5";
   gustFrequency = "1";
   gustYawAngle = "10";
   gustYawFrequency = "4";
   gustWobbleStrength = "2";
   turbulenceStrength = "1";
   turbulenceFrequency = "2";
   hasMount = "0";
   scale = "3 3 3";
   canSave = "1";
   canSaveDynamicFields = "1";
   rotation = "1 0 0 0";
};








Methods


	
void ForestWindEmitter::attachToObject(int objectID)


	Mounts the wind emitter to another scene object.


	Parameters

	objectID – Unique ID of the object wind emitter should attach to





Example:

// Wind emitter previously created and named %windEmitter// Going to attach it to the player, making him a walking wind storm
%windEmitter.attachToObject(%player);












Fields


	
float ForestWindEmitter::gustFrequency


	The frequency of gusting in seconds.






	
float ForestWindEmitter::gustStrength


	The maximum strength of a gust.






	
float ForestWindEmitter::gustWobbleStrength


	The amount of random wobble added to gust and turbulence vectors.






	
float ForestWindEmitter::gustYawAngle


	The amount of degrees the wind direction can drift (both positive and negative).






	
float ForestWindEmitter::gustYawFrequency


	The frequency of wind yaw drift, in seconds.






	
bool ForestWindEmitter::hasMount


	Determines if the emitter is mounted to another object.






	
bool ForestWindEmitter::radialEmitter


	Determines if the emitter is a global direction or local radial emitter.






	
float ForestWindEmitter::radius


	The radius of the emitter for local radial emitters.






	
float ForestWindEmitter::strength


	The strength of the wind force.






	
float ForestWindEmitter::turbulenceFrequency


	The frequency of gust turbulence, in seconds.






	
float ForestWindEmitter::turbulenceStrength


	The strength of gust turbulence.






	
bool ForestWindEmitter::windEnabled


	Determines if the emitter will be counted in wind calculations.











          

      

      

    

  

    
      
          
            
  
GFXCardProfiler

Provides a device independent wrapper around both the capabilities reported by the card/drivers and the exceptions recorded in various scripts.


Description

The GFXCardProfiler provides a device independent wrapper around both the capabilities reported by the card/drivers and the exceptions recorded in various scripts.

The materials system keeps track of most caps-related rendering optimizations and/or workarounds, but it is occasionally necessary to expose capability information to higher level code (for instance, if some feature depends on a specific subset of render functionality) or to keep track of exceptions.

The proper way to fix this is to get the IHV to release fixed drivers and/or move to a single consistent rendering path that works. Of course, when you’re releasing a game, especially on a timeline (or with a less than infinite budget) this isn’t always a valid solution.

It’s also often convenient to be able to tweak performance/detail settings based on the identified card type.

GFXCardProfiler addresses both these needs by providing two data retrieval methods and a generic interface for querying capability strings.


Note

The GFXCardProfiler is at heart a system for implementing WORKAROUNDS. It is not guaranteed to work in all cases. The capability strings it responds to are specific to each implementation. You should be EXTREMELY careful when working with this functionality. When used in moderation it can be a project-saver, but if used to excess or without forethought it can lead to complex, hard-to-maintain code.



The first data retrieval method that the GFXCardProfiler supports is a card-specific capability query. This is implemented by each subclass. In the case of DirectX, this means using the built-in capability query. For OpenGL or other APIs, more exotic methods may be necessary. The goal of this method is to retrieve some reasonable defaults that can be overridden later if necessary.

The second data retrieval method is script based. In ./profile a collection of script files are stored. They are named in one of the forms:


Renderer.cs
Renderer.VendorString.CardString.cs
Renderer.VendorString.CardString.cs
Renderer.VendorString.CardString.VersionString.card-specific




These files are found and executed from most general to most specific. For instance, say we’re working in the D3D renderer with an nVidia GeForce FX 5950, running driver version 53.36. The following files would be found and executed:


D3D.cs
D3D.nVidia.cs
D3D.nVidia.GeForceFX5950.cs
D3D.nVidia.GeForceFX5950.5336.cs




The general rule for turning strings into filename parts is to strip all spaces and punctuation. If a file is not found, no error is reported; it is assumed that the absence of a file means all is well.

Several functions are made available to allow simple logic in the script functions (for instance, to enable a workaround for a given range of driver versions). They are:


	GFXCardProfiler::getRenderer()


	GFXCardProfiler::getVendor()


	GFXCardProfiler::getCard()


	GFXCardProfiler::getVersion()




In addition, specific subclasses may expose other values (for instance, chipset IDs). These are made available as static members of the specific subclass. For instance, a D3D-specific chipset query may be made available as GFXD3DCardProfiler::getChipset().

Finally, once a script file has reached a determination they may indicate their settings to the GFXCardProfiler by calling GFXCardProfiler::setCapability(). For instance,

    // Indicate we can show the color red.
GFXCardProfiler::setCapability("supportsRed", true);





GFXCardProfiler may be queried from script by calling GFXCardProfiler::queryProfile() - for instance:

GFXCardProfiler::queryProfile("supportsRed", false); // Query with default.











          

      

      

    

  

    
      
          
            
  
GFXCardProfilerAPI

This class is the interface between TorqueScript and GFXCardProfiler.


Description

You will not actually declare GFXCardProfilerAPI in TorqueScript. It exists solely to give access to the GFXCardProfiler’s querying functions, such as GFXCardProfiler::getRenderer.

Example:

// Example of accessing GFXCardProfiler function from script
// Notice you are not using the API version
%videoMem = GFXCardProfiler::getVideoMemoryMB();








Methods


	
static String GFXCardProfilerAPI::getCard()


	Returns the card name.






	
static String GFXCardProfilerAPI::getRenderer()


	Returns the renderer name. For example D3D9 or OpenGL.






	
static String GFXCardProfilerAPI::getVendor()


	Returns the card vendor name.






	
static String GFXCardProfilerAPI::getVersion()


	Returns the driver version string.






	
static int GFXCardProfilerAPI::getVideoMemoryMB()


	Returns the amount of video memory in megabytes.






	
static int GFXCardProfilerAPI::queryProfile(string name, int defaultValue)


	Used to query the value of a specific card capability.


	Parameters

	
	name – The name of the capability being queried.


	defaultValue – The value to return if the capability is not defined.













	
static void GFXCardProfilerAPI::setCapability(string name, int value)


	Used to set the value for a specific card capability.


	Parameters

	
	name – The name of the capability being set.


	value – The value to set for that capability.


















          

      

      

    

  

    
      
          
            
  
GFXInit

Functions for tracking GFX adapters and initializing them into devices.


Description

Functions for tracking GFX adapters and initializing them into devices.




Methods


	
static void GFXInit::createNullDevice()


	Create the NULL graphics device used for testing or headless operation.






	
static String GFXInit::getAdapterMode(int index, int modeIndex)


	Gets the details of the specified adapter mode.


	Parameters

	
	index – Index of the adapter to query.


	modeIndex – Index of the mode to get data from.






	Returns

	A video mode string in the format ‘width height fullscreen bitDepth refreshRate aaLevel’.










	
static int GFXInit::getAdapterModeCount(int index)


	Gets the number of modes available on the specified adapter.


	Parameters

	index – Index of the adapter to get modes from.



	Returns

	The number of video modes supported by the adapter or -1 if the given adapter was not found.










	
static String GFXInit::getAdapterName(int index)


	Returns the name of the graphics adapter.


	Parameters

	index – The index of the adapter.










	
static String GFXInit::getAdapterOutputName(int index)


	Returns the name of the graphics adapter’s output display device.


	Parameters

	index – The index of the adapter.










	
static float GFXInit::getAdapterShaderModel(int index)


	Returns the supported shader model of the graphics adapter or -1 if the index is bad.


	Parameters

	index – The index of the adapter.










	
static GFXAdapterType GFXInit::getAdapterType(int index)


	Returns the type (D3D9, D3D8, GL, Null) of a graphics adapter.


	Parameters

	index – The index of the adapter.










	
static int GFXInit::getDefaultAdapterIndex()


	Returns the index of the default graphics adapter. This is the graphics device which will be used to initialize the engine.











          

      

      

    

  

    
      
          
            
  
GFXSamplerStateData

A sampler state used by GFXStateBlockData.


	Inherit:

	SimObject






Description

The samplers define how a texture will be sampled when used from the shader or fixed function device.

Example:

singleton GFXSamplerStateData(SamplerClampLinear)
{
   textureColorOp = GFXTOPModulate;
   addressModeU = GFXAddressClamp;
   addressModeV = GFXAddressClamp;
   addressModeW = GFXAddressClamp;
   magFilter = GFXTextureFilterLinear;
   minFilter = GFXTextureFilterLinear;
   mipFilter = GFXTextureFilterLinear;
};





There are a few predefined samplers in the core scripts which you can use with GFXStateBlockData for the most common rendering cases:


	SamplerClampLinear


	SamplerClampPoint


	SamplerWrapLinear


	SamplerWrapPoint







Fields


	
GFXTextureAddressMode GFXSamplerStateData::addressModeU


	The texture address mode for the u coordinate. The default is GFXAddressWrap.






	
GFXTextureAddressMode GFXSamplerStateData::addressModeV


	The texture address mode for the v coordinate. The default is GFXAddressWrap.






	
GFXTextureAddressMode GFXSamplerStateData::addressModeW


	The texture address mode for the w coordinate. The default is GFXAddressWrap.






	
GFXTextureArgument GFXSamplerStateData::alphaArg1


	The first alpha argument for the texture stage. The default value is GFXTATexture.






	
GFXTextureArgument GFXSamplerStateData::alphaArg2


	The second alpha argument for the texture stage. The default value is GFXTADiffuse.






	
GFXTextureArgument GFXSamplerStateData::alphaArg3


	The third alpha channel selector operand for triadic operations (multiply, add, and linearly interpolate). The default value is GFXTACurrent.






	
GFXTextureOp GFXSamplerStateData::alphaOp


	The texture alpha blending operation. The default value is GFXTOPModulate.






	
GFXTextureArgument GFXSamplerStateData::colorArg1


	The first color argument for the texture stage. The default value is GFXTACurrent.






	
GFXTextureArgument GFXSamplerStateData::colorArg2


	The second color argument for the texture stage. The default value is GFXTATexture.






	
GFXTextureArgument GFXSamplerStateData::colorArg3


	The third color argument for triadic operations (multiply, add, and linearly interpolate). The default value is GFXTACurrent.






	
GFXTextureFilterType GFXSamplerStateData::magFilter


	The texture magnification filter. The default is GFXTextureFilterLinear.






	
int GFXSamplerStateData::maxAnisotropy


	The maximum texture anisotropy. The default value is 1.






	
GFXTextureFilterType GFXSamplerStateData::minFilter


	The texture minification filter. The default is GFXTextureFilterLinear.






	
GFXTextureFilterType GFXSamplerStateData::mipFilter


	The texture mipmap filter used during minification. The default is GFXTextureFilterLinear.






	
float GFXSamplerStateData::mipLODBias


	The mipmap level of detail bias. The default value is zero.






	
GFXTextureArgument GFXSamplerStateData::resultArg


	The selection of the destination register for the result of this stage. The default is GFXTACurrent.






	
GFXTextureOp GFXSamplerStateData::textureColorOp


	The texture color blending operation. The default value is GFXTOPDisable which disables the sampler.






	
GFXTextureTransformFlags GFXSamplerStateData::textureTransform


	Sets the texture transform state. The default is GFXTTFFDisable.











          

      

      

    

  

    
      
          
            
  
GFXStateBlockData

A state block description for rendering.


	Inherit:

	SimObject






Description

This object is used with ShaderData in CustomMaterial and PostEffect to define the render state.

Example:

singleton GFXStateBlockData( PFX_DOFDownSampleStateBlock )
{
   zDefined = true;
   zEnable = false;
   zWriteEnable = false;

   samplersDefined = true;
   samplerStates[0] = SamplerClampLinear;
   samplerStates[1] = SamplerClampPoint;

   // Copy the clamped linear sampler, but change
   // the u coord to wrap for this special case.
   samplerStates[2] = newGFXSamplerStateData( : SamplerClampLinear )
   {
      addressModeU = GFXAddressWrap;
   };
};








Fields


	
bool GFXStateBlockData::alphaDefined


	Set to true if the alpha test state is not all defaults.






	
bool GFXStateBlockData::alphaTestEnable


	Enables per-pixel alpha testing. The default is false.






	
GFXCmpFunc GFXStateBlockData::alphaTestFunc


	The test function used to accept or reject a pixel based on its alpha value. The default is GFXCmpGreaterEqual.






	
int GFXStateBlockData::alphaTestRef


	The reference alpha value against which pixels are tested. The default is zero.






	
bool GFXStateBlockData::blendDefined


	Set to true if the alpha blend state is not all defaults.






	
GFXBlend GFXStateBlockData::blendDest


	The destination blend state. The default is GFXBlendZero.






	
bool GFXStateBlockData::blendEnable


	Enables alpha blending. The default is false.






	
GFXBlendOp GFXStateBlockData::blendOp


	The arithmetic operation applied to alpha blending. The default is GFXBlendOpAdd.






	
GFXBlend GFXStateBlockData::blendSrc


	The source blend state. The default is GFXBlendOne.






	
bool GFXStateBlockData::colorWriteAlpha


	Enables alpha channel writes. The default is true.






	
bool GFXStateBlockData::colorWriteBlue


	Enables blue channel writes. The default is true.






	
bool GFXStateBlockData::colorWriteDefined


	Set to true if the color write state is not all defaults.






	
bool GFXStateBlockData::colorWriteGreen


	Enables green channel writes. The default is true.






	
bool GFXStateBlockData::colorWriteRed


	Enables red channel writes. The default is true.






	
bool GFXStateBlockData::cullDefined


	Set to true if the culling state is not all defaults.






	
GFXCullMode GFXStateBlockData::cullMode


	Defines how back facing triangles are culled if at all. The default is GFXCullCCW.






	
bool GFXStateBlockData::ffLighting


	Enables fixed function lighting when rendering without a shader on geometry with vertex normals. The default is false.






	
bool GFXStateBlockData::samplersDefined


	Set to true if the sampler states are not all defaults.






	
GFXSamplerStateData GFXStateBlockData::samplerStates[16]


	The array of texture sampler states.






	
bool GFXStateBlockData::separateAlphaBlendDefined


	Set to true if the seperate alpha blend state is not all defaults.






	
GFXBlend GFXStateBlockData::separateAlphaBlendDest


	The destination blend state. The default is GFXBlendZero.






	
bool GFXStateBlockData::separateAlphaBlendEnable


	Enables the separate blend mode for the alpha channel. The default is false.






	
GFXBlendOp GFXStateBlockData::separateAlphaBlendOp


	The arithmetic operation applied to separate alpha blending. The default is GFXBlendOpAdd.






	
GFXBlend GFXStateBlockData::separateAlphaBlendSrc


	The source blend state. The default is GFXBlendOne.






	
bool GFXStateBlockData::stencilDefined


	Set to true if the stencil state is not all defaults.






	
bool GFXStateBlockData::stencilEnable


	Enables stenciling. The default is false.






	
GFXStencilOp GFXStateBlockData::stencilFailOp


	The stencil operation to perform if the stencil test fails. The default is GFXStencilOpKeep.






	
GFXCmpFunc GFXStateBlockData::stencilFunc


	The comparison function to test the reference value to a stencil buffer entry. The default is GFXCmpNever.






	
int GFXStateBlockData::stencilMask


	The mask applied to the reference value and each stencil buffer entry to determine the significant bits for the stencil test. The default is 0xFFFFFFFF.






	
GFXStencilOp GFXStateBlockData::stencilPassOp


	The stencil operation to perform if both the stencil and the depth tests pass. The default is GFXStencilOpKeep.






	
int GFXStateBlockData::stencilRef


	The reference value for the stencil test. The default is zero.






	
int GFXStateBlockData::stencilWriteMask


	The write mask applied to values written into the stencil buffer. The default is 0xFFFFFFFF.






	
GFXStencilOp GFXStateBlockData::stencilZFailOp


	The stencil operation to perform if the stencil test passes and the depth test fails. The default is GFXStencilOpKeep.






	
ColorI GFXStateBlockData::textureFactor


	The color used for multiple-texture blending with the GFXTATFactor texture-blending argument or the GFXTOPBlendFactorAlpha texture-blending operation. The default is opaque white (255, 255, 255, 255).






	
bool GFXStateBlockData::vertexColorEnable


	Enables fixed function vertex coloring when rendering without a shader. The default is false.






	
float GFXStateBlockData::zBias


	A floating-point bias used when comparing depth values. The default is zero.






	
bool GFXStateBlockData::zDefined


	Set to true if the depth state is not all defaults.






	
bool GFXStateBlockData::zEnable


	Enables z-buffer reads. The default is true.






	
GFXCmpFunc GFXStateBlockData::zFunc


	The depth comparision function which a pixel must pass to be written to the z-buffer. The default is GFXCmpLessEqual.






	
float GFXStateBlockData::zSlopeBias


	An additional floating-point bias based on the maximum depth slop of the triangle being rendered. The default is zero.






	
bool GFXStateBlockData::zWriteEnable


	Enables z-buffer writes. The default is true.











          

      

      

    

  

    
      
          
            
  
GameBase

Base class for game objects which use datablocks, networking, are editable, and need to process ticks.


	Inherit:

	SceneObject






Description

Base class for game objects which use datablocks, networking, are editable, and need to process ticks.




Methods


	
bool GameBase::applyImpulse(Point3F pos, VectorF vel)


	Apply an impulse to this object as defined by a world position and velocity vector.


	Parameters

	
	pos – impulse world position


	vel – impulse velocity (impulse force F = m * v)






	Returns

	Always true










	
void GameBase::applyRadialImpulse(Point3F origin, float radius, float magnitude)


	Applies a radial impulse to the object using the given origin and force.


	Parameters

	
	origin – World point of origin of the radial impulse.


	radius – The radius of the impulse area.


	magnitude – The strength of the impulse.













	
int GameBase::getDataBlock()


	Get the datablock used by this object.


	Returns

	is using.










	
void GameBase::setControl(bool controlled)


	Called when the client controlling the object changes.


	Parameters

	controlled – true if a client now controls this object, false if no client controls this object.










	
bool GameBase::setDataBlock(GameBaseData data)


	Assign this GameBase to use the specified datablock.


	Parameters

	data – new datablock to use



	Returns

	true if successful, false if failed.












Fields


	
bool GameBase::boundingBox[static]


	Toggles on the rendering of the bounding boxes for certain types of objects in scene.






	
GameBaseData GameBase::dataBlock


	Script datablock used for game objects.











          

      

      

    

  

    
      
          
            
  
GameBaseData

objects.


	Inherit:

	SimDataBlock






Description

Scriptable, demo-able datablock. Used by GameBase objects.




Methods


	
void GameBaseData::onAdd(GameBase obj)


	Called when the object is added to the scene.


	Parameters

	obj – the GameBase object





Example:

datablock GameBaseData(MyObjectData)
{
   category = "Misc";
};

function MyObjectData::onAdd( %this, %obj )
{
   echo( "Added " @ %obj.getName() @ " to the scene." );
}

function MyObjectData::onNewDataBlock( %this, %obj )
{
   echo( "Assign " @ %this.getName() @ " datablock to " %obj.getName() );
}

function MyObjectData::onRemove( %this, %obj )
{
   echo( "Removed " @ %obj.getName() @ " to the scene." );
}

function MyObjectData::onMount( %this, %obj, %mountObj, %node )
{
   echo( %obj.getName() @ " mounted to " @ %mountObj.getName() );
}

function MyObjectData::onUnmount( %this, %obj, %mountObj, %node )
{
   echo( %obj.getName() @ " unmounted from " @ %mountObj.getName() );
}










	
void GameBaseData::onMount(GameBase obj, SceneObject mountObj, int node)


	Called when the object is mounted to another object in the scene.


	Parameters

	
	obj – the GameBase object being mounted


	mountObj – the object we are mounted to


	node – the mountObj node we are mounted to













	
void GameBaseData::onNewDataBlock(GameBase obj)


	Called when the object has a new datablock assigned.


	Parameters

	obj – the GameBase object










	
void GameBaseData::onRemove(GameBase obj)


	Called when the object is removed from the scene.


	Parameters

	obj – the GameBase object










	
void GameBaseData::onUnmount(GameBase obj, SceneObject mountObj, int node)


	Called when the object is unmounted from another object in the scene.


	Parameters

	
	obj – the GameBase object being unmounted


	mountObj – the object we are unmounted from


	node – the mountObj node we are unmounted from















Fields


	
caseString GameBaseData::category


	The group that this datablock will show up in under the “Scripted” tab in the World Editor Library.











          

      

      

    

  

    
      
          
            
  
GameConnection

The game-specific subclass of NetConnection.


	Inherit:

	NetConnection






Description

The GameConnection introduces the concept of the control object. The control object is simply the object that the client is associated with that network connection controls. By default the control object is an instance of the Player class, but can also be an instance of Camera (when editing the mission, for example), or any other ShapeBase derived class as appropriate for the game.

Torque uses a model in which the server is the authoritative master of the simulation. To prevent clients from cheating, the server simulates all player moves and then tells the client where his player is in the world. This model, while secure, can have problems. If the network latency is high, this round-trip time can give the player a very noticeable sense of movement lag. To correct this problem, the game uses a form of prediction - it simulates the movement of the control object on the client and on the server both. This way the client doesn’t need to wait for round-trip verification of his moves. Only in the case of a force acting on the control object on the server that doesn’t exist on the client does the client’s position need to be forcefully changed.

To support this, all control objects (derivative of ShapeBase) must supply a writePacketData() and readPacketData() function that send enough data to accurately simulate the object on the client. These functions are only called for the current control object, and only when the server can determine that the client’s simulation is somehow out of sync with the server. This occurs usually if the client is affected by a force not present on the server (like an interpolating object) or if the server object is affected by a server only force (such as the impulse from an explosion).

The Move structure is a 32 millisecond snapshot of player input, containing x, y, and z positional and rotational changes as well as trigger state changes. When time passes in the simulation moves are collected (depending on how much time passes), and applied to the current control object on the client. The same moves are then packed over to the server in GameConnection::writePacket(), for processing on the server’s version of the control object.




Methods


	
void GameConnection::activateGhosting()


	Called by the server during phase 2 of the mission download to start sending ghosts to the client. Ghosts represent objects on the server that are in scope for the client. These need to be synchronized with the client in order for the client to see and interact with them. This is typically done during the standard mission start phase 2 when following Torque’s example mission startup sequence.

Example:

function serverCmdMissionStartPhase2Ack(%client, %seq, %playerDB)
{
   // Make sure to ignore calls from a previous mission load
   if (%seq != $missionSequence || !$MissionRunning)
      return;
   if (%client.currentPhase != 1.5)
      return;
   %client.currentPhase = 2;

   // Set the player datablock choice
   %client.playerDB = %playerDB;

   // Update mod paths, this needs to get there before the objects.
   %client.transmitPaths();

   // Start ghosting objects to the client
   %client.activateGhosting();
}










	
bool GameConnection::chaseCam(int size)


	Sets the size of the chase camera’s matrix queue.






	
void GameConnection::clearCameraObject()


	Clear the connection’s camera object reference.






	
void GameConnection::clearDisplayDevice()


	Clear any display device. A display device may define a number of properties that are used during rendering.






	
void GameConnection::delete(string reason)

	On the server, disconnect a client and pass along an optional reason why. This method performs two operations: it disconnects a client connection from the server, and it deletes the connection object. The optional reason is sent in the disconnect packet and is often displayed to the user so they know why they’ve been disconnected.


	Parameters

	reason – [optional] The reason why the user has been disconnected from the server.





Example:

function kick(%client)
{
   messageAll( MsgAdminForce, \c2The Admin has kicked %1., %client.playerName);

   if (!%client.isAIControlled())
      BanList::add(%client.guid, %client.getAddress(), $Pref::Server::KickBanTime);
   %client.delete("You have been kicked from this server");
}










	
SimObject GameConnection::getCameraObject()


	Returns the connection’s camera object used when not viewing through the control object.






	
float GameConnection::getControlCameraDefaultFov()


	Returns the default field of view as used by the control object’s camera.






	
float GameConnection::getControlCameraFov()


	Returns the field of view as used by the control object’s camera.






	
GameBase GameConnection::getControlObject()


	On the server, returns the object that the client is controlling.By default the control object is an instance of the Player class, but can also be an instance of Camera (when editing the mission, for example), or any other ShapeBase derived class as appropriate for the game.






	
bool GameConnection::getControlSchemeAbsoluteRotation()


	Get the connection’s control scheme absolute rotation property.


	Returns

	True if the connection’s control object should use an absolute rotation control scheme.










	
float GameConnection::getDamageFlash()


	On the client, get the control object’s damage flash level.


	Returns

	flash level










	
static int GameConnection::getServerConnection()


	On the client, this static mehtod will return the connection to the server, if any.


	Returns

	ID of the server connection, or -1 if none is found.










	
float GameConnection::getWhiteOut()


	On the client, get the control object’s white-out level.


	Returns

	white-out level










	
void GameConnection::initialControlSet()


	Called on the client when the first control object has been set by the server and we are now ready to go. A common action to perform when this callback is called is to switch the GUI canvas from the loading screen and over to the 3D game GUI.






	
bool GameConnection::isAIControlled()


	Returns true if this connection is AI controlled.






	
bool GameConnection::isControlObjectRotDampedCamera()


	Returns true if the object being controlled by the client is making use of a rotation damped camera.






	
bool GameConnection::isDemoPlaying()


	Returns true if a previously recorded demo file is now playing.






	
bool GameConnection::isDemoRecording()


	Returns true if a demo file is now being recorded.






	
bool GameConnection::isFirstPerson()


	Returns true if this connection is in first person mode.






	
void GameConnection::listClassIDs()


	List all of the classes that this connection knows about, and what their IDs are. Useful for debugging network problems.






	
void GameConnection::onConnectionAccepted()


	Called on the client when the connection to the server has been established.






	
void GameConnection::onConnectionDropped(string reason)


	Called on the client when the connection to the server has been dropped.


	Parameters

	reason – The reason why the connection was dropped.










	
void GameConnection::onConnectionError(string errorString)


	Called on the client when there is an error with the connection to the server.


	Parameters

	errorString – The connection error text.










	
void GameConnection::onConnectionTimedOut()


	Called on the client when the connection to the server times out.






	
void GameConnection::onConnectRequestRejected(string reason)


	Called on the client when the connection to the server has been rejected.


	Parameters

	reason – The reason why the connection request was rejected.










	
void GameConnection::onConnectRequestTimedOut()


	Called when connection attempts have timed out.






	
void GameConnection::onControlObjectChange()


	Called on the client when the control object has been changed by the server.






	
void GameConnection::onDataBlocksDone(int sequence)


	Called on the server when all datablocks has been sent to the client. During phase 1 of the mission download, all datablocks are sent from the server to the client. Once all datablocks have been sent, this callback is called and the mission download procedure may move on to the next phase.


	Parameters

	sequence – The sequence is common between the server and client and ensures that the client is acting on the most recent mission start process. If an errant network packet (one that was lost but has now been found) is received by the client with an incorrect sequence, it is just ignored. This sequence number is updated on the server every time a mission is loaded.










	
void GameConnection::onDrop(string disconnectReason)


	Called on the server when the client’s connection has been dropped.


	Parameters

	disconnectReason – The reason why the connection was dropped.










	
void GameConnection::onFlash(bool state)


	Called on the client when the damage flash or white out states change. When the server changes the damage flash or white out values, this callback is called either is on or both are off. Typically this is used to enable the flash postFx.


	Parameters

	state – Set to true if either the damage flash or white out conditions are active.










	
bool GameConnection::play2D(SFXProfile profile)


	Used on the server to play a 2D sound that is not attached to any object.


	Parameters

	profile – The SFXProfile that defines the sound to play.





Example:

function ServerPlay2D(%profile)
{
   // Play the given sound profile on every client.
   // The sounds will be transmitted as an event, not attached to any object.
   for(%idx = 0; %idx < ClientGroup.getCount(); %idx++)
      ClientGroup.getObject(%idx).play2D(%profile);
}










	
bool GameConnection::play3D(SFXProfile profile, TransformF location)


	Used on the server to play a 3D sound that is not attached to any object.


	Parameters

	
	profile – The SFXProfile that defines the sound to play.


	location – The position and orientation of the 3D sound given in the form of “x y z ax ay az aa”.








Example:

function ServerPlay3D(%profile,%transform)
{
   // Play the given sound profile at the given position on every client
   // The sound will be transmitted as an event, not attached to any object.
   for(%idx = 0; %idx < ClientGroup.getCount(); %idx++)
      ClientGroup.getObject(%idx).play3D(%profile,%transform);
}










	
bool GameConnection::playDemo(string demoFileName)


	On the client, play back a previously recorded game session. It is often useful to play back a game session. This could be for producing a demo of the game that will be shown at a later time, or for debugging a game. By recording the entire network stream it is possible to later play game the game exactly as it unfolded during the actual play session. This is because all user control and server results pass through the connection.


	Returns

	True if the playback was successful. False if there was an issue, such as not being able to open the demo file for playback.










	
void GameConnection::resetGhosting()


	On the server, resets the connection to indicate that ghosting has been disabled. Typically when a mission has ended on the server, all connected clients are informed of this change and their connections are reset back to a starting state. This method resets a connection on the server to indicate that ghosts are no longer being transmitted. On the client end, all ghost information will be deleted.

Example:

// Inform the clients
for (%clientIndex = 0; %clientIndex < ClientGroup.getCount(); %clientIndex++)
   {
      // clear ghosts and paths from all clients
      %cl = ClientGroup.getObject(%clientIndex);
      %cl.endMission();
      %cl.resetGhosting();
      %cl.clearPaths();
   }










	
void GameConnection::setBlackOut(bool doFade, int timeMS)


	On the server, sets the client’s 3D display to fade to black.


	Parameters

	
	doFade – Set to true to fade to black, and false to fade from black.


	timeMS – Time it takes to perform the fade as measured in ms.













	
bool GameConnection::setCameraObject(GameBase camera)


	On the server, set the connection’s camera object used when not viewing through the control object.






	
void GameConnection::setConnectArgs(const char *args)


	On the client, pass along a variable set of parameters to the server. Once the connection is established with the server, the server calls its onConnect() method with the client’s passed in parameters as aruments.






	
void GameConnection::setControlCameraFov(float newFOV)


	On the server, sets the control object’s camera’s field of view.


	Parameters

	newFOV – New field of view (in degrees) to force the control object’s camera to use. This value is clamped to be within the range of 1 to 179 degrees.










	
bool GameConnection::setControlObject(GameBase ctrlObj)


	On the server, sets the object that the client will control. By default the control object is an instance of the Player class, but can also be an instance of Camera (when editing the mission, for example), or any other ShapeBase derived class as appropriate for the game.


	Parameters

	ctrlObj – The GameBase object on the server to control.










	
void GameConnection::setControlSchemeParameters(bool absoluteRotation, bool addYawToAbsRot, bool addPitchToAbsRot)


	Set the control scheme that may be used by a connection’s control object.


	Parameters

	
	absoluteRotation – Use absolute rotation values from client, likely through ExtendedMove.


	addYawToAbsRot – Add relative yaw control to the absolute rotation calculation. Only useful when absoluteRotation is true.













	
void GameConnection::setFirstPerson(bool firstPerson)


	On the server, sets this connection into or out of first person mode.


	Parameters

	firstPerson – Set to true to put the connection into first person mode.










	
void GameConnection::setJoinPassword(string password)


	On the client, set the password that will be passed to the server. On the server, this password is compared with what is stored in pref::Server::Password is empty then the client’s sent password is ignored. Otherwise, if the passed in client password and the server password do not match, the CHR_PASSWORD error string is sent back to the client and the connection is immediately terminated. This password checking is performed quite early on in the connection request process so as to minimize the impact of multiple failed attempts – also known as hacking.






	
void GameConnection::setLagIcon(bool state)


	Called on the client to display the lag icon. When the connection with the server is lagging, this callback is called to allow the game GUI to display some indicator to the player.


	Parameters

	state – Set to true if the lag icon should be displayed.










	
void GameConnection::setMissionCRC(int CRC)


	On the server, transmits the mission file’s CRC value to the client. Typically, during the standard mission start phase 1, the mission file’s CRC value on the server is send to the client. This allows the client to determine if the mission has changed since the last time it downloaded this mission and act appropriately, such as rebuilt cached lightmaps.


	Parameters

	CRC – The mission file’s CRC value on the server.





Example:

function serverCmdMissionStartPhase1Ack(%client, %seq)
{
   // Make sure to ignore calls from a previous mission loadif (%seq != $missionSequence || !$MissionRunning)
      return;
   if (%client.currentPhase != 0)
      return;
   %client.currentPhase = 1;

   // Start with the CRC
   %client.setMissionCRC( $missionCRC );

   // Send over the datablocks...
   // OnDataBlocksDone will get called when have confirmation
   // that theyve all been received.
   %client.transmitDataBlocks($missionSequence);
}










	
void GameConnection::startRecording(string fileName)


	On the client, starts recording the network connection’s traffic to a demo file. It is often useful to play back a game session. This could be for producing a demo of the game that will be shown at a later time, or for debugging a game. By recording the entire network stream it is possible to later play game the game exactly as it unfolded during the actual play session. This is because all user control and server results pass through the connection.


	Parameters

	fileName – The file name to use for the demo recording.










	
void GameConnection::stopRecording()


	On the client, stops the recording of a connection’s network traffic to a file.






	
void GameConnection::transmitDataBlocks(int sequence)


	Sent by the server during phase 1 of the mission download to send the datablocks to the client. SimDataBlocks, also known as just datablocks, need to be transmitted to the client prior to the client entering the game world. These represent the static data that most objects in the world reference. This is typically done during the standard mission start phase 1 when following Torque’s example mission startup sequence. When the datablocks have all been transmitted, onDataBlocksDone() is called to move the mission start process to the next phase.


	Parameters

	sequence – The sequence is common between the server and client and ensures that the client is acting on the most recent mission start process. If an errant network packet (one that was lost but has now been found) is received by the client with an incorrect sequence, it is just ignored. This sequence number is updated on the server every time a mission is loaded.





Example:

function serverCmdMissionStartPhase1Ack(%client, %seq)
{
   // Make sure to ignore calls from a previous mission load
   if (%seq != $missionSequence || !$MissionRunning)
      return;
   if (%client.currentPhase != 0)
      return;
   %client.currentPhase = 1;

   // Start with the CRC
   %client.setMissionCRC( $missionCRC );

   // Send over the datablocks...
   // OnDataBlocksDone will get called when have confirmation
   // that theyve all been received.
   %client.transmitDataBlocks($missionSequence);
}















          

      

      

    

  

    
      
          
            
  
GameTSCtrl

The main 3D viewport for a Torque 3D game.


	Inherit:

	GuiTSCtrl






Description

The main 3D viewport for a Torque 3D game.

With the exception of a few very niche genres, the bulk of your 3D game viewing will occur in a GameTSCtrl. You typically only need a single GameTSCtrl, unless you are implementing a very complex interface system. In the demos, you can find our example named “PlayGui”.

It is recommended that any game GUIs that are not pushed and popped constantly, be contained within your GameTSCtrl. Examples include targeting reticle, standard healthbar, ammo count, etc. This is mostly a design decision, but the way Torque 3D’s GUI system works somewhat encourages you to group the controls in this manner:

// Example of a GameTSCtrl
// PlayGui is the main TSControl through which the game is viewed
// Also contains a Guis for:
// - A lag icon
// - Showing other shape names
// - Crossahir
%guiContent = new GameTSCtrl(PlayGui)
{
  cameraZRot = "0";
  forceFOV = "0";
  reflectPriority = "1";
  Profile = "GuiContentProfile";
  HorizSizing = "right";
  VertSizing = "bottom";
  position = "0 0";
  Extent = "1024 768";

  new GuiBitmapCtrl(LagIcon)
  {
     bitmap = "art/gui/lagIcon.png";
     // Note: Rest of fields hidden for this example
  };

  new GuiShapeNameHud()
  {
     fillColor = "0 0 0 0.25";
     frameColor = "0 1 0 1";
     textColor = "0 1 0 1";
     showFill = "0";
     showFrame = "0";

     // Note: Rest of fields hidden for this example
  };

  new GuiCrossHairHud(Reticle)
  {
     damageFillColor = "0 1 0 1";
     damageFrameColor = "1 0.6 0 1";
     damageRect = "50 4";
     damageOffset = "0 10";
     bitmap = "art/gui/weaponHud/blank.png";
     // Note: Rest of fields hidden for this example
  };
};











          

      

      

    

  

    
      
          
            
  
GroundCover

Covers the ground in a field of objects (IE: Grass, Flowers, etc).


	Inherit:

	SceneObject






Description

Covers the ground in a field of objects (IE: Grass, Flowers, etc).




Fields


	
RectF GroundCover::billboardUVs[8]


	Subset material UV coordinates for this cover billboard.






	
float GroundCover::clumpExponent[8]


	An exponent used to bias between the minimum and maximum clump counts for a particular clump.






	
float GroundCover::clumpRadius[8]


	The maximum clump radius.






	
float GroundCover::dissolveRadius


	This is less than or equal to radius and defines when fading of cover elements begins.






	
int GroundCover::gridSize


	The number of cells per axis in the grid.






	
bool GroundCover::invertLayer[8]


	Indicates that the terrain material index given in ‘layer’ is an exclusion mask.






	
string GroundCover::layer[8]


	Terrain material name to limit coverage to, or blank to not limit.






	
bool GroundCover::lockFrustum


	Debug parameter for locking the culling frustum which will freeze the cover generation.






	
string GroundCover::Material


	Material used by all GroundCover segments.






	
float GroundCover::maxBillboardTiltAngle


	The maximum amout of degrees the billboard will tilt down to match the camera.






	
int GroundCover::maxClumpCount[8]


	The maximum amount of elements in a clump.






	
int GroundCover::maxElements


	The maximum amount of cover elements to include in the grid at any one time.






	
float GroundCover::maxElevation[8]


	The maximum world space elevation for placement.






	
float GroundCover::maxSlope[8]


	The maximum slope angle in degrees for placement.






	
int GroundCover::minClumpCount[8]


	The minimum amount of elements in a clump.






	
float GroundCover::minElevation[8]


	The minimum world space elevation for placement.






	
bool GroundCover::noBillboards


	Debug parameter for turning off billboard rendering.






	
bool GroundCover::noShapes


	Debug parameter for turning off shape rendering.






	
float GroundCover::probability[8]


	The probability of one cover type verses another (relative to all cover types).






	
float GroundCover::radius


	Outer generation radius from the current camera position.






	
float GroundCover::reflectScale


	Scales the various culling radii when rendering a reflection. Typically for water.






	
bool GroundCover::renderCells


	Debug parameter for displaying the grid cells.






	
int GroundCover::seed


	This RNG seed is saved and sent to clients for generating the same cover.






	
float GroundCover::shapeCullRadius


	This is the distance at which DTS elements are completely culled out.






	
filename GroundCover::shapeFilename[8]


	The cover shape filename. [Optional].






	
bool GroundCover::shapesCastShadows


	Whether DTS elements should cast shadows or not.






	
float GroundCover::sizeExponent[8]


	An exponent used to bias between the minimum and maximum random sizes.






	
float GroundCover::sizeMax[8]


	The maximum random size of this cover type.






	
float GroundCover::sizeMin[8]


	The minimum random size for each cover type.






	
Point2F GroundCover::windDirection


	The direction of the wind.






	
float GroundCover::windGustFrequency


	Controls how often the wind gust peaks per second.






	
float GroundCover::windGustLength


	The length in meters between peaks in the wind gust.






	
float GroundCover::windGustStrength


	The maximum distance in meters that the peak wind gust will displace an element.






	
float GroundCover::windScale[8]


	The wind effect scale.






	
float GroundCover::windTurbulenceFrequency


	Controls the overall rapidity of the wind turbulence.






	
float GroundCover::windTurbulenceStrength


	The maximum distance in meters that the turbulence can displace a ground cover element.






	
float GroundCover::zOffset


	Offset along the Z axis to render the ground cover.











          

      

      

    

  

    
      
          
            
  
GroundPlane

An infinite plane extending in all direction.


	Inherit:

	SceneObject






Description

An infinite plane extending in all direction.

GroundPlane is useful for setting up simple testing scenes, or it can be placed under an existing scene to keep objects from falling into ‘nothing’.

GroundPlane may not be moved or rotated, it is always at the world origin.




Methods


	
void GroundPlane::postApply()


	Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit material and other fields to client objects.








Fields


	
string GroundPlane::Material


	Name of Material used to render GroundPlane’s surface.






	
float GroundPlane::scaleU


	Scale of texture repeat in the U direction.






	
float GroundPlane::scaleV


	Scale of texture repeat in the V direction.






	
float GroundPlane::squareSize


	Square size in meters to which GroundPlane subdivides its geometry.











          

      

      

    

  

    
      
          
            
  
GuiArrayCtrl





          

      

      

    

  

    
      
          
            
  
GuiAutoScrollCtrl


	Inherit:

	GuiTickCtrl






Description

A container that scrolls its child control up over time.

This container can be used to scroll a single child control in either of the four directions.

Example:

// Create a GuiAutoScrollCtrl that scrolls a long text of credits.newGuiAutoScrollCtrl( CreditsScroller )
{
   position = "0 0";
   extent = Canvas.extent.x SPC Canvas.extent.y;

   scrollDirection = "Up"; // Scroll upwards.startDelay = 4; // Wait 4 seconds before starting to scroll.isLooping = false; // Dont loop the credits.scrollOutOfSight = true; // Scroll up fully.newGuiMLTextCtrl()
   {
      text = $CREDITS;
   };
};

function CreditsScroller::onComplete( %this )
{
   // Switch back to main menu after credits have rolled.
   Canvas.setContent( MainMenu );
}

// Start rolling credits.
Canvas.setContent( CreditsScroller );








Methods


	
void GuiAutoScrollCtrl::onComplete()


	Called when the child control has been scrolled in entirety.






	
void GuiAutoScrollCtrl::onReset()


	Called when the child control is reset to its initial position and the cycle starts again.






	
void GuiAutoScrollCtrl::onStart()


	Called when the control starts to scroll.






	
void GuiAutoScrollCtrl::onTick()


	Called every 32ms on the control.






	
void GuiAutoScrollCtrl::reset()


	Reset scrolling.








Fields


	
int GuiAutoScrollCtrl::childBorder


	Padding to put around child control (in pixels).






	
bool GuiAutoScrollCtrl::isLooping


	If true, the scrolling will reset to the beginning once completing a cycle.






	
float GuiAutoScrollCtrl::resetDelay


	Seconds to wait after scrolling completes before resetting and starting over.






	
GuiAutoScrollDirection GuiAutoScrollCtrl::scrollDirection


	Direction in which the child control is moved.






	
bool GuiAutoScrollCtrl::scrollOutOfSight


	If true, the child control will be completely scrolled out of sight; otherwise it will only scroll until the other end becomes visible.






	
float GuiAutoScrollCtrl::scrollSpeed


	Scrolling speed in pixels per second.






	
float GuiAutoScrollCtrl::startDelay


	Seconds to wait before starting to scroll.











          

      

      

    

  

    
      
          
            
  
GuiBitmapBorderCtrl

A control that renders a skinned border specified in its profile.


	Inherit:

	GuiControl






Description

This control uses the bitmap specified in it’s profile (GuiControlProfile::bitmapName). It takes this image and breaks up aspects of it to skin the border of this control with. It is also important to set GuiControlProfile::hasBitmapArray to true on the profile as well.

The bitmap referenced should be broken up into a 3 x 3 grid (using the top left color pixel as a border color between each of the images) in which it will map to the following places: 1 = Top Left Corner 2 = Top Right Corner 3 = Top Center 4 = Left Center 5 = Right Center 6 = Bottom Left Corner 7 = Bottom Center 8 = Bottom Right Corner 0 = Nothing

1 2 3 4 5 0 6 7 8

Example:

singleton GuiControlProfile (BorderGUIProfile)
{
   bitmap = "core/art/gui/images/borderArray";
   hasBitmapArray = true;
   opaque = false;
};

newGuiBitmapBorderCtrl(BitmapBorderGUI)
{
   profile = "BorderGUIProfile";
   position = "0 0";
   extent = "400 40";
   visible = "1";
};











          

      

      

    

  

    
      
          
            
  
GuiBitmapButtonCtrl

A button that renders its various states (mouse over, pushed, etc.) from separate bitmaps.


	Inherit:

	GuiButtonCtrl






Description

A bitmapped button is a push button that uses one or more texture images for rendering its individual states.

To find the individual textures associated with the button, a naming scheme is used. For each state a suffix is appended to the texture file name given in the GuiBitmapButtonCtrl::bitmap field:

If a bitmap for a particular state cannot be found, the default bitmap will be used. To disable all state-based bitmap functionality, set useStates to false which will make the control solely render from the bitmap specified in the bitmap field.




Per-Modifier Button Actions

If GuiBitmapButtonCtrl::useModifiers is set to true, per-modifier button actions and textures are enabled. This functionality allows to associate different images and different actions with a button depending on which modifiers are pressed on the keyboard by the user.

When enabled, this functionality alters the texture lookup above by prepending the following strings to the suffixes listed above:

When this functionality is enabled, a new set of callbacks is used:

GuiControl::command or GuiControl::onAction() still work as before when per-modifier functionality is enabled.

Note that modifiers cannot be mixed. If two or more modifiers are pressed, a single one will take precedence over the remaining modifiers. The order of precedence corresponds to the order listed above.

Example:

// Create an OK button that will trigger an onOk() call on its parent when clicked:
%okButton = newGuiBitmapButtonCtrl()
{
   bitmap = "art/gui/okButton";
   autoFitExtents = true;
   command = "$ThisControl.getParent().onOk();";
};








Methods


	
void GuiBitmapButtonCtrl::onAltClick()


	Called when per-modifier functionality is enabled and the user clicks on the button with the ALT key pressed. Per-Modifier Button Actions






	
void GuiBitmapButtonCtrl::onCtrlClick()


	Called when per-modifier functionality is enabled and the user clicks on the button with the CTRL key pressed. Per-Modifier Button Actions






	
void GuiBitmapButtonCtrl::onDefaultClick()


	Called when per-modifier functionality is enabled and the user clicks on the button without any modifier pressed. Per-Modifier Button Actions






	
void GuiBitmapButtonCtrl::onShiftClick()


	Called when per-modifier functionality is enabled and the user clicks on the button with the SHIFT key pressed. Per-Modifier Button Actions






	
void GuiBitmapButtonCtrl::setBitmap(string path)


	Set the bitmap to show on the button.


	Parameters

	path – Path to the texture file in any of the supported formats.












Fields


	
bool GuiBitmapButtonCtrl::autoFitExtents


	If true, the control’s extents will be set to match the bitmap’s extents when setting the bitmap. The bitmap extents will always be taken from the default/normal bitmap (in case the extents of the various bitmaps do not match up.)






	
filename GuiBitmapButtonCtrl::bitmap


	Texture file to display on this button. If useStates is false, this will be the file that renders on the control. Otherwise, this will specify the default texture name to which the various state and modifier suffixes are appended to find the per-state and per-modifier (if enabled) textures.






	
GuiBitmapMode GuiBitmapButtonCtrl::bitmapMode


	Behavior for fitting the bitmap to the control extents. If set to ‘Stretched’, the bitmap will be stretched both verticall and horizontally to fit inside the control’s extents. If set to ‘Centered’, the bitmap will stay at its original resolution centered in the control’s rectangle (getting clipped if the control is smaller than the texture).






	
bool GuiBitmapButtonCtrl::useModifiers


	If true, per-modifier button functionality is enabled. Per-Modifier Button Actions






	
bool GuiBitmapButtonCtrl::useStates


	If true, per-mouse state button functionality is enabled. Defaults to true. If you do not use per-state images on this button set this to false to speed up the loading process by inhibiting searches for the individual images.











          

      

      

    

  

    
      
          
            
  
GuiBitmapButtonTextCtrl

An extension of GuiBitmapButtonCtrl that additionally renders a text label on the bitmapped button.


	Inherit:

	GuiBitmapButtonCtrl






Description

The text for the label is taken from the GuiButtonBaseCtrl::text property.

For rendering, the label is placed, relative to the control’s upper left corner, at the text offset specified in the control’s profile (GuiControlProfile::textOffset) and justified according to the profile’s setting (GuiControlProfile::justify).







          

      

      

    

  

    
      
          
            
  
GuiBitmapCtrl

A gui control that is used to display an image.


	Inherit:

	GuiControl






Description

The image is stretched to the constraints of the control by default. However, the control can also tile the image as well.

The image itself is stored inside the GuiBitmapCtrl::bitmap field. The boolean value that decides whether the image is stretched or tiled is stored inside the GuiBitmapCtrl::wrap field.

Example:

// Create a tiling GuiBitmapCtrl that displays "myImage.png"
%bitmapCtrl = newGuiBitmapCtrl()
{
   bitmap = "myImage.png";
   wrap = "true";
};








Methods


	
void GuiBitmapCtrl::setBitmap(String filename, bool resize)


	Assign an image to the control. Child controls with resize according to their layout settings.


	Parameters

	
	filename – The filename of the image.


	resize – Optional parameter. If true, the GUI will resize to fit the image.













	
void GuiBitmapCtrl::setBitmap(String filename)


	Assign an image to the control. Child controls will resize according to their layout settings.


	Parameters

	
	filename – The filename of the image.


	resize – A boolean value that decides whether the ctrl refreshes or not.













	
void GuiBitmapCtrl::setValue(int x, int y)


	Set the offset of the bitmap within the control.


	Parameters

	
	x – The x-axis offset of the image.


	y – The y-axis offset of the image.















Fields


	
filename GuiBitmapCtrl::bitmap


	The bitmap file to display in the control.






	
bool GuiBitmapCtrl::wrap


	If true, the bitmap is tiled inside the control rather than stretched to fit.











          

      

      

    

  

    
      
          
            
  
GuiBorderButtonCtrl

A push button that renders only a border.


	Inherit:

	GuiButtonBaseCtrl






Description

A border button consists of a border rendered along its extents according to the border thickness defined in its profile (GuiControlProfile::border). For the border color, a color is selected from the profile according to current button state:







          

      

      

    

  

    
      
          
            
  
GuiBubbleTextCtrl

A single-line text control that displays its text in a multi-line popup when clicked.


	Inherit:

	GuiTextCtrl






Description

This control acts like a GuiTextCtrl (and inherits from it), when clicked it creates a GuiMLTextCtrl roughly where you clicked with the same text in it. This allows you to have a single line text control which upon clicking will display the entire text contained in a multi-line format.

Example:

newGuiBubbleTextCtrl(BubbleTextGUI)
{
   text = "This is the first sentence. This second sentence can be sized outside of the default single line view, upon clicking this will be displayed in a multi-line format.";
};











          

      

      

    

  

    
      
          
            
  
GuiButtonBaseCtrl

The base class for the various button controls.


	Inherit:

	GuiControl






Description

This is the base class for the various types of button controls. If no more specific functionality is required than offered by this class, then it can be instantiated and used directly. Otherwise, its subclasses should be used:




Methods


	
string GuiButtonBaseCtrl::getText()


	Get the text display on the button’s label (if any).


	Returns

	The button’s label.










	
void GuiButtonBaseCtrl::onClick()


	Called when the primary action of the button is triggered (e.g. by a left mouse click).






	
void GuiButtonBaseCtrl::onDoubleClick()


	Called when the left mouse button is double-clicked on the button.






	
void GuiButtonBaseCtrl::onMouseDown()


	If useMouseEvents is true, this is called when the left mouse button is pressed on an (active) button.






	
void GuiButtonBaseCtrl::onMouseDragged()


	If useMouseEvents is true, this is called when a left mouse button drag is detected, i.e. when the user pressed the left mouse button on the control and then moves the mouse over a certain distance threshold with the mouse button still pressed.






	
void GuiButtonBaseCtrl::onMouseEnter()


	If useMouseEvents is true, this is called when the mouse cursor moves over the button (only if the button is the front-most visible control, though).






	
void GuiButtonBaseCtrl::onMouseLeave()


	If useMouseEvents is true, this is called when the mouse cursor moves off the button (only if the button had previously received an onMouseEvent() event).






	
void GuiButtonBaseCtrl::onMouseUp()


	If useMouseEvents is true, this is called when the left mouse button is release over an (active) button.






	
void GuiButtonBaseCtrl::onRightClick()


	Called when the right mouse button is clicked on the button.






	
void GuiButtonBaseCtrl::performClick()


	Simulate a click on the button. This method will trigger the button’s action just as if the button had been pressed by the user.






	
void GuiButtonBaseCtrl::resetState()


	Reset the mousing state of the button. This method should not generally be called.






	
void GuiButtonBaseCtrl::setStateOn(bool isOn)


	For toggle or radio buttons, set whether the button is currently activated or not. For radio buttons, toggling a button on will toggle all other radio buttons in its group to off. Reimplemented in GuiCheckBoxCtrl .


	Parameters

	isOn – If true, the button will be toggled on (if not already); if false, it will be toggled off.










	
void GuiButtonBaseCtrl::setText(string text)


	Set the text displayed on the button’s label.


	Parameters

	text – The text to display as the button’s text label.










	
void GuiButtonBaseCtrl::setTextID(string id)


	Set the text displayed on the button’s label using a string from the string table assigned to the control. Internationalization


	Parameters

	id – Name of the variable that contains the integer string ID. Used to look up string in table.












Fields


	
GuiButtonType GuiButtonBaseCtrl::buttonType


	Button behavior type.






	
int GuiButtonBaseCtrl::groupNum


	Radio button toggle group number. All radio buttons that are assigned the same groupNum and that are parented to the same control will synchronize their toggle state, i.e. if one radio button is toggled on all other radio buttons in its group will be toggled off. The default group is -1.






	
caseString GuiButtonBaseCtrl::text


	Text label to display on button (if button class supports text labels).






	
string GuiButtonBaseCtrl::textID


	ID of string in string table to use for text label on button.






	
bool GuiButtonBaseCtrl::useMouseEvents


	If true, mouse events will be passed on to script. Default is false.











          

      

      

    

  

    
      
          
            
  
GuiButtonCtrl

The most widely used button class.


	Inherit:

	GuiButtonBaseCtrl






Description

GuiButtonCtrl renders seperately of, but utilizes all of the functionality of GuiBaseButtonCtrl. This grants GuiButtonCtrl the versatility to be either of the 3 button types.

Example:

// Create a PushButton GuiButtonCtrl that calls randomFunction when clicked
%button = newGuiButtonCtrl()
{
   profile    = "GuiButtonProfile";
   buttonType = "PushButton";
   command    = "randomFunction();";
};











          

      

      

    

  

    
      
          
            
  
GuiCanvas

A canvas on which rendering occurs.


	Inherit:

	GuiControl






Description

A canvas on which rendering occurs.


What a GUICanvas Can Contain…

A content control is the top level GuiControl for a screen. This GuiControl will be the parent control for all other GuiControls on that particular screen.

A dialog is essentially another screen, only it gets overlaid on top of the current content control, and all input goes to the dialog. This is most akin to the “Open File” dialog box found in most operating systems. When you choose to open a file, and the “Open File” dialog pops up, you can no longer send input to the application, and must complete or cancel the open file request. Torque keeps track of layers of dialogs. The dialog with the highest layer is on top and will get all the input, unless the dialog is modeless, which is a profile option.




Dirty Rectangles

The GuiCanvas is based on dirty regions. Every frame the canvas paints only the areas of the canvas that are ‘dirty’ or need updating. In most cases, this only is the area under the mouse cursor. This is why if you look in guiCanvas.cc the call to glClear is commented out. What you will see is a black screen, except in the dirty regions, where the screen will be painted normally. If you are making an animated GuiControl you need to add your control to the dirty areas of the canvas.






Methods


	
Point2I GuiCanvas::clientToScreen(Point2I coordinate)


	Translate a coordinate from canvas window-space to screen-space.


	Parameters

	coordinate – The coordinate in window-space.



	Returns

	The given coordinate translated to screen-space.










	
void GuiCanvas::cursorOff()


	Turns on the mouse off.

Example:

Canvas.cursorOff();










	
void GuiCanvas::cursorOn()


	Turns on the mouse cursor.

Example:

Canvas.cursorOn();










	
int GuiCanvas::findFirstMatchingMonitor(string name)


	Find the first monitor index that matches the given name. The actual match algorithm depends on the implementation.


	Parameters

	name – The name to search for.



	Returns

	The number of monitors attached to the system, including the default monoitor.










	
int GuiCanvas::getContent()


	Get the GuiControl which is being used as the content.


	Returns

	ID of current content control





Example:

Canvas.getContent();










	
Point2I GuiCanvas::getCursorPos()


	Get the current position of the cursor.


	Parameters

	param – Description



	Returns

	Screen coordinates of mouse cursor, in format “X Y”





Example:

%cursorPos = Canvas.getCursorPos();










	
Point2I GuiCanvas::getExtent()


	Returns the dimensions of the canvas. Reimplemented from GuiControl .


	Returns

	Width and height of canvas. Formatted as numerical values in a single string “# #”





Example:

%extent = Canvas.getExtent();










	
string GuiCanvas::getMode(int modeId)


	Gets information on the specified mode of this device.


	Parameters

	modeId – Index of the mode to get data from.



	Returns

	A video mode string given an adapter and mode index.










	
int GuiCanvas::getModeCount()


	Gets the number of modes available on this device.


	Parameters

	param – Description



	Returns

	The number of video modes supported by the device





Example:

%modeCount = Canvas.getModeCount()










	
int GuiCanvas::getMonitorCount()


	Gets the number of monitors attached to the system.


	Returns

	The number of monitors attached to the system, including the default monoitor.










	
string GuiCanvas::getMonitorName(int index)


	Gets the name of the requested monitor.


	Parameters

	index – The monitor index.



	Returns

	The name of the requested monitor.










	
RectI GuiCanvas::getMonitorRect(int index)


	Gets the region of the requested monitor.


	Parameters

	index – The monitor index.



	Returns

	The rectangular region of the requested monitor.










	
int GuiCanvas::getMouseControl()


	Gets the gui control under the mouse.


	Returns

	ID of the gui control, if one was found. NULL otherwise





Example:

%underMouse = Canvas.getMouseControl();










	
string GuiCanvas::getVideoMode()


	Gets the current screen mode as a string. The return string will contain 5 values (width, height, fullscreen, bitdepth, refreshRate). You will need to parse out each one for individual use.


	Returns

	String formatted with screen width, screen height, screen mode, bit depth, and refresh rate.





Example:

%screenWidth = getWord(Canvas.getVideoMode(), 0);
%screenHeight = getWord(Canvas.getVideoMode(), 1);
%isFullscreen = getWord(Canvas.getVideoMode(), 2);
%bitdepth = getWord(Canvas.getVideoMode(), 3);
%refreshRate = getWord(Canvas.getVideoMode(), 4);










	
Point2I GuiCanvas::getWindowPosition()


	Get the current position of the platform window associated with the canvas.


	Returns

	The window position of the canvas in screen-space.










	
void GuiCanvas::hideCursor()


	Disable rendering of the cursor.

Example:

Canvas.hideCursor();










	
bool GuiCanvas::isCursorOn()


	Determines if mouse cursor is enabled.


	Returns

	Returns true if the cursor is on.





Example:

// Is cursor on?if(Canvas.isCursorOn())
   echo("Canvas cursor is on");










	
bool GuiCanvas::isCursorShown()


	Determines if mouse cursor is rendering.


	Returns

	Returns true if the cursor is rendering.





Example:

// Is cursor rendering?if(Canvas.isCursorShown())
   echo("Canvas cursor is rendering");










	
bool GuiCanvas::isFullscreen()


	Is this canvas currently fullscreen?






	
bool GuiCanvas::isMaximized()


	




	
bool GuiCanvas::isMinimized()


	




	
void GuiCanvas::maximizeWindow()


	maximize this canvas’ window.






	
void GuiCanvas::minimizeWindow()


	minimize this canvas’ window.






	
void GuiCanvas::popDialog(GuiControl ctrl)


	Removes a specific dialog control.


	Parameters

	ctrl – Dialog to pop





Example:

Canvas.popDialog(RecordingsDlg);










	
void GuiCanvas::popDialog()


	Removes a dialog at the front most layer.

Example:

// Pops whatever is on layer 0
Canvas.popDialog();










	
void GuiCanvas::popLayer()


	Removes the top most layer of dialogs.

Example:

Canvas.popLayer();










	
void GuiCanvas::popLayer(S32 layer)


	Removes a specified layer of dialogs.


	Parameters

	layer – Number of the layer to pop





Example:

Canvas.popLayer(1);










	
void GuiCanvas::pushDialog(GuiControl ctrl, int layer, bool center)


	Adds a dialog control onto the stack of dialogs.


	Parameters

	
	ctrl – Dialog to add


	layer – Layer to put dialog on (optional)


	center – True to center dialog on canvas (optional)








Example:

Canvas.pushDialog(RecordingsDlg);










	
void GuiCanvas::renderFront(bool enable)


	This turns on/off front-buffer rendering.


	Parameters

	enable – True if all rendering should be done to the front buffer





Example:

Canvas.renderFront(false);










	
void GuiCanvas::repaint(int elapsedMS)


	Force canvas to redraw. If the elapsed time is greater than the time since the last paint then the repaint will be skipped.


	Parameters

	elapsedMS – The optional elapsed time in milliseconds.





Example:

Canvas.repaint();










	
void GuiCanvas::reset()


	Reset the update regions for the canvas.

Example:

Canvas.reset();










	
void GuiCanvas::restoreWindow()


	restore this canvas’ window.






	
Point2I GuiCanvas::screenToClient(Point2I coordinate)


	Translate a coordinate from screen-space to canvas window-space.


	Parameters

	coordinate – The coordinate in screen-space.



	Returns

	The given coordinate translated to window-space.










	
void GuiCanvas::setContent(GuiControl ctrl)


	Set the content of the canvas to a specified control.


	Parameters

	ctrl – ID or name of GuiControl to set content to





Example:

Canvas.setContent(PlayGui);










	
void GuiCanvas::setCursor(GuiCursor cursor)


	Sets the cursor for the canvas.


	Parameters

	cursor – Name of the GuiCursor to use





Example:

Canvas.setCursor("DefaultCursor");










	
bool GuiCanvas::setCursorPos(Point2I pos)


	Sets the position of the cursor.


	Parameters

	pos – Point, in screenspace for the cursor. Formatted as (“x y”)





Example:

Canvas.setCursorPos("0 0");










	
bool GuiCanvas::setCursorPos(F32 posX, F32 posY)


	Sets the position of the cursor.


	Parameters

	
	posX – X-coordinate, in screenspace for the cursor.


	posY – Y-coordinate, in screenspace for the cursor.








Example:

Canvas.setCursorPos(0,0);










	
void GuiCanvas::setFocus()


	Claim OS input focus for this canvas’ window.






	
void GuiCanvas::setVideoMode(int width, int height, bool fullscreen)


	Change the video mode of this canvas. This method has the side effect of setting the $pref::Video::mode to the new values.


	Parameters

	
	width – The screen width to set.


	height – The screen height to set.


	fullscreen – Specify true to run fullscreen or false to run in a window


	bitDepth – [optional] The desired bit-depth. Defaults to the current setting. This parameter is ignored if you are running in a window.


	refreshRate – [optional] The desired refresh rate. Defaults to the current setting. This parameter is ignored if you are running in a window


	antialiasLevel – [optional] The level of anti-aliasing to apply 0 = none













	
void GuiCanvas::setWindowPosition(Point2I position)


	Set the position of the platform window associated with the canvas.


	Parameters

	position – The new position of the window in screen-space.










	
void GuiCanvas::setWindowTitle(string newTitle)


	Change the title of the OS window.


	Parameters

	newTitle – String containing the new name





Example:

Canvas.setWindowTitle("Documentation Rocks!");










	
void GuiCanvas::showCursor()


	Enable rendering of the cursor.

Example:

Canvas.showCursor();










	
void GuiCanvas::toggleFullscreen()


	toggle canvas from fullscreen to windowed mode or back.

Example:

// If we are in windowed mode, the following will put is in fullscreen
Canvas.toggleFullscreen();












Fields


	
bool GuiCanvas::alwaysHandleMouseButtons


	Deal with mouse buttons, even if the cursor is hidden.






	
int GuiCanvas::numFences


	The number of GFX fences to use.











          

      

      

    

  

    
      
          
            
  
GuiCheckBoxCtrl

A named checkbox that can be toggled on and off.


	Inherit:

	GuiButtonBaseCtrl






Description

A GuiCheckBoxCtrl displays a text label next to a checkbox that can be toggled on and off by the user. Checkboxes are usually used to present boolean choices like, for example, a switch to toggle fullscreen video on and off.

Example:

// Create a checkbox that allows to toggle fullscreen on and off.
newGuiCheckBoxCtrl( FullscreenToggle )
{
   text = "Fullscreen";
};

// Set the initial state to match the current fullscreen setting.
FullscreenToggle.setStateOn( Canvas.isFullscreen() );

// Define function to be called when checkbox state is toggled.
function FullscreenToggle::onClick( %this )
{
   Canvas.toggleFullscreen();
}








Methods


	
bool GuiCheckBoxCtrl::isStateOn()


	Test whether the checkbox is currently checked.


	Returns

	True if the checkbox is currently ticked, false otherwise.










	
void GuiCheckBoxCtrl::setStateOn(bool newState)


	Set whether the checkbox is ticked or not. Reimplemented from GuiButtonBaseCtrl .


	Parameters

	newState – If true the box will be checked, if false, it will be unchecked.















          

      

      

    

  

    
      
          
            
  
GuiChunkedBitmapCtrl

This is a control that will render a specified bitmap or a bitmap specified in a referenced variable.


	Inherit:

	GuiControl






Description

This control allows you to either set a bitmap with the “bitmap” field or with the setBitmap method. You can also choose to reference a variable in the “variable” field such as “$image” and then set “useVariable” to true. This will cause it to synchronize the variable with the bitmap displayed (if the variable holds a valid image). You can then change the variable and effectively changed the displayed image.

Example:

$image = "anotherbackground.png";
newGuiChunkedBitmapCtrl(ChunkedBitmap)
{
   bitmap = "background.png";
   variable = "$image";
   useVariable = false;
}

// This will result in the control rendering "background.png"// If we now set the useVariable to true it will now render "anotherbackground.png"
ChunkedBitmap.useVariable = true;








Methods


	
void GuiChunkedBitmapCtrl::setBitmap(string filename)


	Set the image rendered in this control.


	Parameters

	filename – The image name you want to set





Example:

ChunkedBitmap.setBitmap("images/background.png");












Fields


	
filename GuiChunkedBitmapCtrl::bitmap


	This is the bitmap to render to the control.






	
bool GuiChunkedBitmapCtrl::tile


	This is no longer in use.






	
bool GuiChunkedBitmapCtrl::useVariable


	This decides whether to use the “bitmap” file or a bitmap stored in “variable”.











          

      

      

    

  

    
      
          
            
  
GuiClockHud

Basic HUD clock. Displays the current simulation time offset from some base.


	Inherit:

	GuiControl






Description

Basic HUD clock. Displays the current simulation time offset from some base.

Example:

newGuiClockHud(){
   fillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colortextColor = "1.0 1.0 1.0 1.0"; // Solid white text ColorshowFill = "true";
   showFrame = "true";
};








Methods


	
float GuiClockHud::getTime()


	Returns the current time, in seconds.


	Returns

	timeInseconds Current time, in seconds





Example:

// Get the current time from the GuiClockHud control
%timeInSeconds = %guiClockHud.getTime();










	
void GuiClockHud::setReverseTime(float timeInSeconds)


	Sets a time for a countdown clock. Setting the time like this will cause the clock to count backwards from the specified time.


	Parameters

	timeInSeconds – Time to set the clock, in seconds (IE: 00:02 would be 120)










	
void GuiClockHud::setTime(float timeInSeconds)


	Sets the current base time for the clock.


	Parameters

	timeInSeconds – Time to set the clock, in seconds (IE: 00:02 would be 120)





Example:

// Define the time, in seconds
%timeInSeconds = 120;

// Change the time on the GuiClockHud control
%guiClockHud.setTime(%timeInSeconds);












Fields


	
ColorF GuiClockHud::fillColor


	Standard color for the background of the control.






	
ColorF GuiClockHud::frameColor


	Color for the control’s frame.






	
bool GuiClockHud::showFill


	If true, draws a background color behind the control.






	
bool GuiClockHud::showFrame


	If true, draws a frame around the control.






	
ColorF GuiClockHud::textColor


	Color for the text on this control.











          

      

      

    

  

    
      
          
            
  
GuiConsole

The on-screen, in-game console.


	Inherit:

	GuiArrayCtrl






Description

Calls getLog() to get the on-screen console entries, then renders them as needed.

Example:

newGuiConsole()
      {
         //Properties not specific to this control have been omitted from this example.
      };








Methods


	
void GuiConsole::onMessageSelected(ConsoleLogEntry::Level level, string message)


	Called when a message in the log is clicked.


	Parameters

	
	level – Diagnostic level of the message.


	message – Message text.


















          

      

      

    

  

    
      
          
            
  
GuiConsoleEditCtrl


	Inherit:

	GuiTextEditCtrl






Description

Text entry element of a GuiConsole.

Example:

newGuiConsoleEditCtrl(ConsoleEntry)
{
   profile = "ConsoleTextEditProfile";
   horizSizing = "width";
   vertSizing = "top";
   position = "0 462";
   extent = "640 18";
   minExtent = "8 8";
   visible = "1";
   altCommand = "ConsoleEntry::eval();";
   helpTag = "0";
   maxLength = "255";
   historySize = "40";
   password = "0";
   tabComplete = "0";
   sinkAllKeyEvents = "1";
   useSiblingScroller = "1";
};








Fields


	
bool GuiConsoleEditCtrl::useSiblingScroller


	









          

      

      

    

  

    
      
          
            
  
GuiContainer

Brief Desc.


	Inherit:

	GuiControl






Description

Brief Desc.

Example:

// Comment:
%okButton = new ClassObject()
instantiation








Fields


	
bool GuiContainer::anchorBottom


	




	
bool GuiContainer::anchorLeft


	




	
bool GuiContainer::anchorRight


	




	
bool GuiContainer::anchorTop


	




	
GuiDockingType GuiContainer::docking


	




	
RectSpacingI GuiContainer::margin


	




	
RectSpacingI GuiContainer::padding


	









          

      

      

    

  

    
      
          
            
  
GuiControl

Base class for all Gui control objects.


	Inherit:

	SimGroup






Description

GuiControl is the basis for the Gui system. It represents an individual control that can be placed on the canvas and with which the mouse and keyboard can potentially interact with.


Control Hierarchies

GuiControls are arranged in a hierarchy. All children of a control are placed in their parent’s coordinate space, i.e. their coordinates are relative to the upper left corner of their immediate parent. When a control is moved, all its child controls are moved along with it.

Since GuiControl’s are SimGroups, hierarchy also implies ownership. This means that if a control is destroyed, all its children are destroyed along with it. It also means that a given control can only be part of a single GuiControl hierarchy. When adding a control to another control, it will automatically be reparented from another control it may have previously been parented to.




Layout System

GuiControls have a two-dimensional position and are rectangular in shape.




Event System




Control Profiles

Common data accessed by GuiControls is stored in so-called “Control Profiles.” This includes font, color, and texture information. By pooling this data in shared objects, the appearance of any number of controls can be changed quickly and easily by modifying only the shared profile object.

If not explicitly assigned a profile, a control will by default look for a profile object that matches its class name. This means that the class GuiMyCtrl, for example, will look for a profile called ‘GuiMyProfile’. If this profile cannot be found, the control will fall back to GuiDefaultProfile which must be defined in any case for the Gui system to work.

In addition to its primary profile, a control may be assigned a second profile called ‘tooltipProfile’ that will be used to render tooltip popups for the control.




Triggered Actions




First Responders

At any time, a single control can be what is called the “first responder” on the GuiCanvas is placed on. This control will be the first control to receive keyboard events not bound in the global ActionMap. If the first responder choses to handle a particular keyboard event,




Waking and Sleeping




Visibility and Activeness

By default, a GuiControl is active which means that it






Methods


	
void GuiControl::addGuiControl(GuiControl control)


	Add the given control as a child to this control. This is synonymous to calling SimGroup::addObject.


	Parameters

	control – The control to add as a child.










	
void GuiControl::clearFirstResponder(bool ignored)


	Clear this control from being the first responder in its hierarchy chain.


	Parameters

	ignored – Ignored. Supported for backwards-compatibility.










	
bool GuiControl::controlIsChild(GuiControl control)


	Test whether the given control is a direct or indirect child to this control.


	Parameters

	control – The potential child control.



	Returns

	True if the given control is a direct or indirect child to this control.










	
GuiControl GuiControl::findHitControl(int x, int y)


	Find the topmost child control located at the given coordinates.


	Parameters

	
	x – The X coordinate in the control’s own coordinate space.


	y – The Y coordinate in the control’s own coordinate space.






	Returns

	The topmost child control at the given coordintes or the control on which the method was called if no matching child could be found.










	
string GuiControl::findHitControls(int x, int y, int width, int height)


	Find all visible child controls that intersect with the given rectangle.


	Parameters

	
	x – The X coordinate of the rectangle’s upper left corner in the control’s own coordinate space.


	y – The Y coordinate of the rectangle’s upper left corner in the control’s own coordinate space.


	width – The width of the search rectangle in pixels.


	height – The height of the search rectangle in pixels.






	Returns

	A space-separated list of the IDs of all visible control objects intersecting the given rectangle.





Example:

// Lock all controls in the rectangle at x=10 and y=10 and the extent width=100 and height=100.foreach$( %ctrl in %this.findHitControls( 10, 10, 100, 100 ) )
   %ctrl.setLocked( true );










	
float GuiControl::getAspect()


	Get the aspect ratio of the control’s extents.


	Returns

	The width of the control divided by its height.










	
Point2I GuiControl::getCenter()


	Get the coordinate of the control’s center point relative to its parent.


	Returns

	The coordinate of the control’s center point in parent-relative coordinates.










	
Point2I GuiControl::getExtent()


	Get the width and height of the control. Reimplemented in GuiCanvas .


	Returns

	A point structure containing the width of the control in x and the height in y.










	
GuiControl GuiControl::getFirstResponder()


	Get the first responder set on this GuiControl tree.


	Returns

	The first responder set on the control’s subtree.










	
Point2I GuiControl::getGlobalCenter()


	Get the coordinate of the control’s center point in coordinates relative to the root control in its control hierarchy. the center coordinate of the control in root-relative coordinates.






	
Point2I GuiControl::getGlobalPosition()


	Get the position of the control relative to the root of the GuiControl hierarchy it is contained in.


	Returns

	The control’s current position in root-relative coordinates.










	
Point2I GuiControl::getMinExtent()


	Get the minimum allowed size of the control.


	Returns

	The minimum size to which the control can be shrunk.










	
GuiControl GuiControl::getParent()


	Get the immediate parent control of the control.


	Returns

	.












	
Point2I GuiControl::getPosition()


	Get the control’s current position relative to its parent.


	Returns

	The coordinate of the control in its parent’s coordinate space.










	
GuiCanvas GuiControl::getRoot()


	Get the canvas on which the control is placed.


	Returns

	.












	
bool GuiControl::isAwake()


	Test whether the control is currently awake. If a control is awake it means that it is part of the GuiControl hierarchy of a GuiCanvas .


	Returns

	Waking and Sleeping










	
bool GuiControl::isFirstResponder()


	Test whether the control is the current first responder.


	Returns

	True if the control is the current first responder.










	
bool GuiControl::isMouseLocked()


	Indicates if the mouse is locked in this control.


	Returns

	True if the mouse is currently locked.










	
bool GuiControl::isVisible()


	Test whether the control is currently set to be visible. Visibility and Activeness


	Returns

	True if the control is currently set to be visible.










	
void GuiControl::makeFirstResponder(bool isFirst)


	




	
void GuiControl::onAction()


	Called when the control’s associated action is triggered and no ‘command’ is defined for the control. Triggered Actions






	
void GuiControl::onActive(bool state)


	Called when the control changes its activeness state, i.e. when going from active to inactive or vice versa.


	Parameters

	stat – The new activeness state.










	
void GuiControl::onAdd()


	Called when the control object is registered with the system after the control has been created.






	
void GuiControl::onControlDragEnter(GuiControl control, Point2I dropPoint)


	Called when a drag amp drop operation through GuiDragAndDropControl has entered the control. This is only called for topmost visible controls as the GuiDragAndDropControl moves over them.


	Parameters

	
	control – The payload of the drag operation.


	dropPoint – The point at which the payload would be dropped if it were released now. Relative to the canvas.













	
void GuiControl::onControlDragExit(GuiControl control, Point2I dropPoint)


	Called when a drag amp drop operation through GuiDragAndDropControl has exited the control and moved over a different control. This is only called for topmost visible controls as the GuiDragAndDropControl moves off of them.


	Parameters

	
	control – The payload of the drag operation.


	dropPoint – The point at which the payload would be dropped if it were released now. Relative to the canvas.













	
void GuiControl::onControlDragged(GuiControl control, Point2I dropPoint)


	Called when a drag amp drop operation through GuiDragAndDropControl is moving across the control after it has entered it. This is only called for topmost visible controls as the GuiDragAndDropControl moves across them.


	Parameters

	
	control – The payload of the drag operation.


	dropPoint – The point at which the payload would be dropped if it were released now. Relative to the canvas.













	
void GuiControl::onControlDropped(GuiControl control, Point2I dropPoint)


	Called when a drag amp drop operation through GuiDragAndDropControl has completed and is dropping its payload onto the control. This is only called for topmost visible controls as the GuiDragAndDropControl drops its payload on them.


	Parameters

	
	control – The control that is being dropped onto this control.


	dropPoint – The point at which the control is being dropped. Relative to the canvas.













	
void GuiControl::onDialogPop()


	Called when the control is removed as a dialog from the canvas.






	
void GuiControl::onDialogPush()


	Called when the control is pushed as a dialog onto the canvas.






	
void GuiControl::onGainFirstResponder()


	Called when the control gains first responder status on the GuiCanvas .






	
void GuiControl::onLoseFirstResponder()


	Called when the control loses first responder status on the GuiCanvas .






	
void GuiControl::onRemove()


	Called when the control object is removed from the system before it is deleted.






	
void GuiControl::onSleep()


	Called when the control is put to sleep. Waking and Sleeping






	
void GuiControl::onVisible(bool state)


	Called when the control changes its visibility state, i.e. when going from visible to invisible or vice versa.


	Parameters

	state – The new visibility state.










	
void GuiControl::onWake()


	Called when the control is woken up. Waking and Sleeping






	
bool GuiControl::pointInControl(int x, int y)


	Test whether the given point lies within the rectangle of the control.


	Parameters

	
	x – X coordinate of the point in parent-relative coordinates.


	y – Y coordinate of the point in parent-relative coordinates.






	Returns

	True if the point is within the control, false if not.










	
void GuiControl::resize(int x, int y, int width, int height)


	Resize and reposition the control using the give coordinates and dimensions. Child controls will resize according to their layout behaviors.


	Parameters

	
	x – The new X coordinate of the control in its parent’s coordinate space.


	y – The new Y coordinate of the control in its parent’s coordinate space.


	width – The new width to which the control should be resized.


	height – The new height to which the control should be resized.













	
void GuiControl::setActive(bool state)


	




	
void GuiControl::setCenter(int x, int y)


	Set the control’s position by its center point.


	Parameters

	
	x – The X coordinate of the new center point of the control relative to the control’s parent.


	y – The Y coordinate of the new center point of the control relative to the control’s parent.













	
void GuiControl::setExtent(S32 width, S32 height)


	Resize the control to the given dimensions. Child controls will resize according to their layout settings.


	Parameters

	
	width – The new width of the control in pixels.


	height – The new height of the control in pixels.













	
void GuiControl::setExtent(Point2I p)


	Resize the control to the given dimensions. Child controls with resize according to their layout settings.


	Parameters

	p – The new ( width, height ) extents of the control.










	
void GuiControl::setFirstResponder()


	Make this control the current first responder.






	
void GuiControl::setPosition(int x, int y)


	Position the control in the local space of the parent control.


	Parameters

	
	x – The new X coordinate of the control relative to its parent’s upper left corner.


	y – The new Y coordinate of the control relative to its parent’s upper left corner.













	
void GuiControl::setPositionGlobal(int x, int y)


	Set position of the control relative to the root of the GuiControl hierarchy it is contained in.


	Parameters

	
	x – The new X coordinate of the control relative to the root’s upper left corner.


	y – The new Y coordinate of the control relative to the root’s upper left corner.













	
void GuiControl::setProfile(GuiControlProfile profile)


	Set the control profile for the control to use. The profile used by a control determines a great part of its behavior and appearance.


	Parameters

	profile – The new profile the control should use. Control Profiles










	
void GuiControl::setValue(string value)


	Set the value associated with the control.


	Parameters

	value – The new value for the control.










	
void GuiControl::setVisible(bool state)


	Set whether the control is visible or not.


	Parameters

	state – The new visiblity flag state for the control. Visibility and Activeness












Fields


	
string GuiControl::accelerator


	Key combination that triggers the control’s primary action when the control is on the canvas.






	
bool GuiControl::active


	Whether the control is enabled for user interaction.






	
string GuiControl::altCommand


	Command to execute on the secondary action of the control.






	
string GuiControl::command


	Command to execute on the primary action of the control.






	
Point2I GuiControl::extent


	The width and height of the control.






	
string GuiControl::getValue


	




	
GuiHorizontalSizing GuiControl::horizSizing


	The horizontal resizing behavior.






	
int GuiControl::hovertime


	Time for mouse to hover over control until tooltip is shown (in milliseconds).






	
bool GuiControl::isActive


	




	
bool GuiControl::isContainer


	If true, the control may contain child controls.






	
string GuiControl::langTableMod


	Name of string table to use for lookup of internationalized text.






	
Point2I GuiControl::minExtent


	The minimum width and height of the control. The control will not be resized smaller than this.






	
deprecated GuiControl::modal


	




	
Point2I GuiControl::position


	The position relative to the parent control.






	
GuiControlProfile GuiControl::profile


	The control profile that determines fill styles, font settings, etc.






	
deprecated GuiControl::setFirstResponder


	




	
string GuiControl::tooltip


	String to show in tooltip for this control.






	
GuiControlProfile GuiControl::tooltipProfile


	Control profile to use when rendering tooltips for this control.






	
string GuiControl::variable


	Name of the variable to which the value of this control will be synchronized.






	
GuiVerticalSizing GuiControl::vertSizing


	The vertical resizing behavior.






	
bool GuiControl::visible


	Whether the control is visible or hidden.











          

      

      

    

  

    
      
          
            
  
GuiControlArrayControl

Brief Desc.


	Inherit:

	GuiControl






Description

Brief Desc.

Example:

// Comment:
%okButton = new ClassObject()
instantiation








Fields


	
int GuiControlArrayControl::colCount


	Number of colums in the array.






	
intList GuiControlArrayControl::colSizes


	Size of each individual column.






	
int GuiControlArrayControl::colSpacing


	Padding to put between columns.






	
int GuiControlArrayControl::rowSize


	Heigth of a row in the array.






	
int GuiControlArrayControl::rowSpacing


	Padding to put between rows.











          

      

      

    

  

    
      
          
            
  
GuiControlProfile


	Inherit:

	SimObject






Description

A collection of properties that determine control behavior and rendering.




Methods


	
int GuiControlProfile::getStringWidth()


	






Fields


	
bool GuiControlProfile::autoSizeHeight


	Automatically adjust height of control to fit contents.






	
bool GuiControlProfile::autoSizeWidth


	Automatically adjust width of control to fit contents.






	
ColorI GuiControlProfile::bevelColorHL


	




	
ColorI GuiControlProfile::bevelColorLL


	




	
filename GuiControlProfile::bitmap


	Texture to use for rendering control.






	
int GuiControlProfile::border


	Border type (0=no border).






	
ColorI GuiControlProfile::borderColor


	Color to draw border with.






	
ColorI GuiControlProfile::borderColorHL


	




	
ColorI GuiControlProfile::borderColorNA


	




	
int GuiControlProfile::borderThickness


	Thickness of border in pixels.






	
bool GuiControlProfile::canKeyFocus


	Whether the control can have the keyboard focus.






	
string GuiControlProfile::category


	Category under which the profile will appear in the editor.






	
ColorI GuiControlProfile::cursorColor


	Color to use for the text cursor.






	
ColorI GuiControlProfile::fillColor


	




	
ColorI GuiControlProfile::fillColorHL


	




	
ColorI GuiControlProfile::fillColorNA


	




	
ColorI GuiControlProfile::fillColorSEL


	




	
GuiFontCharset GuiControlProfile::fontCharset


	




	
ColorI GuiControlProfile::fontColor


	Font color for normal text (same as fontColors[0]).






	
ColorI GuiControlProfile::fontColorHL


	Font color for highlighted text (same as fontColors[1]).






	
ColorI GuiControlProfile::fontColorLink


	Font color for links in text (same as fontColors[4]).






	
ColorI GuiControlProfile::fontColorLinkHL


	Font color for highlighted links in text (same as fontColors[5]).






	
ColorI GuiControlProfile::fontColorNA


	Font color when control is not active/disabled (same as fontColors[2]).






	
ColorI GuiControlProfile::fontColors[10]


	Font colors to use for different text types/states.






	
ColorI GuiControlProfile::fontColorSEL


	Font color for selected text (same as fontColors[3]).






	
int GuiControlProfile::fontSize


	Font size in points.






	
string GuiControlProfile::fontType


	Name of font family and typeface (e.g. “Arial Bold”).






	
bool GuiControlProfile::hasBitmapArray


	If true, ‘bitmap’ is an array of images.






	
GuiAlignmentType GuiControlProfile::justify


	Horizontal alignment for text.






	
bool GuiControlProfile::modal


	




	
bool GuiControlProfile::mouseOverSelected


	




	
bool GuiControlProfile::numbersOnly


	Whether control should only accept numerical data ( GuiTextEditCtrl ).






	
bool GuiControlProfile::opaque


	




	
string GuiControlProfile::profileForChildren


	




	
bool GuiControlProfile::returnTab


	Whether to add automatic tab event when return is pressed so focus moves on to next control ( GuiTextEditCtrl ).






	
SFXTrack GuiControlProfile::soundButtonDown


	Sound to play when mouse has been pressed on control.






	
SFXTrack GuiControlProfile::soundButtonOver


	Sound to play when mouse is hovering over control.






	
bool GuiControlProfile::tab


	




	
Point2I GuiControlProfile::textOffset


	









          

      

      

    

  

    
      
          
            
  
GuiCrossHairHud

Basic cross hair hud. Reacts to state of control object. Also displays health bar for named objects under the cross hair.


	Inherit:

	GuiBitmapCtrl






Description

Basic cross hair hud. Reacts to state of control object. Also displays health bar for named objects under the cross hair.

Uses the base bitmap control to render a bitmap, and decides whether to draw or not depending on the current control object and it’s state. If there is ShapeBase object under the cross hair and it’s named, then a small health bar is displayed.

Example:

newGuiCrossHairHud(){
   damageFillColor = "1.0 0.0 0.0 1.0"; // Fills with a solid red colordamageFrameColor = "1.0 1.0 1.0 1.0"; // Solid white frame colordamageRect = "15 5";
   damageOffset = "0 -10";
};








Fields


	
ColorF GuiCrossHairHud::damageFillColor


	As the health bar depletes, this color will represent the health loss amount.






	
ColorF GuiCrossHairHud::damageFrameColor


	Color for the health bar’s frame.






	
Point2I GuiCrossHairHud::damageOffset


	Offset for drawing the damage portion of the health control.






	
Point2I GuiCrossHairHud::damageRect


	Size for the health bar portion of the control.











          

      

      

    

  

    
      
          
            
  
GuiCursor

Acts as a skin for the cursor, where each GuiCursor object can have its own look and click-zone.


	Inherit:

	SimObject






Description

GuiCursors act as skins for the cursor in the game, where each individual GuiCursor can have its own defined imagemap, click zone and render offset. This allows a game to easily support a wide range of cursors. The active cursor can de changed for each Canvas using canvasObj.setCursor(GuiCursor);.

Example:

newGuiCursor(DefaultCursor)
{
   hotSpot = "1 1";
   renderOffset = "0 0";
   bitmapName = "~/art/gui/images/defaultCursor";
};








Fields


	
filename GuiCursor::bitmapName


	File name of the bitmap for the cursor.






	
Point2I GuiCursor::hotSpot


	The location of the cursor’s hot spot (which pixel carries the click).






	
Point2F GuiCursor::renderOffset


	Offset of the bitmap, where 0 signifies left edge of the bitmap, 1, the right. Similarly for the Y-component.











          

      

      

    

  

    
      
          
            
  
GuiDirectoryFileListCtrl

A control that displays a list of files from within a single directory in the game file system.


	Inherit:

	GuiListBoxCtrl






Description

A control that displays a list of files from within a single directory in the game file system.

Example:

newGuiDirectoryFileListCtrl()
{
   filePath = "art/shapes";
   fileFilter = "*.dts" TAB "*.dae";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
string GuiDirectoryFileListCtrl::getSelectedFile()


	Get the currently selected filename.


	Returns

	The filename of the currently selected file










	
string GuiDirectoryFileListCtrl::getSelectedFiles()


	Get the list of selected files.


	Returns

	A space separated list of selected files










	
void GuiDirectoryFileListCtrl::reload()


	Update the file list.






	
void GuiDirectoryFileListCtrl::setFilter(string filter)


	Set the file filter.


	Parameters

	filter – Tab-delimited list of file name patterns. Only matched files will be displayed.










	
bool GuiDirectoryFileListCtrl::setPath(string path, string filter)


	Set the search path and file filter.


	Parameters

	
	path – Path in game directory from which to list files.


	filter – Tab-delimited list of file name patterns. Only matched files will be displayed.















Fields


	
string GuiDirectoryFileListCtrl::fileFilter


	Tab-delimited list of file name patterns. Only matched files will be displayed.






	
string GuiDirectoryFileListCtrl::filePath


	Path in game directory from which to list files.











          

      

      

    

  

    
      
          
            
  
GuiDragAndDropControl

A container control that can be used to implement drag&drop behavior.


	Inherit:

	GuiControl






Description

GuiDragAndDropControl is a special control that can be used to allow drag&drop behavior to be implemented where GuiControls may be dragged across the canvas and the dropped on other GuiControls.

To start a drag operation, construct a GuiDragAndDropControl and add the control that should be drag&dropped as a child to it. Note that this must be a single child control. To drag multiple controls, wrap them in a new GuiControl object as a temporary container.

Then, to initiate the drag, add the GuiDragAndDropControl to the canvas and call startDragging(). You can optionally supply an offset to better position the GuiDragAndDropControl on the mouse cursor.

As the GuiDragAndDropControl is then moved across the canvas, it will call the onControlDragEnter(), onControlDragExit(), onControlDragged(), and finally onControlDropped() callbacks on the visible topmost controls that it moves across. onControlDropped() is called when the mouse button is released and the drag operation thus finished.

Example:

// The following example implements drag&drop behavior for GuiSwatchButtonCtrl so that// one color swatch may be dragged over the other to quickly copy its color.//// This code is taken from the stock scripts.//---------------------------------------------------------------------------------------------// With this method, we start the operation when the mouse is click-dragged away from a color swatch.
function GuiSwatchButtonCtrl::onMouseDragged( %this )
{
   // First we construct a new temporary swatch button that becomes the payload for our// drag operation and give it the properties of the swatch button we want to copy.

   %payload = newGuiSwatchButtonCtrl();
   %payload.assignFieldsFrom( %this );
   %payload.position = "0 0";
   %payload.dragSourceControl = %this; // Remember where the drag originated from so that we dont copy a color swatch onto itself.// Calculate the offset of the GuiDragAndDropControl from the mouse cursor.  Here we center// it on the cursor.

   %xOffset = getWord( %payload.extent, 0 ) / 2;
   %yOffset = getWord( %payload.extent, 1 ) / 2;

   // Compute the initial position of the GuiDragAndDrop control on the cavas based on the current// mouse cursor position.

   %cursorpos = Canvas.getCursorPos();
   %xPos = getWord( %cursorpos, 0 ) - %xOffset;
   %yPos = getWord( %cursorpos, 1 ) - %yOffset;

   // Create the drag control.

   %ctrl = newGuiDragAndDropControl()
   {
      canSaveDynamicFields    = "0";
      Profile                 = "GuiSolidDefaultProfile";
      HorizSizing             = "right";
      VertSizing              = "bottom";
      Position                = %xPos SPC %yPos;
      extent                  = %payload.extent;
      MinExtent               = "4 4";
      canSave                 = "1";
      Visible                 = "1";
      hovertime               = "1000";

      // Let the GuiDragAndDropControl delete itself on mouse-up.  When the drag is aborted,// this not only deletes the drag control but also our payload.
      deleteOnMouseUp         = true;

      // To differentiate drags, use the namespace hierarchy to classify them.// This will allow a color swatch drag to tell itself apart from a file drag, for example.class                   = "GuiDragAndDropControlType_ColorSwatch";
   };

   // Add the temporary color swatch to the drag control as the payload.
   %ctrl.add( %payload );

   // Start drag by adding the drag control to the canvas and then calling startDragging().

   Canvas.getContent().add( %ctrl );
   %ctrl.startDragging( %xOffset, %yOffset );
}

//---------------------------------------------------------------------------------------------// This method receives the drop when the mouse button is released over a color swatch control// during a drag operation.
function GuiSwatchButtonCtrl::onControlDropped( %this, %payload, %position )
{
   // Make sure this is a color swatch drag operation.if( !%payload.parentGroup.isInNamespaceHierarchy( "GuiDragAndDropControlType_ColorSwatch" ) )
      return;

   // If dropped on same button whence we came from,// do nothing.if( %payload.dragSourceControl == %this )
      return;

   // If a swatch button control is dropped onto this control,// copy its color.if( %payload.isMemberOfClass( "GuiSwatchButtonCtrl" ) )
   {
      // If the swatch button is part of a color-type inspector field,// remember the inspector field so we can later set the color// through it.if( %this.parentGroup.isMemberOfClass( "GuiInspectorTypeColorI" ) )
         %this.parentGroup.apply( ColorFloatToInt( %payload.color ) );
      elseif( %this.parentGroup.isMemberOfClass( "GuiInspectorTypeColorF" ) )
         %this.parentGroup.apply( %payload.color );
      else
         %this.setColor( %payload.color );
   }
}








Methods


	
void GuiDragAndDropControl::startDragging(int x, int y)


	Start the drag operation.


	Parameters

	
	x – X coordinate for the mouse pointer offset which the drag control should position itself.


	y – Y coordinate for the mouse pointer offset which the drag control should position itself.















Fields


	
bool GuiDragAndDropControl::deleteOnMouseUp


	If true, the control deletes itself when the left mouse button is released. If at this point, the drag amp drop control still contains its payload, it will be deleted along with the control.











          

      

      

    

  

    
      
          
            
  
GuiDynamicCtrlArrayControl

A container that arranges children into a grid.


	Inherit:

	GuiControl






Description

This container maintains a 2D grid of GUI controls. If one is added, deleted, or resized, then the grid is updated. The insertion order into the grid is determined by the internal order of the children (ie. the order of addition).
Children are added to the grid by row or column until they fill the assocated GuiDynamicCtrlArrayControl extent (width or height). For example, a GuiDynamicCtrlArrayControl with 15 children, and fillRowFirst set to true may be arranged as follows:

If dynamicSize were set to true in this case, the GuiDynamicCtrlArrayControl height would be calculated to fit the 3 rows of child controls.

Example:

newGuiDynamicCtrlArrayControl()
{
   colSize = "128";
   rowSize = "18";
   colSpacing = "2";
   rowSpacing = "2";
   frozen = "0";
   autoCellSize = "1";
   fillRowFirst = "1";
   dynamicSize = "1";
   padding = "0 0 0 0";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiDynamicCtrlArrayControl::refresh()


	Recalculates the position and size of this control and all its children.








Fields


	
bool GuiDynamicCtrlArrayControl::autoCellSize


	When true, the cell size is set to the widest/tallest child control.






	
int GuiDynamicCtrlArrayControl::colCount


	Number of columns the child controls have been arranged into. This value is calculated automatically when children are added, removed or resized; writing it directly has no effect.






	
int GuiDynamicCtrlArrayControl::colSize


	Width of each column. If autoCellSize is set, this will be calculated automatically from the widest child control.






	
int GuiDynamicCtrlArrayControl::colSpacing


	Spacing between columns.






	
bool GuiDynamicCtrlArrayControl::dynamicSize


	If true, the width or height of this control will be automatically calculated based on the number of child controls (width if fillRowFirst is false, height if fillRowFirst is true).






	
bool GuiDynamicCtrlArrayControl::fillRowFirst


	Controls whether rows or columns are filled first. If true, controls are added to the grid left-to-right (to fill a row); then rows are added top-to-bottom as shown below: If false, controls are added to the grid top-to-bottom (to fill a column); then columns are added left-to-right as shown below:






	
bool GuiDynamicCtrlArrayControl::frozen


	When true, the array will not update when new children are added or in response to child resize events. This is useful to prevent unnecessary resizing when adding, removing or resizing a number of child controls.






	
RectSpacingI GuiDynamicCtrlArrayControl::padding


	Padding around the top, bottom, left, and right of this control. This reduces the area available for child controls.






	
int GuiDynamicCtrlArrayControl::rowCount


	Number of rows the child controls have been arranged into. This value is calculated automatically when children are added, removed or resized; writing it directly has no effect.






	
int GuiDynamicCtrlArrayControl::rowSize


	Height of each row. If autoCellSize is set, this will be calculated automatically from the tallest child control.






	
int GuiDynamicCtrlArrayControl::rowSpacing


	Spacing between rows.











          

      

      

    

  

    
      
          
            
  
GuiFadeinBitmapCtrl

A GUI control which renders a black square over a bitmap image. The black square will fade out, then fade back in after a determined time. This control is especially useful for transitions and splash screens.


	Inherit:

	GuiBitmapCtrl






Description

A GUI control which renders a black square over a bitmap image. The black square will fade out, then fade back in after a determined time. This control is especially useful for transitions and splash screens.

Example:

newGuiFadeinBitmapCtrl()
   {
      fadeinTime = "1000";
      waitTime = "2000";
      fadeoutTime = "1000";
      done = "1";
      // Additional GUI properties that are not specific to GuiFadeinBitmapCtrl have been omitted from this example.
   };








Methods


	
void GuiFadeinBitmapCtrl::click()


	Informs the script level that this object received a Click event from the cursor or keyboard.

Example:

GuiFadeInBitmapCtrl::click(%this)
   {
      // Code to run when click occurs
   }










	
void GuiFadeinBitmapCtrl::onDone()


	Informs the script level that this object has completed is fade cycle.

Example:

GuiFadeInBitmapCtrl::onDone(%this)
   {
      // Code to run when the fade cycle completes
   }












Fields


	
bool GuiFadeinBitmapCtrl::done


	Whether the fade cycle has finished running.






	
ColorF GuiFadeinBitmapCtrl::fadeColor


	Color to fade in from and fade out to.






	
EaseF GuiFadeinBitmapCtrl::fadeInEase


	Easing curve for fade-in.






	
int GuiFadeinBitmapCtrl::fadeInTime


	Milliseconds for the bitmap to fade in.






	
EaseF GuiFadeinBitmapCtrl::fadeOutEase


	Easing curve for fade-out.






	
int GuiFadeinBitmapCtrl::fadeOutTime


	Milliseconds for the bitmap to fade out.






	
int GuiFadeinBitmapCtrl::waitTime


	Milliseconds to wait after fading in before fading out the bitmap.











          

      

      

    

  

    
      
          
            
  
GuiFrameSetCtrl

A gui control allowing a window to be subdivided into panes, each of which displays a gui control child of the GuiFrameSetCtrl.


	Inherit:

	GuiContainer






Description

Each gui control child will have an associated FrameDetail through which frame-specific details can be assigned. Frame-specific values override the values specified for the entire frameset.

Note that it is possible to have more children than frames, or more frames than children. In the former case, the extra children will not be visible (they are moved beyond the visible extent of the frameset). In the latter case, frames will be empty. For example, if a frameset had two columns and two rows but only three gui control children they would be assigned to frames as follows:

The last frame would be blank.

Example:

newGuiFrameSetCtrl()
{
   columns = "3";
   rows = "2";
   borderWidth = "1";
   borderColor = "128 128 128";
   borderEnable = "dynamic";
   borderMovable = "dynamic";
   autoBalance = "1";
   fudgeFactor = "0";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiFrameSetCtrl::addColumn()


	Add a new column.






	
void GuiFrameSetCtrl::addRow()


	Add a new row.






	
void GuiFrameSetCtrl::frameBorder(int index, string state)


	Override the borderEnable setting for this frame.


	Parameters

	
	index – Index of the frame to modify


	state – New borderEnable state: “on”, “off” or “dynamic”













	
void GuiFrameSetCtrl::frameMinExtent(int index, int width, int height)


	Set the minimum width and height for the frame. It will not be possible for the user to resize the frame smaller than this.


	Parameters

	
	index – Index of the frame to modify


	width – Minimum width in pixels


	height – Minimum height in pixels













	
void GuiFrameSetCtrl::frameMovable(int index, string state)


	Override the borderMovable setting for this frame.


	Parameters

	
	index – Index of the frame to modify


	state – New borderEnable state: “on”, “off” or “dynamic”













	
void GuiFrameSetCtrl::framePadding(int index, RectSpacingI padding)


	Set the padding for this frame. Padding introduces blank space on the inside edge of the frame.


	Parameters

	
	index – Index of the frame to modify


	padding – Frame top, bottom, left, and right padding













	
int GuiFrameSetCtrl::getColumnCount()


	Get the number of columns.


	Returns

	The number of columns










	
int GuiFrameSetCtrl::getColumnOffset(int index)


	Get the horizontal offset of a column.


	Parameters

	index – Index of the column to query



	Returns

	Column offset in pixels










	
RectSpacingI GuiFrameSetCtrl::getFramePadding(int index)


	Get the padding for this frame.


	Parameters

	index – Index of the frame to query










	
int GuiFrameSetCtrl::getRowCount()


	Get the number of rows.


	Returns

	The number of rows










	
int GuiFrameSetCtrl::getRowOffset(int index)


	Get the vertical offset of a row.


	Parameters

	index – Index of the row to query



	Returns

	Row offset in pixels










	
void GuiFrameSetCtrl::removeColumn()


	Remove the last (rightmost) column.






	
void GuiFrameSetCtrl::removeRow()


	Remove the last (bottom) row.






	
void GuiFrameSetCtrl::setColumnOffset(int index, int offset)


	Set the horizontal offset of a column. Note that column offsets must always be in increasing order, and therefore this offset must be between the offsets of the colunns either side.


	Parameters

	
	index – Index of the column to modify


	offset – New column offset













	
void GuiFrameSetCtrl::setRowOffset(int index, int offset)


	Set the vertical offset of a row. Note that row offsets must always be in increasing order, and therefore this offset must be between the offsets of the rows either side.


	Parameters

	
	index – Index of the row to modify


	offset – New row offset













	
void GuiFrameSetCtrl::updateSizes()


	Recalculates child control sizes.








Fields


	
bool GuiFrameSetCtrl::autoBalance


	If true, row and column offsets are automatically scaled to match the new extents when the control is resized.






	
ColorI GuiFrameSetCtrl::borderColor


	Color of interior borders between cells.






	
GuiFrameState GuiFrameSetCtrl::borderEnable


	Controls whether frame borders are enabled. Frames use this value unless overridden for that frame using ctrl.frameBorder(index)






	
GuiFrameState GuiFrameSetCtrl::borderMovable


	Controls whether borders can be dynamically repositioned with the mouse by the user. Frames use this value unless overridden for that frame using ctrl.frameMovable(index)






	
int GuiFrameSetCtrl::borderWidth


	Width of interior borders between cells in pixels.






	
intList GuiFrameSetCtrl::columns


	A vector of column offsets (determines the width of each column).






	
int GuiFrameSetCtrl::fudgeFactor


	Offset for row and column dividers in pixels.






	
intList GuiFrameSetCtrl::rows


	A vector of row offsets (determines the height of each row).











          

      

      

    

  

    
      
          
            
  
GuiGameListMenuCtrl

A base class for cross platform menu controls that are gamepad friendly.


	Inherit:

	GuiControl






Description

A base class for cross platform menu controls that are gamepad friendly.

This class is used to build row-based menu GUIs that can be easily navigated using the keyboard, mouse or gamepad. The desired row can be selected using the mouse, or by navigating using the Up and Down buttons.

Example:

newGuiGameListMenuCtrl()
{
   debugRender = "0";
   callbackOnA = "applyOptions();";
   callbackOnB = "Canvas.setContent(MainMenuGui);";
   callbackOnX = "";
   callbackOnY = "revertOptions();";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiGameListMenuCtrl::activateRow()


	Activates the current row. The script callback of the current row will be called (if it has one).






	
void GuiGameListMenuCtrl::addRow(string label, string callback, int icon, int yPad, bool useHighlightIcon, bool enabled)


	Add a row to the list control.


	Parameters

	
	label – The text to display on the row as a label.


	callback – Name of a script function to use as a callback when this row is activated.


	icon – [optional] Index of the icon to use as a marker.


	yPad – [optional] An extra amount of height padding before the row. Does nothing on the first row.


	useHighlightIcon – [optional] Does this row use the highlight icon?.


	enabled – [optional] If this row is initially enabled.













	
int GuiGameListMenuCtrl::getRowCount()


	Gets the number of rows on the control.


	Returns

	(int) The number of rows on the control.










	
string GuiGameListMenuCtrl::getRowLabel(int row)


	Gets the label displayed on the specified row.


	Parameters

	row – Index of the row to get the label of.



	Returns

	The label for the row.










	
int GuiGameListMenuCtrl::getSelectedRow()


	Gets the index of the currently selected row.


	Returns

	Index of the selected row.










	
bool GuiGameListMenuCtrl::isRowEnabled(int row)


	Determines if the specified row is enabled or disabled.


	Parameters

	row – The row to set the enabled status of.



	Returns

	True if the specified row is enabled. False if the row is not enabled or the given index was not valid.










	
void GuiGameListMenuCtrl::onChange()


	Called when the selected row changes.






	
void GuiGameListMenuCtrl::setRowEnabled(int row, bool enabled)


	Sets a row’s enabled status according to the given parameters.


	Parameters

	
	row – The index to check for validity.


	enabled – Indicate true to enable the row or false to disable it.













	
void GuiGameListMenuCtrl::setRowLabel(int row, string label)


	Sets the label on the given row.


	Parameters

	
	row – Index of the row to set the label on.


	label – Text to set as the label of the row.













	
void GuiGameListMenuCtrl::setSelected(int row)


	Sets the selected row. Only rows that are enabled can be selected.


	Parameters

	row – Index of the row to set as selected.












Fields


	
string GuiGameListMenuCtrl::callbackOnA


	Script callback when the ‘A’ button is pressed. ‘A’ inputs are Keyboard: A, Return, Space; Gamepad: A, Start.






	
string GuiGameListMenuCtrl::callbackOnB


	Script callback when the ‘B’ button is pressed. ‘B’ inputs are Keyboard: B, Esc, Backspace, Delete; Gamepad: B, Back.






	
string GuiGameListMenuCtrl::callbackOnX


	Script callback when the ‘X’ button is pressed. ‘X’ inputs are Keyboard: X; Gamepad: X.






	
string GuiGameListMenuCtrl::callbackOnY


	Script callback when the ‘Y’ button is pressed. ‘Y’ inputs are Keyboard: Y; Gamepad: Y.






	
bool GuiGameListMenuCtrl::debugRender


	Enable debug rendering.











          

      

      

    

  

    
      
          
            
  
GuiGameListMenuProfile

A GuiControlProfile with additional fields specific to GuiGameListMenuCtrl.


	Inherit:

	GuiControlProfile






Description

A GuiControlProfile with additional fields specific to GuiGameListMenuCtrl.

Example:

newGuiGameListMenuProfile()
{
   hitAreaUpperLeft = "10 2";
   hitAreaLowerRight = "190 18";
   iconOffset = "10 2";
   rowSize = "200 20";
   //Properties not specific to this control have been omitted from this example.
};








Fields


	
Point2I GuiGameListMenuProfile::hitAreaLowerRight


	Position of the lower right corner of the row hit area (relative to row’s top left corner).






	
Point2I GuiGameListMenuProfile::hitAreaUpperLeft


	Position of the upper left corner of the row hit area (relative to row’s top left corner).






	
Point2I GuiGameListMenuProfile::iconOffset


	Offset from the row’s top left corner at which to render the row icon.






	
Point2I GuiGameListMenuProfile::rowSize


	The base size (“width height”) of a row.











          

      

      

    

  

    
      
          
            
  
GuiGameListOptionsCtrl

A control for showing pages of options that are gamepad friendly.


	Inherit:

	GuiGameListMenuCtrl






Description

Each row in this control allows the selection of one value from a set of options using the keyboard, gamepad or mouse. The row is rendered as 2 columns: the first column contains the row label, the second column contains left and right arrows (for mouse picking) and the currently selected value.




Methods


	
void GuiGameListOptionsCtrl::addRow(string label, string options, bool wrapOptions, string callback, int icon, int yPad, bool enabled)


	Add a row to the list control.


	Parameters

	
	label – The text to display on the row as a label.


	options – A tab separated list of options.


	wrapOptions – Specify true to allow options to wrap at each end or false to prevent wrapping.


	callback – Name of a script function to use as a callback when this row is activated.


	icon – [optional] Index of the icon to use as a marker.


	yPad – [optional] An extra amount of height padding before the row. Does nothing on the first row.


	enabled – [optional] If this row is initially enabled.













	
string GuiGameListOptionsCtrl::getCurrentOption(int row)


	Gets the text for the currently selected option of the given row.


	Parameters

	row – Index of the row to get the option from.



	Returns

	A string representing the text currently displayed as the selected option on the given row. If there is no such displayed text then the empty string is returned.










	
bool GuiGameListOptionsCtrl::selectOption(int row, string option)


	Set the row’s current option to the one specified.


	Parameters

	
	row – Index of the row to set an option on.


	option – The option to be made active.






	Returns

	True if the row contained the option and was set, false otherwise.










	
void GuiGameListOptionsCtrl::setOptions(int row, string optionsList)


	Sets the list of options on the given row.


	Parameters

	
	row – Index of the row to set options on.


	optionsList – A tab separated list of options for the control.


















          

      

      

    

  

    
      
          
            
  
GuiGameListOptionsProfile

A GuiControlProfile with additional fields specific to GuiGameListOptionsCtrl.


	Inherit:

	GuiGameListMenuProfile






Description

A GuiControlProfile with additional fields specific to GuiGameListOptionsCtrl.

Example:

newGuiGameListOptionsProfile()
{
   columnSplit = "100";
   rightPad = "4";
   //Properties not specific to this control have been omitted from this example.
};








Fields


	
int GuiGameListOptionsProfile::columnSplit


	Padding between the leftmost edge of the control, and the row’s left arrow.






	
int GuiGameListOptionsProfile::rightPad


	Padding between the rightmost edge of the control and the row’s right arrow.











          

      

      

    

  

    
      
          
            
  
GuiGraphCtrl

A control that plots one or more curves in a chart.


	Inherit:

	GuiControl






Description

Up to 6 individual curves can be plotted in the graph. Each plotted curve can have its own display style including its own charting style (plotType) and color (plotColor).

The data points on each curve can be added in one of two ways:

Example:

// Create a graph that plots a red polyline graph of the FPS counter in a 1 second (1000 milliseconds) interval.newGuiGraphCtrl( FPSGraph )
{
   plotType[ 0 ] = "PolyLine";
   plotColor[ 0 ] = "1 0 0";
   plotVariable[ 0 ] = "fps::real";
   plotInterval[ 0 ] = 1000;
};








Methods


	
void GuiGraphCtrl::addAutoPlot(int plotId, string variable, int updateFrequency)


	Sets up the given plotting curve to automatically plot the value of the variable with a frequency of updateFrequency .


	Parameters

	
	plotId – Index of the plotting curve. Must be 0<=plotId<6.


	variable – Name of the global variable.


	updateFrequency – Frequency with which to add new data points to the plotting curve (in milliseconds).








Example:

// Plot FPS counter at 1 second intervals.
%graph.addAutoPlot( 0, "fps::real", 1000 );










	
void GuiGraphCtrl::addDatum(int plotId, float value)


	Add a data point to the plot’s curve.


	Parameters

	
	plotId – Index of the plotting curve to which to add the data point. Must be 0<=plotId<6.


	value – Value of the data point to add to the curve.













	
float GuiGraphCtrl::getDatum(int plotId, int index)


	Get a data point on the given plotting curve.


	Parameters

	
	plotId – Index of the plotting curve from which to fetch the data point. Must be 0<=plotId<6.


	index – Index of the data point on the curve.






	Returns

	are out of range.










	
void GuiGraphCtrl::matchScale(int plotID1, int plotID2, ...)


	Set the scale of all specified plots to the maximum scale among them.


	Parameters

	
	plotID1 – Index of plotting curve.


	plotID2 – Index of plotting curve.













	
void GuiGraphCtrl::removeAutoPlot(int plotId)


	Stop automatic variable plotting for the given curve.


	Parameters

	plotId – Index of the plotting curve. Must be 0<=plotId<6.










	
void GuiGraphCtrl::setGraphType(int plotId, GuiGraphType graphType)


	Change the charting type of the given plotting curve.


	Parameters

	
	plotId – Index of the plotting curve. Must be 0<=plotId<6.


	graphType – Charting type to use for the curve.















Fields


	
float GuiGraphCtrl::centerY


	Ratio of where to place the center coordinate of the graph on the Y axis. 0.5=middle height of control. This allows to account for graphs that have only positive or only negative data points, for example.






	
ColorF GuiGraphCtrl::plotColor[6]


	Color to use for the plotting curves in the graph.






	
int GuiGraphCtrl::plotInterval[6]


	Interval between auto-plots of plotVariable for the respective curve (in milliseconds).






	
GuiGraphType GuiGraphCtrl::plotType[6]


	Charting type of the plotting curves.






	
string GuiGraphCtrl::plotVariable[6]


	Name of the variable to automatically plot on the curves. If empty, auto-plotting is disabled for the respective curve.











          

      

      

    

  

    
      
          
            
  
GuiHealthBarHud

A basic health bar. Shows the damage value of the current PlayerObjectType control object.


	Inherit:

	GuiControl






Description

A basic health bar. Shows the damage value of the current PlayerObjectType control object.

This gui displays the damage value of the current PlayerObjectType control object. The gui can be set to pulse if the health value drops below a set value. This control only works if a server connection exists and it’s control object is a PlayerObjectType. If either of these requirements is false, the control is not rendered.

Example:

newGuiHealthBarHud(){
   fillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colordamageFillColor = "1.0 0.0 0.0 1.0"; // Fills with a solid red colorpulseRate = "500";
   pulseThreshold = "0.25";
   showFill = "true";
   showFrame = "true";
   displayEnergy = "false";
};








Fields


	
ColorF GuiHealthBarHud::damageFillColor


	As the health bar depletes, this color will represent the health loss amount.






	
bool GuiHealthBarHud::displayEnergy


	If true, display the energy value rather than the damage value.






	
ColorF GuiHealthBarHud::fillColor


	Standard color for the background of the control.






	
ColorF GuiHealthBarHud::frameColor


	Color for the control’s frame.






	
int GuiHealthBarHud::pulseRate


	Speed at which the control will pulse.






	
float GuiHealthBarHud::pulseThreshold


	Health level the control must be under before the control will pulse.






	
bool GuiHealthBarHud::showFill


	If true, we draw the background color of the control.






	
bool GuiHealthBarHud::showFrame


	If true, we draw the frame of the control.











          

      

      

    

  

    
      
          
            
  
GuiHealthTextHud

Shows the health or energy value of the current PlayerObjectType control object.


	Inherit:

	GuiControl






Description

Shows the health or energy value of the current PlayerObjectType control object.

This gui can be configured to display either the health or energy value of the current Player Object. It can use an alternate display color if the health or drops below a set value. It can also be set to pulse if the health or energy drops below a set value. This control only works if a server connection exists and it’s control object is a PlayerObjectType. If either of these requirements is false, the control is not rendered.

Example:

newGuiHealthTextHud(){
   fillColor = "0.0 0.0 0.0 0.5"; // Fills with a transparent black colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colortextColor = "0.0 1.0 0.0 1.0"// Solid green text colorwarningColor = "1.0 0.0 0.0 1.0"; // Solid red color, used when damagedshowFill = "true";
   showFrame = "true";
   showTrueValue = "false";
   showEnergy = "false";
   warnThreshold = "50";
   pulseThreshold = "25";
   pulseRate = "500";
   profile = "GuiBigTextProfile";
};








Fields


	
ColorF GuiHealthTextHud::fillColor


	Color for the background of the control.






	
ColorF GuiHealthTextHud::frameColor


	Color for the control’s frame.






	
int GuiHealthTextHud::pulseRate


	Speed at which the control will pulse.






	
float GuiHealthTextHud::pulseThreshold


	Health level at which to begin pulsing.






	
bool GuiHealthTextHud::showEnergy


	If true, display the energy value rather than the damage value.






	
bool GuiHealthTextHud::showFill


	If true, draw the background.






	
bool GuiHealthTextHud::showFrame


	If true, draw the frame.






	
bool GuiHealthTextHud::showTrueValue


	If true, we don’t hardcode maxHealth to 100.






	
ColorF GuiHealthTextHud::textColor


	Color for the text on this control.






	
ColorF GuiHealthTextHud::warningColor


	Color for the text when health is low.






	
float GuiHealthTextHud::warnThreshold


	The health level at which to use the warningColor.











          

      

      

    

  

    
      
          
            
  
GuiIconButtonCtrl

Draws the bitmap within a special button control. Only a single bitmap is used and the button will be drawn in a highlighted mode when the mouse hovers over it or when it has been clicked.


	Inherit:

	GuiButtonCtrl






Description

Draws the bitmap within a special button control. Only a single bitmap is used and the button will be drawn in a highlighted mode when the mouse hovers over it or when it has been clicked.

Example:

newGuiIconButtonCtrl(TestIconButton)
{
   buttonMargin = "4 4";
   iconBitmap = "art/gui/lagIcon.png";
   iconLocation = "Center";
   sizeIconToButton = "0";
   makeIconSquare = "1";
   textLocation = "Bottom";
   textMargin = "-2";
   autoSize = "0";
   text = "Lag Icon";
   textID = ""STR_LAG"";
   buttonType = "PushButton";
   profile = "GuiIconButtonProfile";
};








Methods


	
void GuiIconButtonCtrl::setBitmap(string buttonFilename)


	Set the bitmap to use for the button portion of this control.


	Parameters

	buttonFilename – Filename for the image





Example:

// Define the button filename
%buttonFilename = "pearlButton";

// Inform the GuiIconButtonCtrl control to update its main button graphic to the defined bitmap
%thisGuiIconButtonCtrl.setBitmap(%buttonFilename);












Fields


	
bool GuiIconButtonCtrl::autoSize


	If true, the text and icon will be automatically sized to the size of the control.






	
Point2I GuiIconButtonCtrl::buttonMargin


	Margin area around the button.






	
filename GuiIconButtonCtrl::iconBitmap


	Bitmap file for the icon to display on the button.






	
GuiIconButtonIconLocation GuiIconButtonCtrl::iconLocation


	Where to place the icon on the control. Options are 0 (None), 1 (Left), 2 (Right), 3 (Center).






	
bool GuiIconButtonCtrl::makeIconSquare


	If true, will make sure the icon is square.






	
bool GuiIconButtonCtrl::sizeIconToButton


	If true, the icon will be scaled to be the same size as the button.






	
GuiIconButtonTextLocation GuiIconButtonCtrl::textLocation


	Where to place the text on the control. Options are 0 (None), 1 (Bottom), 2 (Right), 3 (Top), 4 (Left), 5 (Center).






	
int GuiIconButtonCtrl::textMargin


	Margin between the icon and the text.











          

      

      

    

  

    
      
          
            
  
GuiInputCtrl

A control that locks the mouse and reports all keyboard input events to script.


	Inherit:

	GuiMouseEventCtrl






Description

This is useful for implementing custom keyboard handling code, and most commonly used in Torque for a menu that allows a user to remap their in-game controls

Example:

newGuiInputCtrl(OptRemapInputCtrl)
{
   lockMouse = "0";
   position = "0 0";
   extent = "64 64";
   minExtent = "8 8";
   horizSizing = "center";
   vertSizing = "bottom";
   profile = "GuiInputCtrlProfile";
   visible = "1";
   active = "1";
   tooltipProfile = "GuiToolTipProfile";
   hovertime = "1000";
   isContainer = "0";
   canSave = "1";
   canSaveDynamicFields = "0";
};








Methods


	
void GuiInputCtrl::onInputEvent(string device, string action, bool state)


	Callback that occurs when an input is triggered on this control.


	Parameters

	
	device – The device type triggering the input, such as keyboard, mouse, etc


	action – The actual event occuring, such as a key or button


	state – True if the action is being pressed, false if it is being release


















          

      

      

    

  

    
      
          
            
  
GuiListBoxCtrl

A list of text items.


	Inherit:

	GuiControl






Description

A list of text items where each individual entry can have its own text value, text color and associated SimObject.

Example:

newGuiListBoxCtrl(GuiMusicPlayerMusicList)
{
   allowMultipleSelections = "true";
   fitParentWidth = "true";
   mirrorSet = "AnotherGuiListBoxCtrl";
   makeNameCallback = "";
   colorBullet = "1";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiListBoxCtrl::addFilteredItem(string newItem)


	Checks if there is an item with the exact text of what is passed in, and if so the item is removed from the list and adds that item’s data to the filtered list.


	Parameters

	itemName – Name of the item that we wish to add to the filtered item list of the GuiListBoxCtrl.





Example:

// Define the itemName that we wish to add to the filtered item list.
%itemName = "This Item Name";

// Add the item name to the filtered item list.
%thisGuiListBoxCtrl.addFilteredItem(%filteredItemName);










	
void GuiListBoxCtrl::clearItemColor(int index)


	Removes any custom coloring from an item at the defined index id in the list.


	Parameters

	index – Index id for the item to clear any custom color from.





Example:

// Define the index id
%index = "4";

// Request the GuiListBoxCtrl object to remove any custom coloring from the defined index entry
%thisGuiListBoxCtrl.clearItemColor(%index);










	
void GuiListBoxCtrl::clearItems()


	Clears all the items in the listbox.

Example:

// Inform the GuiListBoxCtrl object to clear all items from its list.
%thisGuiListBoxCtrl.clearItems();










	
void GuiListBoxCtrl::clearSelection()


	Sets all currently selected items to unselected. Detailed description

Example:

// Inform the GuiListBoxCtrl object to set all of its items to unselected./n%thisGuiListBoxCtrl.clearSelection();










	
void GuiListBoxCtrl::deleteItem(int itemIndex)


	Removes the list entry at the requested index id from the control and clears the memory associated with it.


	Parameters

	itemIndex – Index id location to remove the item from.





Example:

// Define the index id we want to remove from the list
%itemIndex = "8";

// Inform the GuiListBoxCtrl object to remove the item at the defined index id.
%thisGuiListBoxCtrl.deleteItem(%itemIndex);










	
void GuiListBoxCtrl::doMirror()


	Informs the GuiListBoxCtrl object to mirror the contents of the GuiListBoxCtrl stored in the mirrorSet field.

Example:

\ Inform the object to mirror the object located at %thisGuiListBox.mirrorSet
%thisGuiListBox.doMirror();










	
int GuiListBoxCtrl::findItemText(string findText, bool bCaseSensitive)


	Returns index of item with matching text or -1 if none found.


	Parameters

	
	findText – Text in the list to find.


	isCaseSensitive – If true, the search will be case sensitive.






	Returns

	Index id of item with matching text or -1 if none found.





Example:

// Define the text we wish to find in the list.
%findText = "Hickory Smoked Gideon"/n/n// Define if this is a case sensitive search or not.
%isCaseSensitive = "false";

// Ask the GuiListBoxCtrl object what item id in the list matches the requested text.
%matchingId = %thisGuiListBoxCtrl.findItemText(%findText,%isCaseSensitive);










	
int GuiListBoxCtrl::getItemCount()


	Returns the number of items in the list.


	Returns

	The number of items in the list.





Example:

// Request the number of items in the list of the GuiListBoxCtrl object.
%listItemCount = %thisGuiListBoxCtrl.getItemCount();










	
string GuiListBoxCtrl::getItemObject(int index)


	Returns the object associated with an item. This only makes sense if you are mirroring a simset.


	Parameters

	index – Index id to request the associated item from.



	Returns

	The object associated with the item in the list.





Example:

// Define the index id
%index = "12";

// Request the item from the GuiListBoxCtrl object
%object = %thisGuiListBoxCtrl.getItemObject(%index);










	
string GuiListBoxCtrl::getItemText(int index)


	Returns the text of the item at the specified index.


	Parameters

	index – Index id to return the item text from.



	Returns

	The text of the requested index id.





Example:

// Define the index id entry to request the text from
%index = "12";

// Request the item id text from the GuiListBoxCtrl object.
%text = %thisGuiListBoxCtrl.getItemText(%index);










	
int GuiListBoxCtrl::getLastClickItem()


	Request the item index for the item that was last clicked.


	Returns

	Index id for the last clicked item in the list.





Example:

// Request the item index for the last clicked item in the list
%lastClickedIndex = %thisGuiListBoxCtrl.getLastClickItem();










	
int GuiListBoxCtrl::getSelCount()


	Returns the number of items currently selected.


	Returns

	Number of currently selected items.





Example:

// Request the number of currently selected items
%selectedItemCount = %thisGuiListBoxCtrl.getSelCount();










	
int GuiListBoxCtrl::getSelectedItem()


	Returns the selected items index or -1 if none selected. If multiple selections exist it returns the first selected item.


	Returns

	The selected items index or -1 if none selected.





Example:

// Request the index id of the currently selected item
%selectedItemId = %thisGuiListBoxCtrl.getSelectedItem();










	
string GuiListBoxCtrl::getSelectedItems()


	Returns a space delimited list of the selected items indexes in the list.


	Returns

	Space delimited list of the selected items indexes in the list





Example:

// Request a space delimited list of the items in the GuiListBoxCtrl object.
%selectionList = %thisGuiListBoxCtrl.getSelectedItems();










	
void GuiListBoxCtrl::insertItem(string text, int index)


	Inserts an item into the list at the specified index and returns the index assigned or -1 on error.


	Parameters

	
	text – Text item to add.


	index – Index id to insert the list item text at.






	Returns

	If successful will return the index id assigned. If unsuccessful, will return -1.





Example:

// Define the text to insert
%text = "Secret Agent Gideon";

// Define the index entry to insert the text at
%index = "14";

// In form the GuiListBoxCtrl object to insert the text at the defined index.
%assignedId = %thisGuiListBoxCtrl.insertItem(%text,%index);










	
bool GuiListBoxCtrl::isObjectMirrored(string indexIdString)


	Checks if a list item at a defined index id is mirrored, and returns the result.


	Parameters

	indexIdString – Index id of the list to check.



	Returns

	A boolean value on if the list item is mirrored or not.





Example:

// Engine has requested of the script level to determine if a list entry is mirrored or not.GuiListBoxCtrl::isObjectMirrored(%this, %indexIdString)
   {
      // Perform code required to check and see if the list item at the index id is mirrored or not.return %isMirrored;
   }










	
void GuiListBoxCtrl::onClearSelection()


	Called whenever a selected item in the list is cleared.

Example:

// A selected item is cleared, causing the callback to occur.GuiListBoxCtrl::onClearSelection(%this)
   {
      // Code to run whenever a selected item is cleared
   }










	
void GuiListBoxCtrl::onDeleteKey()


	Called whenever the Delete key on the keyboard has been pressed while in this control.

Example:

// The delete key on the keyboard has been pressed while this control is in focus, causing the callback to occur.GuiListBoxCtrl::onDeleteKey(%this)
   {
      // Code to call whenever the delete key is pressed
   }










	
void GuiListBoxCtrl::onDoubleClick()


	Called whenever an item in the list has been double clicked.

Example:

// An item in the list is double clicked, causing the callback to occur.GuiListBoxCtrl::onDoubleClick(%this)
   {
      // Code to run whenever an item in the control has been double clicked
   }










	
void GuiListBoxCtrl::onMouseDragged()


	Called whenever the mouse is dragged across the control.

Example:

// Mouse is dragged across the control, causing the callback to occur.GuiListBoxCtrl::onMouseDragged(%this)
   {
      // Code to run whenever the mouse is dragged across the control
   }










	
void GuiListBoxCtrl::onMouseUp(string itemHit, string mouseClickCount)


	Called whenever the mouse has previously been clicked down (onMouseDown) and has now been raised on the control. If an item in the list was hit during the click cycle, then the index id of the clicked object along with how many clicks occured are passed into the callback. Detailed description


	Parameters

	
	itemHit – Index id for the list item that was hit


	mouseClickCount – How many mouse clicks occured on this list item








Example:

// Mouse was previously clicked down, and now has been released, causing the callback to occur.GuiListBoxCtrl::onMouseUp(%this, %itemHit, %mouseClickCount)
   {
      // Code to call whenever the mouse has been clicked and released on the control
   }










	
void GuiListBoxCtrl::onSelect(string index, string itemText)


	Called whenever an item in the list is selected.


	Parameters

	
	index – Index id for the item in the list that was selected.


	itemText – Text for the list item at the index that was selected.








Example:

// An item in the list is selected, causing the callback to occurGuiListBoxCtrl::onSelect(%this, %index, %itemText)
   {
      // Code to run whenever an item in the list is selected
   }










	
void GuiListBoxCtrl::onUnselect(string index, string itemText)


	Called whenever a selected item in the list has been unselected.


	Parameters

	
	index – Index id of the item that was unselected


	itemText – Text for the list entry at the index id that was unselected








Example:

// A selected item is unselected, causing the callback to occur
GuiListBoxCtrl::onUnSelect(%this, %indexId, %itemText)
   {
      // Code to run whenever a selected list item is unselected
   }










	
void GuiListBoxCtrl::removeFilteredItem(string itemName)


	Removes an item of the entered name from the filtered items list.


	Parameters

	itemName – Name of the item to remove from the filtered list.





Example:

// Define the itemName that you wish to remove.
%itemName = "This Item Name";

// Remove the itemName from the GuiListBoxCtrl
%thisGuiListBoxCtrl.removeFilteredItem(%itemName);










	
void GuiListBoxCtrl::setCurSel(int indexId)


	Sets the currently selected item at the specified index.


	Parameters

	indexId – Index Id to set selected.





Example:

// Define the index id that we wish to select.
%selectId = "4";

// Inform the GuiListBoxCtrl object to set the requested index as selected.
%thisGuiListBoxCtrl.setCurSel(%selectId);










	
void GuiListBoxCtrl::setCurSelRange(int indexStart, int indexStop)


	Sets the current selection range from index start to stop. If no stop is specified it sets from start index to the end of the list.


	Parameters

	
	indexStart – Index Id to start selection.


	indexStop – Index Id to end selection.








Example:

// Set start id
%indexStart = "3";

// Set end id
%indexEnd = "6";

// Request the GuiListBoxCtrl object to select the defined range.
%thisGuiListBoxCtrl.setCurSelRange(%indexStart,%indexEnd);










	
void GuiListBoxCtrl::setItemColor(int index, ColorF color)


	Sets the color of a single list entry at the specified index id.


	Parameters

	
	index – Index id to modify the color of in the list.


	color – Color value to set the list entry to.








Example:

// Define the index id value
%index = "5";

// Define the color value
%color = "1.0 0.0 0.0";

// Inform the GuiListBoxCtrl object to change the color of the requested index
%thisGuiListBoxCtrl.setItemColor(%index,%color);










	
void GuiListBoxCtrl::setItemText(int index, string newtext)


	Sets the items text at the specified index.


	Parameters

	
	index – Index id to set the item text at.


	newtext – Text to change the list item at index id to.








Example:

// Define the index id/n%index = "12";// Define the text to set the list item to
%newtext = "Gideons Fancy Goggles";

// Inform the GuiListBoxCtrl object to change the text at the requested index
%thisGuiListBoxCtrl.setItemText(%index,%newText);










	
void GuiListBoxCtrl::setItemTooltip(int index, string text)


	Set the tooltip text to display for the given list item.


	Parameters

	
	index – Index id to change the tooltip text


	text – Text for the tooltip.








Example:

// Define the index id
%index = "12";

// Define the tooltip text
%tooltip = "Gideons goggles can see through space and time."// Inform the GuiListBoxCtrl object to set the tooltop for the item at the defined index id
%thisGuiListBoxCtrl.setItemToolTip(%index,%tooltip);










	
void GuiListBoxCtrl::setMultipleSelection(bool allowMultSelections)


	Enable or disable multiple selections for this GuiListBoxCtrl object.


	Parameters

	allowMultSelections – Boolean variable to set the use of multiple selections or not.





Example:

// Define the multiple selection use state.
%allowMultSelections = "true";

// Set the allow  multiple selection state on the GuiListBoxCtrl object.
%thisGuiListBoxCtrl.setMultipleSelection(%allowMultSelections);










	
void GuiListBoxCtrl::setSelected(int index, bool setSelected)


	Sets the item at the index specified to selected or not. Detailed description


	Parameters

	
	index – Item index to set selected or unselected.


	setSelected – Boolean selection state to set the requested item index.








Example:

// Define the index
%index = "5";

// Define the selection state
%selected = "true"// Inform the GuiListBoxCtrl object of the new selection state for the requested index entry.
%thisGuiListBoxCtrl.setSelected(%index,%selected);












Fields


	
bool GuiListBoxCtrl::allowMultipleSelections


	If true, will allow the selection of multiple items in the listbox.






	
bool GuiListBoxCtrl::colorBullet


	If true, colored items will render a colored rectangular bullet next to the item text.






	
bool GuiListBoxCtrl::fitParentWidth


	If true, the width of the listbox will match the width of its parent control.






	
string GuiListBoxCtrl::makeNameCallback


	A script snippet to control what is displayed in the list for a SimObject . Within this snippet, $ThisControl is bound to the guiListBoxCtrl and $ThisObject to the contained object in question.






	
string GuiListBoxCtrl::mirrorSet


	If populated with the name of another GuiListBoxCtrl , then this list box will mirror the contents of the mirrorSet listbox.











          

      

      

    

  

    
      
          
            
  
GuiMLTextCtrl

A text control that uses the Gui Markup Language (‘ML’) tags to dynamically change the text.


	Inherit:

	GuiControl






Description

Example of dynamic changes include colors, styles, and/or hyperlinks. These changes can occur without having to use separate text controls with separate text profiles.

Example:

newGuiMLTextCtrl(CenterPrintText)
{
    lineSpacing = "2";
    allowColorChars = "0";
    maxChars = "-1";
    deniedSound = "DeniedSoundProfile";
    text = "The Text for This Control.";
    useURLMouseCursor = "true";
    //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiMLTextCtrl::addText(string text, bool reformat)


	Appends the text in the control with additional text. Also .


	Parameters

	
	text – New text to append to the existing text.


	reformat – If true, the control will also be visually reset (defaults to true).








Example:

// Define new text to add
%text = "New Text to Add";

// Set reformat boolean
%reformat = "true";

// Inform the control to add the new text
%thisGuiMLTextCtrl.addText(%text,%reformat);










	
void GuiMLTextCtrl::forceReflow()


	Forces the text control to reflow the text after new text is added, possibly resizing the control.

Example:

// Define new text to add
%newText = "BACON!";

// Add the new text to the control
%thisGuiMLTextCtrl.addText(%newText);

// Inform the GuiMLTextCtrl object to force a reflow to ensure the added text fits properly.
%thisGuiMLTextCtrl.forceReflow();










	
string GuiMLTextCtrl::getText()


	Returns the text from the control, including TorqueML characters.


	Returns

	Text string displayed in the control, including any TorqueML characters.





Example:

// Get the text displayed in the control
%controlText = %thisGuiMLTextCtrl.getText();










	
void GuiMLTextCtrl::onResize(string width, string maxY)


	Called whenever the control size changes.


	Parameters

	
	width – The new width value for the control


	maxY – The current maximum allowed Y value for the control








Example:

// Control size changed, causing the callback to occur.GuiMLTextCtrl::onResize(%this,%width,%maxY)
   {
      // Code to call when the control size changes
   }










	
void GuiMLTextCtrl::onURL(string url)


	Called whenever a URL was clicked on within the control.


	Parameters

	url – The URL address that was clicked on.





Example:

// A URL address was clicked on in the control, causing the callback to occur.
GuiMLTextCtrl::onUrl(%this,%url)
   {
      // Code to run whenever a URL was clicked on
   }










	
void GuiMLTextCtrl::scrollToBottom()


	Scroll to the bottom of the text.

Example:

// Inform GuiMLTextCtrl object to scroll to its bottom
%thisGuiMLTextCtrl.scrollToBottom();










	
void GuiMLTextCtrl::scrollToTag(int tagID)


	Scroll down to a specified tag. Detailed description


	Parameters

	tagID – TagID to scroll the control to





Example:

// Define the TagID we want to scroll the control to
%tagId = "4";

// Inform the GuiMLTextCtrl to scroll to the defined TagID
%thisGuiMLTextCtrl.scrollToTag(%tagId);










	
void GuiMLTextCtrl::scrollToTop(int param1, int param2)


	Scroll to the top of the text.

Example:

// Inform GuiMLTextCtrl object to scroll to its top
%thisGuiMLTextCtrl.scrollToTop();










	
void GuiMLTextCtrl::setAlpha(float alphaVal)


	Sets the alpha value of the control.


	Parameters

	alphaVal – n - 1.0 floating value for the alpha





Example:

// Define the alphe value
%alphaVal = "0.5";

// Inform the control to update its alpha value.
%thisGuiMLTextCtrl.setAlpha(%alphaVal);










	
bool GuiMLTextCtrl::setCursorPosition(int newPos)


	Change the text cursor’s position to a new defined offset within the text in the control.


	Parameters

	newPos – Offset to place cursor.



	Returns

	Returns true if the cursor position moved, or false if the position was not changed.





Example:

// Define cursor offset position
%position = "23";

// Inform the GuiMLTextCtrl object to move the cursor to the new position.
%thisGuiMLTextCtrl.setCursorPosition(%position);










	
void GuiMLTextCtrl::setText(string text)


	Set the text contained in the control.


	Parameters

	text – The text to display in the control.





Example:

// Define the text to display
%text = "Nifty Control Text";

// Set the text displayed within the control
%thisGuiMLTextCtrl.setText(%text);












Fields


	
bool GuiMLTextCtrl::allowColorChars


	If true, the control will allow characters to have unique colors.






	
SFXTrack GuiMLTextCtrl::deniedSound


	If the text will not fit in the control, the deniedSound is played.






	
int GuiMLTextCtrl::lineSpacing


	The number of blank pixels to place between each line.






	
int GuiMLTextCtrl::maxChars


	Maximum number of characters that the control will display.






	
caseString GuiMLTextCtrl::text


	Text to display in this control.






	
bool GuiMLTextCtrl::useURLMouseCursor


	If true, the mouse cursor will turn into a hand cursor while over a link in the text. This is dependant on the markup language used by the GuiMLTextCtrl











          

      

      

    

  

    
      
          
            
  
GuiMLTextEditCtrl

A text entry control that accepts the Gui Markup Language (‘ML’) tags and multiple lines.


	Inherit:

	GuiMLTextCtrl






Description

A text entry control that accepts the Gui Markup Language (‘ML’) tags and multiple lines.

Example:

newGuiMLTextEditCtrl()
   {
      lineSpacing = "2";
      allowColorChars = "0";
      maxChars = "-1";
      deniedSound = "DeniedSoundProfile";
      text = "";
      escapeCommand = "onEscapeScriptFunction();";
     //Properties not specific to this control have been omitted from this example.
   };








Fields


	
string GuiMLTextEditCtrl::escapeCommand


	Script function to run whenever the ‘escape’ key is pressed when this control is in focus.











          

      

      

    

  

    
      
          
            
  
GuiMenuBar

GUI Control which displays a horizontal bar with individual drop-down menu items. Each menu item may also have submenu items.


	Inherit:

	GuiTickCtrl






Description

GUI Control which displays a horizontal bar with individual drop-down menu items. Each menu item may also have submenu items.

Example:

newGuiMenuBar(newMenuBar)
{
   Padding = "0";
   //Properties not specific to this control have been omitted from this example.
};

// Add a menu to the menu bar
newMenuBar.addMenu(0,"New Menu");

// Add a menu item to the New Menu
newMenuBar.addMenuItem(0,"New Menu Item",0,"n",-1);

// Add a submenu item to the New Menu Item
newMenuBar.addSubmenuItem(0,1,"New Submenu Item",0,"s",-1);








Methods


	
void GuiMenuBar::addMenu(string menuText, int menuId)


	Adds a new menu to the menu bar.


	Parameters

	
	menuText – Text to display for the new menu item.


	menuId – ID for the new menu item.








Example:

// Define the menu text
%menuText = "New Menu";

// Define the menu ID.
%menuId = "2";

// Inform the GuiMenuBar control to add the new menu
%thisGuiMenuBar.addMenu(%menuText,%menuId);










	
void GuiMenuBar::addMenuItem(string targetMenu, string menuItemText, int menuItemId, string accelerator, int checkGroup)


	Adds a menu item to the specified menu. The menu argument can be either the text of a menu or its id.


	Parameters

	
	menu – Menu name or menu Id to add the new item to.


	menuItemText – Text for the new menu item.


	menuItemId – Id for the new menu item.


	accelerator – Accelerator key for the new menu item.


	checkGroup – Check group to include this menu item in.








Example:

// Define the menu we wish to add the item to
%targetMenu = "New Menu";  or  %menu = "4";

// Define the text for the new menu item
%menuItemText = "Menu Item";

// Define the id for the new menu item
%menuItemId = "3";

// Set the accelerator key to toggle this menu item with
%accelerator = "n";

// Define the Check Group that this menu item will be in, if we want it to be in a check group. -1 sets it in no check group.
%checkGroup = "4";

// Inform the GuiMenuBar control to add the new menu item with the defined fields
%thisGuiMenuBar.addMenuItem(%menu,%menuItemText,%menuItemId,%accelerator,%checkGroup);










	
void GuiMenuBar::addSubmenuItem(string menuTarget, string menuItem, string submenuItemText, int submenuItemId, string accelerator, int checkGroup)


	Adds a menu item to the specified menu. The menu argument can be either the text of a menu or its id.


	Parameters

	
	menuTarget – Menu to affect a submenu in


	menuItem – Menu item to affect


	submenuItemText – Text to show for the new submenu


	submenuItemId – Id for the new submenu


	accelerator – Accelerator key for the new submenu


	checkGroup – Which check group the new submenu should be in, or -1 for none.








Example:

// Define the menuTarget
%menuTarget = "New Menu";  or  %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item";  or  %menuItem = "5";

// Define the text for the new submenu
%submenuItemText = "New Submenu Item";

// Define the id for the new submenu
%submenuItemId = "4";

// Define the accelerator key for the new submenu
%accelerator = "n";

// Define the checkgroup for the new submenu
%checkgroup = "7";

// Request the GuiMenuBar control to add the new submenu with the defined information
%thisGuiMenuBar.addSubmenuItem(%menuTarget,%menuItem,%submenuItemText,%submenuItemId,%accelerator,%checkgroup);










	
void GuiMenuBar::clearMenuItems(string menuTarget)


	Removes all the menu items from the specified menu.


	Parameters

	menuTarget – Menu to remove all items from





Example:

// Define the menuTarget
%menuTarget = "New Menu";  or %menuTarget = "3";

// Inform the GuiMenuBar control to clear all menu items from the defined menu
%thisGuiMenuBar.clearMenuItems(%menuTarget);










	
void GuiMenuBar::clearMenus(int param1, int param2)


	Clears all the menus from the menu bar.

Example:

// Inform the GuiMenuBar control to clear all menus from itself.
%thisGuiMenuBar.clearMenus();










	
void GuiMenuBar::clearSubmenuItems(string menuTarget, string menuItem)


	Removes all the menu items from the specified submenu.


	Parameters

	
	menuTarget – Menu to affect a submenu in


	menuItem – Menu item to affect








Example:

// Define the menuTarget
%menuTarget = "New Menu";  or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item";  or  %menuItem = "5";

// Inform the GuiMenuBar to remove all submenu items from the defined menu item
%thisGuiMenuBar.clearSubmenuItems(%menuTarget,%menuItem);










	
void GuiMenuBar::onMenuItemSelect(string menuId, string menuText, string menuItemId, string menuItemText)


	Called whenever an item in a menu is selected.


	Parameters

	
	menuId – Index id of the menu which contains the selected menu item


	menuText – Text of the menu which contains the selected menu item


	menuItemId – Index id of the selected menu item


	menuItemText – Text of the selected menu item








Example:

// A menu item has been selected, causing the callback to occur.GuiMenuBar::onMenuItemSelect(%this,%menuId,%menuText,%menuItemId,%menuItemText)
{
   // Code to run when the callback occurs
}










	
void GuiMenuBar::onMenuSelect(string menuId, string menuText)


	Called whenever a menu is selected.


	Parameters

	
	menuId – Index id of the clicked menu


	menuText – Text of the clicked menu








Example:

// A menu has been selected, causing the callback to occur.GuiMenuBar::onMenuSelect(%this,%menuId,%menuText)
{
   // Code to run when the callback occurs
}










	
void GuiMenuBar::onMouseInMenu(bool isInMenu)


	Called whenever the mouse enters, or persists is in the menu.


	Parameters

	isInMenu – True if the mouse has entered the menu, otherwise is false.





Example:

// Mouse enters or persists within the menu, causing the callback to occur.GuiMenuBar::onMouseInMenu(%this,%hasLeftMenu)
{
   // Code to run when the callback occurs
}










	
void GuiMenuBar::onSubmenuSelect(string submenuId, string submenuText)


	Called whenever a submenu is selected.


	Parameters

	
	submenuId – Id of the selected submenu


	submenuText – Text of the selected submenu








Example:

GuiMenuBar::onSubmenuSelect(%this,%submenuId,%submenuText)
{
   // Code to run when the callback occurs
}










	
void GuiMenuBar::removeMenu(string menuTarget)


	Removes the specified menu from the menu bar.


	Parameters

	menuTarget – Menu to remove from the menu bar





Example:

// Define the menuTarget
%menuTarget = "New Menu";  or %menuTarget = "3";

// Inform the GuiMenuBar to remove the defined menu from the menu bar
%thisGuiMenuBar.removeMenu(%menuTarget);










	
void GuiMenuBar::removeMenuItem(string menuTarget, string menuItemTarget)


	Removes the specified menu item from the menu.


	Parameters

	
	menuTarget – Menu to affect the menu item in


	menuItem – Menu item to affect








Example:

// Define the menuTarget
%menuTarget = "New Menu";  or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item";  or  %menuItem = "5";

// Request the GuiMenuBar control to remove the define menu item
%thisGuiMenuBar.removeMenuItem(%menuTarget,%menuItem);










	
void GuiMenuBar::setCheckmarkBitmapIndex(int bitmapindex)


	Sets the menu bitmap index for the check mark image.


	Parameters

	bitmapIndex – Bitmap index for the check mark image.





Example:

// Define the bitmap index
%bitmapIndex = "2";

// Inform the GuiMenuBar control of the proper bitmap index for the check mark image
%thisGuiMenuBar.setCheckmarkBitmapIndex(%bitmapIndex);










	
void GuiMenuBar::setMenuBitmapIndex(string menuTarget, int bitmapindex, bool bitmaponly, bool drawborder)


	Sets the bitmap index for the menu and toggles rendering only the bitmap.


	Parameters

	
	menuTarget – Menu to affect


	bitmapindex – Bitmap index to set for the menu


	bitmaponly – If true, only the bitmap will be rendered


	drawborder – If true, a border will be drawn around the menu.








Example:

// Define the menuTarget to affect
%menuTarget = "New Menu";  or %menuTarget = "3";

// Set the bitmap index
%bitmapIndex = "5";

// Set if we are only to render the bitmap or not
%bitmaponly = "true";

// Set if we are rendering a border or not
%drawborder = "true";

// Inform the GuiMenuBar of the bitmap and rendering changes
%thisGuiMenuBar.setMenuBitmapIndex(%menuTarget,%bitmapIndex,%bitmapOnly,%drawBorder);










	
void GuiMenuBar::setMenuItemBitmap(string menuTarget, string menuItemTarget, int bitmapIndex)


	Sets the specified menu item bitmap index in the bitmap array. Setting the item’s index to -1 will remove any bitmap.


	Parameters

	
	menuTarget – Menu to affect the menuItem in


	menuItem – Menu item to affect


	bitmapIndex – Bitmap index to set the menu item to








Example:

// Define the menuTarget
%menuTarget = "New Menu";  or  %menuTarget = "3";

// Define the menuItem"
%menuItem = "New Menu Item";  or %menuItem = "2";

// Define the bitmapIndex
%bitmapIndex = "6";

// Inform the GuiMenuBar control to set the menu item to the defined bitmap
%thisGuiMenuBar.setMenuItemBitmap(%menuTarget,%menuItem,%bitmapIndex);










	
void GuiMenuBar::setMenuItemChecked(string menuTarget, string menuItemTarget, bool checked)


	Sets the menu item bitmap to a check mark, which by default is the first element in the bitmap array (although this may be changed with setCheckmarkBitmapIndex() ). Any other menu items in the menu with the same check group become unchecked if they are checked.


	Parameters

	
	menuTarget – Menu to work in


	menuItem – Menu item to affect


	checked – Whether we are setting it to checked or not






	Returns

	If not void, return value and description










	
void GuiMenuBar::setMenuItemEnable(string menuTarget, string menuItemTarget, bool enabled)


	sets the menu item to enabled or disabled based on the enable parameter. The specified menu and menu item can either be text or ids. Detailed description


	Parameters

	
	menuTarget – Menu to work in


	menuItemTarget – The menu item inside of the menu to enable or disable


	enabled – Boolean enable / disable value.








Example:

// Define the menu
%menu = "New Menu";  or  %menu = "4";

// Define the menu item
%menuItem = "New Menu Item";  or %menuItem = "2";

// Define the enabled state
%enabled = "true";

// Inform the GuiMenuBar control to set the enabled state of the requested menu item
%thisGuiMenuBar.setMenuItemEnable(%menu,%menuItme,%enabled);










	
void GuiMenuBar::setMenuItemSubmenuState(string menuTarget, string menuItem, bool isSubmenu)


	Sets the given menu item to be a submenu.


	Parameters

	
	menuTarget – Menu to affect a submenu in


	menuItem – Menu item to affect


	isSubmenu – Whether or not the menuItem will become a subMenu or not








Example:

// Define the menuTarget
%menuTarget = "New Menu";  or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item";  or  %menuItem = "5";

// Define whether or not the Menu Item is a sub menu or not
%isSubmenu = "true";

// Inform the GuiMenuBar control to set the defined menu item to be a submenu or not.
%thisGuiMenuBar.setMenuItemSubmenuState(%menuTarget,%menuItem,%isSubmenu);










	
void GuiMenuBar::setMenuItemText(string menuTarget, string menuItemTarget, string newMenuItemText)


	Sets the text of the specified menu item to the new string.


	Parameters

	
	menuTarget – Menu to affect


	menuItem – Menu item in the menu to change the text at


	newMenuItemText – New menu text








Example:

// Define the menuTarget
%menuTarget = "New Menu";  or  %menuTarget = "4";

// Define the menuItem
%menuItem = "New Menu Item";  or  %menuItem = "2";

// Define the new text for the menu item
%newMenuItemText = "Very New Menu Item";

// Inform the GuiMenuBar control to change the defined menu item with the new text
%thisGuiMenuBar.setMenuItemText(%menuTarget,%menuItem,%newMenuItemText);










	
void GuiMenuBar::setMenuItemVisible(string menuTarget, string menuItemTarget, bool isVisible)


	Brief Description. Detailed description


	Parameters

	
	menuTarget – Menu to affect the menu item in


	menuItem – Menu item to affect


	isVisible – Visible state to set the menu item to.








Example:

// Define the menuTarget
%menuTarget = "New Menu";  or  %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item";  or  %menuItem = "2";

// Define the visibility state
%isVisible = "true";

// Inform the GuiMenuBarControl of the visibility state of the defined menu item
%thisGuiMenuBar.setMenuItemVisible(%menuTarget,%menuItem,%isVisible);










	
void GuiMenuBar::setMenuMargins(int horizontalMargin, int verticalMargin, int bitmapToTextSpacing)


	Sets the menu rendering margins: horizontal, vertical, bitmap spacing. Detailed description


	Parameters

	
	horizontalMargin – Number of pixels on the left and right side of a menu’s text.


	verticalMargin – Number of pixels on the top and bottom of a menu’s text.


	bitmapToTextSpacing – Number of pixels between a menu’s bitmap and text.








Example:

// Define the horizontalMargin
%horizontalMargin = "5";

// Define the verticalMargin
%verticalMargin = "5";

// Define the bitmapToTextSpacing
%bitmapToTextSpacing = "12";

// Inform the GuiMenuBar control to set its margins based on the defined values.
%thisGuiMenuBar.setMenuMargins(%horizontalMargin,%verticalMargin,%bitmapToTextSpacing);










	
void GuiMenuBar::setMenuText(string menuTarget, string newMenuText)


	Sets the text of the specified menu to the new string.


	Parameters

	
	menuTarget – Menu to affect


	newMenuText – New menu text








Example:

// Define the menu to affect%menu = "New Menu";  or %menu = "3";// Define the text to change the menu to
%newMenuText = "Still a New Menu";

// Inform the GuiMenuBar control to change the defined menu to the defined text
%thisGuiMenuBar.setMenuText(%menu,%newMenuText);










	
void GuiMenuBar::setMenuVisible(string menuTarget, bool visible)


	Sets the whether or not to display the specified menu.


	Parameters

	
	menuTarget – Menu item to affect


	visible – Whether the menu item will be visible or not








Example:

// Define the menu to work with
%menuTarget = "New Menu";  or  %menuTarget = "4";

// Define if the menu should be visible or not
%visible = "true";

// Inform the GuiMenuBar control of the new visibility state for the defined menu
%thisGuiMenuBar.setMenuVisible(%menuTarget,%visible);










	
void GuiMenuBar::setSubmenuItemChecked(string menuTarget, string menuItemTarget, string submenuItemText, bool checked)


	Sets the menu item bitmap to a check mark, which by default is the first element in the bitmap array (although this may be changed with setCheckmarkBitmapIndex() ). Any other menu items in the menu with the same check group become unchecked if they are checked.


	Parameters

	
	menuTarget – Menu to affect a submenu in


	menuItem – Menu item to affect


	submenuItemText – Text to show for submenu


	checked – Whether or not this submenu item will be checked.






	Returns

	If not void, return value and description





Example:

// Define the menuTarget
%menuTarget = "New Menu";  or %menuTarget = "3";

// Define the menuItem
%menuItem = "New Menu Item";  or  %menuItem = "5";

// Define the text for the new submenu
%submenuItemText = "Submenu Item";

// Define if this submenu item should be checked or not
%checked = "true";

// Inform the GuiMenuBar control to set the checked state of the defined submenu item
%thisGuiMenuBar.setSubmenuItemChecked(%menuTarget,%menuItem,%submenuItemText,%checked);












Fields


	
int GuiMenuBar::padding


	Extra padding to add to the bounds of the control.











          

      

      

    

  

    
      
          
            
  
GuiMessageVectorCtrl

A chat HUD control that displays messages from a MessageVector.


	Inherit:

	GuiControl






Description

A chat HUD control that displays messages from a MessageVector.

This renders messages from a MessageVector; the important thing here is that the MessageVector holds all the messages we care about, while we can destroy and create these GUI controls as needed.

Example:

// Declare ChatHud, which is what will display the actual chat from a MessageVectornewGuiMessageVectorCtrl(ChatHud) {
   profile = "ChatHudMessageProfile";
   horizSizing = "width";
   vertSizing = "height";
   position = "1 1";
   extent = "252 16";
   minExtent = "8 8";
   visible = "1";
   helpTag = "0";
   lineSpacing = "0";
   lineContinuedIndex = "10";
   matchColor = "0 0 255 255";
   maxColorIndex = "5";
};

// All messages are stored in this HudMessageVector, the actual// MainChatHud only displays the contents of this vector.newMessageVector(HudMessageVector);

// Attach the MessageVector to the chat control
chatHud.attach(HudMessageVector);








Methods


	
bool GuiMessageVectorCtrl::attach(MessageVector item)


	Push a line onto the back of the list.


	Parameters

	item – The GUI element being pushed into the control



	Returns

	Value





Example:

// All messages are stored in this HudMessageVector, the actual
// MainChatHud only displays the contents of this vector.
newMessageVector(HudMessageVector);

// Attach the MessageVector to the chat control
chatHud.attach(HudMessageVector);










	
void GuiMessageVectorCtrl::detach()


	Stop listing messages from the MessageVector previously attached to, if any. Detailed description


	Parameters

	param – Description





Example:

// Deatch the MessageVector from HudMessageVector
// HudMessageVector will no longer render the text
chatHud.detach();












Fields


	
string GuiMessageVectorCtrl::allowedMatches[16]


	




	
int GuiMessageVectorCtrl::lineContinuedIndex


	




	
int GuiMessageVectorCtrl::lineSpacing


	




	
ColorI GuiMessageVectorCtrl::matchColor


	




	
int GuiMessageVectorCtrl::maxColorIndex


	









          

      

      

    

  

    
      
          
            
  
GuiMouseEventCtrl

Used to overlaps a ‘hot region’ where you want to catch inputs with and have specific events occur based on individual callbacks.


	Inherit:

	GuiControl






Description

Mouse event callbacks supported by this control are: onMouseUp, onMouseDown, onMouseMove, onMouseDragged, onMouseEnter, onMouseLeave, onRightMouseDown, onRightMouseUp and onRightMouseDragged.

Example:

newGuiMouseEventCtrl()
{
   lockMouse = "0";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiMouseEventCtrl::onMouseDown(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the mouse is pressed down while in this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Mouse was pressed down in this control, causing the callback
GuiMouseEventCtrl::onMouseDown(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onMouseDragged(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the mouse is dragged while in this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Mouse was dragged in this control, causing the callback
GuiMouseEventCtrl::onMouseDragged(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onMouseEnter(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the mouse enters this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Mouse entered this control, causing the callback
GuiMouseEventCtrl::onMouseEnter(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onMouseLeave(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the mouse leaves this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Mouse left this control, causing the callback
GuiMouseEventCtrl::onMouseLeave(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onMouseMove(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the mouse is moved (without dragging) while in this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Mouse was moved in this control, causing the callback
GuiMouseEventCtrl::onMouseMove(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onMouseUp(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the mouse is released while in this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Mouse was released in this control, causing the callback
GuiMouseEventCtrl::onMouseUp(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onRightMouseDown(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the right mouse button is pressed while in this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Right mouse button was pressed in this control, causing the callback
GuiMouseEventCtrl::onRightMouseDown(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onRightMouseDragged(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the mouse is dragged in this control while the right mouse button is pressed. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Right mouse button was dragged in this control, causing the callback
GuiMouseEventCtrl::onRightMouseDragged(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}










	
void GuiMouseEventCtrl::onRightMouseUp(U8 modifier, Point2I mousePoint, U8 mouseClickCount)


	Callback that occurs whenever the right mouse button is released while in this control. $EventModifier::RSHIFT $EventModifier::SHIFT $EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL $EventModifier::CTRL $EventModifier::RALT $EventModifier::ALT


	Parameters

	
	modifier – Key that was pressed during this callback. Values are:


	mousePoint – X/Y location of the mouse point


	mouseClickCount – How many mouse clicks have occured for this event








Example:

// Right mouse button was released in this control, causing the callback
GuiMouseEventCtrl::onRightMouseUp(%this,%modifier,%mousePoint,%mouseClickCount)
{
   // Code to call when a mouse event occurs.
}












Fields


	
bool GuiMouseEventCtrl::lockMouse


	Whether the control should lock the mouse between up and down button events.











          

      

      

    

  

    
      
          
            
  
GuiObjectView

GUI control which displays a 3D model.


	Inherit:

	GuiTSCtrl






Description

GUI control which displays a 3D model.

Model displayed in the control can have other objects mounted onto it, and the light settings can be adjusted.

Example:

newGuiObjectView(ObjectPreview)
   {
      shapeFile = "art/shapes/items/kit/healthkit.dts";
      mountedNode = "mount0";
      lightColor = "1 1 1 1";
      lightAmbient = "0.5 0.5 0.5 1";
      lightDirection = "0 0.707 -0.707";
      orbitDiststance = "2";
      minOrbitDiststance = "0.917688";
      maxOrbitDiststance = "5";
      cameraSpeed = "0.01";
      cameraZRot = "0";
      forceFOV = "0";
      reflectPriority = "0";
   };








Methods


	
float GuiObjectView::getCameraSpeed()


	Return the current multiplier for camera zooming and rotation.


	Returns

	zooming / rotation multiplier value.





Example:

// Request the current camera zooming and rotation multiplier value
%multiplier = %thisGuiObjectView.getCameraSpeed();










	
string GuiObjectView::getModel()


	Return the model displayed in this view.


	Returns

	Name of the displayed model.





Example:

// Request the displayed model name from the GuiObjectView object.
%modelName = %thisGuiObjectView.getModel();










	
string GuiObjectView::getMountedModel()


	Return the name of the mounted model.


	Returns

	Name of the mounted model.





Example:

// Request the name of the mounted model from the GuiObjectView object
%mountedModelName = %thisGuiObjectView.getMountedModel();










	
string GuiObjectView::getMountSkin(int param1, int param2)


	Return the name of skin used on the mounted model.


	Returns

	Name of the skin used on the mounted model.





Example:

// Request the skin name from the model mounted on to the main model in the control
%mountModelSkin = %thisGuiObjectView.getMountSkin();










	
float GuiObjectView::getOrbitDistance()


	Return the current distance at which the camera orbits the object.


	Returns

	The distance at which the camera orbits the object.





Example:

// Request the current orbit distance
%orbitDistance = %thisGuiObjectView.getOrbitDistance();










	
string GuiObjectView::getSkin()


	Return the name of skin used on the primary model.


	Returns

	Name of the skin used on the primary model.





Example:

// Request the name of the skin used on the primary model in the control
%skinName = %thisGuiObjectView.getSkin();










	
void GuiObjectView::onMouseEnter()


	Called whenever the mouse enters the control.

Example:

// The mouse has entered the control, causing the callback to occurGuiObjectView::onMouseEnter(%this)
   {
      // Code to run when the mouse enters this control
   }










	
void GuiObjectView::onMouseLeave()


	Called whenever the mouse leaves the control.

Example:

// The mouse has left the control, causing the callback to occurGuiObjectView::onMouseLeave(%this)
   {
      // Code to run when the mouse leaves this control
   }










	
void GuiObjectView::setCameraSpeed(float factor)


	Sets the multiplier for the camera rotation and zoom speed.


	Parameters

	factor – Multiplier for camera rotation and zoom speed.





Example:

// Set the factor value
%factor = "0.75";

// Inform the GuiObjectView object to set the camera speed.
%thisGuiObjectView.setCameraSpeed(%factor);










	
void GuiObjectView::setLightAmbient(ColorF color)


	Set the light ambient color on the sun object used to render the model.


	Parameters

	color – Ambient color of sunlight.





Example:

// Define the sun ambient color value
%color = "1.0 0.4 0.6";

// Inform the GuiObjectView object to set the sun ambient color to the requested value
%thisGuiObjectView.setLightAmbient(%color);










	
void GuiObjectView::setLightColor(ColorF color)


	Set the light color on the sun object used to render the model.


	Parameters

	color – Color of sunlight.





Example:

// Set the color value for the sun
%color = "1.0 0.4 0.5";

// Inform the GuiObjectView object to change the sun color to the defined value
%thisGuiObjectView.setLightColor(%color);










	
void GuiObjectView::setLightDirection(Point3F direction)


	Set the light direction from which to light the model.


	Parameters

	direction – XYZ direction from which the light will shine on the model





Example:

// Set the light direction
%direction = "1.0 0.2 0.4"// Inform the GuiObjectView object to change the light direction to the defined value
%thisGuiObjectView.setLightDirection(%direction);










	
void GuiObjectView::setModel(string shapeName)


	Sets the model to be displayed in this control.


	Parameters

	shapeName – Name of the model to display.





Example:

// Define the model we want to display
%shapeName = "gideon.dts";

// Tell the GuiObjectView object to display the defined model
%thisGuiObjectView.setModel(%shapeName);










	
void GuiObjectView::setMount(string shapeName, string mountNodeIndexOrName)


	Mounts the given model to the specified mount point of the primary model displayed in this control. Detailed description


	Parameters

	
	shapeName – Name of the model to mount.


	mountNodeIndexOrName – Index or name of the mount point to be mounted to. If index, corresponds to “mountN” in your shape where N is the number passed here.








Example:

// Set the shapeName to mount
%shapeName = "GideonGlasses.dts"// Set the mount node of the primary model in the control to mount the new shape at
%mountNodeIndexOrName = "3";
//OR:
%mountNodeIndexOrName = "Face";

// Inform the GuiObjectView object to mount the shape at the specified node.
%thisGuiObjectView.setMount(%shapeName,%mountNodeIndexOrName);










	
void GuiObjectView::setMountedModel(string shapeName)


	Sets the model to be mounted on the primary model.


	Parameters

	shapeName – Name of the model to mount.





Example:

// Define the model name to mount
%modelToMount = "GideonGlasses.dts";

// Inform the GuiObjectView object to mount the defined model to the existing model in the control
%thisGuiObjectView.setMountedModel(%modelToMount);










	
void GuiObjectView::setMountSkin(string skinName)


	Sets the skin to use on the mounted model.


	Parameters

	skinName – Name of the skin to set on the model mounted to the main model in the control





Example:

// Define the name of the skin
%skinName = "BronzeGlasses";

// Inform the GuiObjectView Control of the skin to use on the mounted model
%thisGuiObjectViewCtrl.setMountSkin(%skinName);










	
void GuiObjectView::setOrbitDistance(float distance)


	Sets the distance at which the camera orbits the object. Clamped to the acceptable range defined in the class by min and max orbit distances. Detailed description


	Parameters

	distance – The distance to set the orbit to (will be clamped).





Example:

// Define the orbit distance value
%orbitDistance = "1.5";

// Inform the GuiObjectView object to set the orbit distance to the defined value
%thisGuiObjectView.setOrbitDistance(%orbitDistance);










	
void GuiObjectView::setSeq(string indexOrName)


	Sets the animation to play for the viewed object.


	Parameters

	indexOrName – The index or name of the animation to play.





Example:

// Set the animation index value, or animation sequence name.
%indexVal = "3";
//OR:
%indexVal = "idle";

// Inform the GuiObjectView object to set the animation sequence of the object in the control.
%thisGuiObjectVew.setSeq(%indexVal);










	
void GuiObjectView::setSkin(string skinName)


	Sets the skin to use on the model being displayed.


	Parameters

	skinName – Name of the skin to use.





Example:

// Define the skin we want to apply to the main model in the control
%skinName = "disco_gideon";

// Inform the GuiObjectView control to update the skin the to defined skin
%thisGuiObjectView.setSkin(%skinName);












Fields


	
string GuiObjectView::animSequence


	The animation sequence to play on the model.






	
Point3F GuiObjectView::cameraRotation


	Set the camera rotation.






	
float GuiObjectView::cameraSpeed


	Multiplier for mouse camera operations.






	
ColorF GuiObjectView::lightAmbient


	Ambient color of the sunlight used to render the model.






	
ColorF GuiObjectView::lightColor


	Diffuse color of the sunlight used to render the model.






	
Point3F GuiObjectView::lightDirection


	Direction from which the model is illuminated.






	
float GuiObjectView::maxOrbitDiststance


	Minimum distance below which the camera will not zoom in further.






	
float GuiObjectView::minOrbitDiststance


	Maxiumum distance to which the camera can be zoomed out.






	
string GuiObjectView::mountedNode


	Name of node on primary model to which to mount the secondary shape.






	
filename GuiObjectView::mountedShapeFile


	Optional shape file to mount on the primary model (e.g. weapon).






	
string GuiObjectView::mountedSkin


	Skin name used on mounted shape file.






	
float GuiObjectView::orbitDiststance


	Distance from which to render the model.






	
filename GuiObjectView::shapeFile


	The object model shape file to show in the view.






	
string GuiObjectView::skin


	The skin to use on the object model.











          

      

      

    

  

    
      
          
            
  
GuiPaneControl

A collapsable pane control.


	Inherit:

	GuiControl






Description

This class wraps a single child control and displays a header with caption above it. If you click the header it will collapse or expand (if collapsable is enabled). The control resizes itself based on its collapsed/expanded size.
In the GUI editor, if you just want the header you can make collapsable false. The caption field lets you set the caption; it expects a bitmap (from the GuiControlProfile) that contains two images - the first is displayed when the control is expanded and the second is displayed when it is collapsed. The header is sized based on the first image.

Example:

newGuiPaneControl()
{
   caption = "Example Pane";
   collapsable = "1";
   barBehindText = "1";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiPaneControl::setCollapsed(bool collapse)


	Collapse or un-collapse the control.


	Parameters

	collapse – True to collapse the control, false to un-collapse it












Fields


	
bool GuiPaneControl::barBehindText


	Whether to draw the bitmapped pane bar behind the header text, too.






	
string GuiPaneControl::caption


	Text label to display as the pane header.






	
string GuiPaneControl::captionID


	String table text ID to use as caption string (overrides ‘caption’).






	
bool GuiPaneControl::collapsable


	Whether the pane can be collapsed by clicking its header.











          

      

      

    

  

    
      
          
            
  
GuiPanel

The GuiPanel panel is a container that when opaque will draw a left to right gradient using its profile fill and fill highlight colors.


	Inherit:

	GuiContainer






Description

The GuiPanel panel is a container that when opaque will draw a left to right gradient using its profile fill and fill highlight colors.

Example:

// Mandatory GuiDefaultProfile// Contains the fill color information required by a GuiPanel// Some values left out for sake of this examplenewGuiControlProfile (GuiDefaultProfile)
{
   // fill color
   opaque = false;
   fillColor = "242 241 240";
   fillColorHL ="228 228 235";
   fillColorSEL = "98 100 137";
   fillColorNA = "255 255 255 ";
};

newGuiPanel(TestPanel)
{
   position = "45 33";
   extent = "342 379";
   minExtent = "16 16";
   horizSizing = "right";
   vertSizing = "bottom";
   profile = "GuiDefaultProfile"; // Color fill info is in this profileisContainer = "1";
};











          

      

      

    

  

    
      
          
            
  
GuiPopUpMenuCtrl

A control that allows to select a value from a drop-down list.


	Inherit:

	GuiTextCtrl






Description

For a nearly identical GUI with additional features, use GuiPopUpMenuCtrlEx.

Example:

newGuiPopUpMenuCtrl()
{
   maxPopupHeight = "200";
   sbUsesNAColor = "0";
   reverseTextList = "0";
   bitmapBounds = "16 16";
   maxLength = "1024";
   position = "56 31";
   extent = "64 64";
   minExtent = "8 2";
   profile = "GuiPopUpMenuProfile";
   tooltipProfile = "GuiToolTipProfile";
};








Methods


	
void GuiPopUpMenuCtrl::add(string name, int idNum, int scheme)


	




	
void GuiPopUpMenuCtrl::addScheme(int id, ColorI fontColor, ColorI fontColorHL, ColorI fontColorSEL)


	




	
void GuiPopUpMenuCtrl::changeTextById(int id, string text)


	




	
void GuiPopUpMenuCtrl::clearEntry(S32 entry)


	




	
int GuiPopUpMenuCtrl::findText(string text)


	Returns the position of the first entry containing the specified text.






	
string GuiPopUpMenuCtrl::getTextById(int id)


	




	
void GuiPopUpMenuCtrl::replaceText(bool doReplaceText)


	




	
void GuiPopUpMenuCtrl::setEnumContent(string class, string enum)


	This fills the popup with a classrep’s field enumeration type info. More of a helper function than anything. If console access to the field list is added, at least for the enumerated types, then this should go away..






	
void GuiPopUpMenuCtrl::setFirstSelected()


	




	
void GuiPopUpMenuCtrl::setSelected(int id)


	






Fields


	
filename GuiPopUpMenuCtrl::bitmap


	




	
Point2I GuiPopUpMenuCtrl::bitmapBounds


	




	
void GuiPopUpMenuCtrl::clear


	Clear the popup list.






	
void GuiPopUpMenuCtrl::forceClose


	




	
void GuiPopUpMenuCtrl::forceOnAction


	




	
int GuiPopUpMenuCtrl::getSelected


	




	
string GuiPopUpMenuCtrl::getText


	




	
int GuiPopUpMenuCtrl::maxPopupHeight


	




	
bool GuiPopUpMenuCtrl::reverseTextList


	




	
bool GuiPopUpMenuCtrl::sbUsesNAColor


	




	
void GuiPopUpMenuCtrl::setNoneSelected


	




	
int GuiPopUpMenuCtrl::size


	Get the size of the menu - the number of entries in it.






	
void GuiPopUpMenuCtrl::sort


	Sort the list alphabetically.






	
void GuiPopUpMenuCtrl::sortID


	Sort the list by ID.











          

      

      

    

  

    
      
          
            
  
GuiPopUpMenuCtrlEx

A control that allows to select a value from a drop-down list.


	Inherit:

	GuiTextCtrl






Description

This is essentially a GuiPopUpMenuCtrl, but with quite a few more features.

Example:

newGuiPopUpMenuCtrlEx()
{
   maxPopupHeight = "200";
   sbUsesNAColor = "0";
   reverseTextList = "0";
   bitmapBounds = "16 16";
   hotTrackCallback = "0";
   extent = "64 64";
   profile = "GuiDefaultProfile";
   tooltipProfile = "GuiToolTipProfile";
};








Methods


	
void GuiPopUpMenuCtrlEx::add(string name, int idNum, int scheme)


	




	
void GuiPopUpMenuCtrlEx::add(string name, S32 idNum, S32 scheme)


	Adds an entry to the list.


	Parameters

	
	name – String containing the name of the entry


	idNum – Numerical value assigned to the name


	scheme – Optional ID associated with a scheme for font coloring, highlight coloring, and selection coloring













	
void GuiPopUpMenuCtrlEx::addCategory(string text)


	Add a category to the list. Acts as a separator between entries, allowing for sub-lists


	Parameters

	text – Name of the new category










	
void GuiPopUpMenuCtrlEx::addScheme(int id, ColorI fontColor, ColorI fontColorHL, ColorI fontColorSEL)


	Create a new scheme and add it to the list of choices for when a new text entry is added.


	Parameters

	
	id – Numerical id associated with this scheme


	fontColor – The base text font color. Formatted as “Red Green Blue”, each a numerical between 0 and 255.


	fontColorHL – Color of text when being highlighted. Formatted as “Red Green Blue”, each a numerical between 0 and 255.


	fontColorSel – Color of text when being selected. Formatted as “Red Green Blue”, each a numerical between 0 and 255.













	
void GuiPopUpMenuCtrlEx::clear()


	Clear the popup list. Reimplemented from SimSet .






	
void GuiPopUpMenuCtrlEx::clearEntry(S32 entry)


	




	
int GuiPopUpMenuCtrlEx::findText(string text)


	Returns the id of the first entry containing the specified text or -1 if not found.


	Parameters

	text – String value used for the query



	Returns

	Numerical ID of entry containing the text.










	
void GuiPopUpMenuCtrlEx::forceClose()


	Manually force this control to collapse and close.






	
void GuiPopUpMenuCtrlEx::forceOnAction()


	Manually for the onAction function, which updates everything in this control.






	
int GuiPopUpMenuCtrlEx::getSelected()


	Get the current selection of the menu.


	Returns

	Returns the ID of the currently selected entry










	
string GuiPopUpMenuCtrlEx::getText()


	Get the. Detailed description


	Parameters

	param – Description



	Returns

	Returns current text in string format





Example:

// Comment
code();










	
string GuiPopUpMenuCtrlEx::getTextById(int id)


	Get the text of an entry based on an ID.


	Parameters

	id – The ID assigned to the entry being queried



	Returns

	String contained by the specified entry, NULL if empty or bad ID










	
void GuiPopUpMenuCtrlEx::setNoneSelected(int param)


	Clears selection in the menu.






	
GuiPopUpMenuCtrlEx::setSelected(int id, bool scriptCallback)


	brief Manually set an entry as selected int his control


	Parameters

	
	id – The ID of the entry to select


	scripCallback – Optional boolean that forces the script callback if true













	
GuiPopUpMenuCtrlEx::setSelected(bool scriptCallback)


	brief Manually set the selection to the first entry


	Parameters

	scripCallback – Optional boolean that forces the script callback if true










	
void GuiPopUpMenuCtrlEx::setText(string text)


	Set the current text to a specified value. Reimplemented from GuiTextCtrl .


	Parameters

	text – String containing new text to set










	
void GuiPopUpMenuCtrlEx::sort()


	Sort the list alphabetically.






	
void GuiPopUpMenuCtrlEx::sortID()


	Sort the list by ID.








Fields


	
filename GuiPopUpMenuCtrlEx::bitmap


	File name of bitmap to use.






	
Point2I GuiPopUpMenuCtrlEx::bitmapBounds


	Boundaries of bitmap displayed.






	
string GuiPopUpMenuCtrlEx::getColorById


	Get color of an entry’s box.


	Parameters

	id – ID number of entry to query



	Returns

	ColorI in the format of “Red Green Blue Alpha”, each of with is a value between 0 - 255










	
bool GuiPopUpMenuCtrlEx::hotTrackCallback


	Whether to provide a ‘onHotTrackItem’ callback when a list item is hovered over.






	
int GuiPopUpMenuCtrlEx::maxPopupHeight


	Length of menu when it extends.






	
void GuiPopUpMenuCtrlEx::replaceText


	Flag that causes each new text addition to replace the current entry.


	Parameters

	True – to turn on replacing, false to disable it










	
bool GuiPopUpMenuCtrlEx::reverseTextList


	Reverses text list if popup extends up, instead of down.






	
bool GuiPopUpMenuCtrlEx::sbUsesNAColor


	Deprecated.






	
void GuiPopUpMenuCtrlEx::setEnumContent


	This fills the popup with a classrep’s field enumeration type info. More of a helper function than anything. If console access to the field list is added, at least for the enumerated types, then this should go away.


	Parameters

	
	class – Name of the class containing the enum


	enum – Name of the enum value to acces













	
int GuiPopUpMenuCtrlEx::size


	Get the size of the menu.


	Returns

	Number of entries in the menu















          

      

      

    

  

    
      
          
            
  
GuiProgressBitmapCtrl

A horizontal progress bar rendered from a repeating image.


	Inherit:

	GuiTextCtrl






Description

This class is used give progress feedback to the user. Unlike GuiProgressCtrl which simply renders a filled rectangle, GuiProgressBitmapCtrl renders the bar using a bitmap.

This bitmap can either be simple, plain image which is then stretched into the current extents of the bar as it fills up or it can be a bitmap array with three entries. In the case of a bitmap array, the first entry in the array is used to render the left cap of the bar and the third entry in the array is used to render the right cap of the bar. The second entry is streched in-between the two caps.

Example:

// This example shows one way to break down a long-running computation into phases// and incrementally update a progress bar between the phases.newGuiProgressBitmapCtrl( Progress )
{
   bitmap = "core/art/gui/images/loading";
   extent = "300 50";
   position = "100 100";
};

// Put the control on the canvas.
%wrapper = newGuiControl();
%wrapper.addObject( Progress );
Canvas.pushDialog( %wrapper );

// Start the computation.schedule( 1, 0, "phase1" );

function phase1()
{
   Progress.setValue( 0 );

   // Perform some computation.//...// Update progress.
   Progress.setValue( 0.25 );

   // Schedule next phase.  Dont call directly so engine gets a change to run refresh.schedule( 1, 0, "phase2" );
}

function phase2()
{
   // Perform some computation.//...// Update progress.
   Progress.setValue( 0.7 );

   // Schedule next phase.  Dont call directly so engine gets a change to run refresh.schedule( 1, 0, "phase3" );
}

function phase3()
{
   // Perform some computation.//...// Update progress.
   Progress.setValue( 0.9 );

   // Schedule next phase.  Dont call directly so engine gets a change to run refresh.schedule( 1, 0, "phase4" );
}

function phase4()
{
   // Perform some computation.//...// Final update of progress.
   Progress.setValue( 1.0 );
}








Methods


	
void GuiProgressBitmapCtrl::setBitmap(string filename)


	Set the bitmap to use for rendering the progress bar.


	Parameters

	filename – ~Path to the bitmap file.












Fields


	
filename GuiProgressBitmapCtrl::bitmap


	~Path to the bitmap file to use for rendering the progress bar. If the profile assigned to the control already has a bitmap assigned, this property need not be set in which case the bitmap from the profile is used.











          

      

      

    

  

    
      
          
            
  
GuiProgressCtrl

GUI Control which displays a horizontal bar which increases as the progress value of 0.0 - 1.0 increases.


	Inherit:

	GuiTextCtrl






Description

GUI Control which displays a horizontal bar which increases as the progress value of 0.0 - 1.0 increases.

Example:

newGuiProgressCtrl(JS_statusBar)
    {
          //Properties not specific to this control have been omitted from this example.
     };

// Define the value to set the progress bar%value = "0.5f"// Set the value of the progress bar, from 0.0 - 1.0
%thisGuiProgressCtrl.setValue(%value);
// Get the value of the progress bar.
%progress = %thisGuiProgressCtrl.getValue();











          

      

      

    

  

    
      
          
            
  
GuiRadioCtrl

A button based around the radio concept.


	Inherit:

	GuiCheckBoxCtrl






Description

GuiRadioCtrl’s functionality is based around GuiButtonBaseCtrl’s ButtonTypeRadio type.

A button control with a radio box and a text label. This control is used in groups where multiple radio buttons present a range of options out of which one can be chosen. A radio button automatically signals its siblings when it is toggled on.

Example:

// Create a GuiCheckBoxCtrl that calls randomFunction with its current value when clicked.
%radio = newGuiRadioCtrl()
{
   profile = "GuiRadioProfile";
};











          

      

      

    

  

    
      
          
            
  
GuiRolloutCtrl

A container that shows a single child with an optional header bar that can be used to collapse and expand the rollout.


	Inherit:

	GuiControl






Description

A rollout is a container that can be collapsed and expanded using smooth animation. By default, rollouts will display a header with a caption along the top edge of the control which can be clicked by the user to toggle the collapse state of the rollout.

Rollouts will automatically size themselves to exactly fit around their child control. They will also automatically position their child control in their upper left corner below the header (if present).




Methods


	
void GuiRolloutCtrl::collapse()


	Collapse the rollout if it is currently expanded. This will make the rollout’s child control invisible.






	
void GuiRolloutCtrl::expand()


	Expand the rollout if it is currently collapsed. This will make the rollout’s child control visible.






	
void GuiRolloutCtrl::instantCollapse()


	Instantly collapse the rollout without animation. To smoothly slide the rollout to collapsed state, use collapse() .






	
void GuiRolloutCtrl::instantExpand()


	Instantly expand the rollout without animation. To smoothly slide the rollout to expanded state, use expand() .






	
bool GuiRolloutCtrl::isExpanded()


	Determine whether the rollout is currently expanded, i.e. whether the child control is visible. Reimplemented from SimObject .


	Returns

	True if the rollout is expanded, false if not.










	
void GuiRolloutCtrl::onCollapsed()


	Called when the rollout is collapsed.






	
void GuiRolloutCtrl::onExpanded()


	Called when the rollout is expanded.






	
void GuiRolloutCtrl::onHeaderRightClick()


	Called when the user right-clicks on the rollout’s header. This is useful for implementing context menus for rollouts.






	
void GuiRolloutCtrl::sizeToContents()


	Resize the rollout to exactly fit around its child control. This can be used to manually trigger a recomputation of the rollout size.






	
void GuiRolloutCtrl::toggleCollapse()


	Toggle the current collapse state of the rollout. If it is currently expanded, then collapse it. If it is currently collapsed, then expand it.






	
void GuiRolloutCtrl::toggleExpanded(bool instantly)


	Toggle the current expansion state of the rollout If it is currently expanded, then collapse it. If it is currently collapsed, then expand it.


	Parameters

	instant – If true, the rollout will toggle its state without animation. Otherwise, the rollout will smoothly slide into the opposite state.












Fields


	
bool GuiRolloutCtrl::autoCollapseSiblings


	Whether to automatically collapse sibling rollouts. If this is true, the rollout will automatically collapse all sibling rollout controls when it is expanded. If this is false, the auto-collapse behavior can be triggered by CTRL (CMD on MAC) clicking the rollout header. CTRL/CMD clicking also works if this is false, in which case the auto-collapsing of sibling controls will be temporarily deactivated.






	
string GuiRolloutCtrl::caption


	Text label to display on the rollout header.






	
bool GuiRolloutCtrl::clickCollapse


	Whether the rollout can be collapsed by clicking its header.






	
int GuiRolloutCtrl::defaultHeight


	Default height of the client area. This is used when no child control has been added to the rollout.






	
bool GuiRolloutCtrl::expanded


	The current rollout expansion state.






	
bool GuiRolloutCtrl::hideHeader


	Whether to render the rollout header.






	
RectI GuiRolloutCtrl::margin


	Margin to put around child control.











          

      

      

    

  

    
      
          
            
  
GuiScriptNotifyCtrl

A control which adds several reactions to other GUIs via callbacks.


	Inherit:

	GuiControl






Description

GuiScriptNotifyCtrl does not exist to render anything. When parented or made a child of other controls, you can toggle flags on or off to make use of its specialized callbacks. Normally these callbacks are used as utility functions by the GUI Editor, or other container classes. However, for very fancy GUI work where controls interact with each other constantly, this is a handy utility to make use of.

Example:

// Common member fields left out for sake of examplenewGuiScriptNotifyCtrl()
{
   onChildAdded = "0";
   onChildRemoved = "0";
   onChildResized = "0";
   onParentResized = "0";
};








Methods


	
void GuiScriptNotifyCtrl::onChildAdded(SimObjectId ID, SimObjectId childID)


	Called when a child is added to this GUI.


	Parameters

	
	ID – Unique object ID assigned when created (this in script).


	childID – Unique object ID of child being added.













	
void GuiScriptNotifyCtrl::onChildRemoved(SimObjectId ID, SimObjectId childID)


	Called when a child is removed from this GUI.


	Parameters

	
	ID – Unique object ID assigned when created (this in script).


	childID – Unique object ID of child being removed.













	
void GuiScriptNotifyCtrl::onChildResized(SimObjectId ID, SimObjectId childID)


	Called when a child is of this GUI is being resized.


	Parameters

	
	ID – Unique object ID assigned when created (this in script).


	childID – Unique object ID of child being resized.













	
void GuiScriptNotifyCtrl::onGainFirstResponder(SimObjectId ID)


	Called when this GUI gains focus.


	Parameters

	ID – Unique object ID assigned when created (this in script).










	
void GuiScriptNotifyCtrl::onLoseFirstResponder(SimObjectId ID)


	Called when this GUI loses focus.


	Parameters

	ID – Unique object ID assigned when created (this in script).










	
void GuiScriptNotifyCtrl::onParentResized(SimObjectId ID)


	Called when this GUI’s parent is resized.


	Parameters

	ID – Unique object ID assigned when created (this in script).










	
void GuiScriptNotifyCtrl::onResize(SimObjectId ID)


	Called when this GUI is resized.


	Parameters

	ID – Unique object ID assigned when created (this in script).












Fields


	
bool GuiScriptNotifyCtrl::onChildAdded


	Enables/disables onChildAdded callback.






	
bool GuiScriptNotifyCtrl::onChildRemoved


	Enables/disables onChildRemoved callback.






	
bool GuiScriptNotifyCtrl::onChildResized


	Enables/disables onChildResized callback.






	
bool GuiScriptNotifyCtrl::onGainFirstResponder


	Enables/disables onGainFirstResponder callback.






	
bool GuiScriptNotifyCtrl::onLoseFirstResponder


	Enables/disables onLoseFirstResponder callback.






	
bool GuiScriptNotifyCtrl::onParentResized


	Enables/disables onParentResized callback.






	
bool GuiScriptNotifyCtrl::onResize


	Enables/disables onResize callback.











          

      

      

    

  

    
      
          
            
  
GuiScrollCtrl

A container that allows to view one or more possibly larger controls inside its area by providing horizontal and/or vertical scroll bars.


	Inherit:

	GuiContainer






Description

A container that allows to view one or more possibly larger controls inside its area by providing horizontal and/or vertical scroll bars.




Methods


	
void GuiScrollCtrl::computeSizes()


	Refresh sizing and positioning of child controls.






	
Point2I GuiScrollCtrl::getScrollPosition()


	Get the current coordinates of the scrolled content.


	Returns

	The current position of the scrolled content.










	
int GuiScrollCtrl::getScrollPositionX()


	Get the current X coordinate of the scrolled content.


	Returns

	The current X coordinate of the scrolled content.










	
int GuiScrollCtrl::getScrollPositionY()


	Get the current Y coordinate of the scrolled content.


	Returns

	The current Y coordinate of the scrolled content.










	
void GuiScrollCtrl::onScroll()


	Called each time the child controls are scrolled by some amount.






	
void GuiScrollCtrl::scrollToBottom()


	Scroll all the way to the bottom of the vertical scrollbar and the left of the horizontal bar.






	
void GuiScrollCtrl::scrollToObject(GuiControl control)


	Scroll the control so that the given child control is visible.


	Parameters

	control – A child control.










	
void GuiScrollCtrl::scrollToTop()


	Scroll all the way to the top of the vertical and left of the horizontal scrollbar.






	
void GuiScrollCtrl::setScrollPosition(int x, int y)


	Set the position of the scrolled content.


	Parameters

	
	x – Position on X axis.


	y – Position on y axis.















Fields


	
Point2I GuiScrollCtrl::childMargin


	Padding region to put around child contents.






	
bool GuiScrollCtrl::constantThumbHeight


	




	
GuiScrollBarBehavior GuiScrollCtrl::hScrollBar


	When to display the horizontal scrollbar.






	
bool GuiScrollCtrl::lockHorizScroll


	Horizontal scrolling not allowed if set.






	
bool GuiScrollCtrl::lockVertScroll


	Vertical scrolling not allowed if set.






	
int GuiScrollCtrl::mouseWheelScrollSpeed


	Pixels/Tick - if not positive then mousewheel scrolling occurs instantly (like other scrolling).






	
GuiScrollBarBehavior GuiScrollCtrl::vScrollBar


	When to display the vertical scrollbar.






	
bool GuiScrollCtrl::willFirstRespond


	









          

      

      

    

  

    
      
          
            
  
GuiSeparatorCtrl


	Inherit:

	GuiControl






Description

A control that renders a horizontal or vertical separator with an optional text label (horizontal only).

Example:

newGuiSeparatorCtrl()
{
   profile = "GuiDefaultProfile";
   position = "505 0";
   extent = "10 17";
   minExtent = "10 17";
   canSave = "1";
   visible = "1";
   horizSizing = "left";
};








Fields


	
int GuiSeparatorCtrl::borderMargin


	




	
string GuiSeparatorCtrl::caption


	Optional text label to display.






	
bool GuiSeparatorCtrl::invisible


	




	
int GuiSeparatorCtrl::leftMargin


	Left margin of text label.






	
GuiSeparatorType GuiSeparatorCtrl::type


	Orientation of separator.











          

      

      

    

  

    
      
          
            
  
GuiShapeNameHud

Displays name and damage of ShapeBase objects in its bounds. Must be a child of a GuiTSCtrl and a server connection must be present.


	Inherit:

	GuiControl






Description

This control displays the name and damage value of all named ShapeBase objects on the client. The name and damage of objects within the control’s display area are overlayed above the object.

This GUI control must be a child of a TSControl, and a server connection and control object must be present. This is a stand-alone control and relies only on the standard base GuiControl.

Example:

newGuiShapeNameHud(){
   fillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorframeColor = "1.0 1.0 1.0 1.0"; // Solid white frame colortextColor = "1.0 1.0 1.0 1.0"; // Solid white text ColorshowFill = "true";
   showFrame = "true";
   labelFillColor = "0.0 1.0 0.0 1.0"; // Fills with a solid green colorlabelFrameColor = "1.0 1.0 1.0 1.0"; // Solid white frame colorshowLabelFill = "true";
   showLabelFrame = "true";
   verticalOffset = "0.15";
   distanceFade = "15.0";
};








Fields


	
float GuiShapeNameHud::distanceFade


	Visibility distance (how far the player must be from the ShapeBase object in focus) for this control to render.






	
ColorF GuiShapeNameHud::fillColor


	Standard color for the background of the control.






	
ColorF GuiShapeNameHud::frameColor


	Color for the control’s frame.






	
ColorF GuiShapeNameHud::labelFillColor


	Color for the background of each shape name label.






	
ColorF GuiShapeNameHud::labelFrameColor


	Color for the frames around each shape name label.






	
Point2I GuiShapeNameHud::labelPadding


	The padding (in pixels) between the label text and the frame.






	
bool GuiShapeNameHud::showFill


	If true, we draw the background color of the control.






	
bool GuiShapeNameHud::showFrame


	If true, we draw the frame of the control.






	
bool GuiShapeNameHud::showLabelFill


	If true, we draw a background for each shape name label.






	
bool GuiShapeNameHud::showLabelFrame


	If true, we draw a frame around each shape name label.






	
ColorF GuiShapeNameHud::textColor


	Color for the text on this control.






	
float GuiShapeNameHud::verticalOffset


	Amount to vertically offset the control in relation to the ShapeBase object in focus.











          

      

      

    

  

    
      
          
            
  
GuiSliderCtrl

A control that displays a value between its minimal and maximal bounds using a slider placed on a vertical or horizontal axis.


	Inherit:

	GuiControl






Description

A control that displays a value between its minimal and maximal bounds using a slider placed on a vertical or horizontal axis.

A slider displays a value and allows that value to be changed by dragging a thumb control along the axis of the slider. In this way, the value is changed between its allowed minimum and maximum.

To hook up script code to the value changes of a slider, use the command and altCommand properties. command is executed once the thumb is released by the user whereas altCommand is called any time the slider value changes. When changing the slider value from script, however, trigger of altCommand is suppressed by default.

The orientation of a slider is automatically determined from the ratio of its width to its height. If a slider is taller than it is wide, it will be rendered with a vertical orientation. If it is wider than it is tall, it will be rendered with a horizontal orientation.

The rendering of a slider depends on the bitmap in the slider’s profile. This bitmap must be a bitmap array comprised of at least five bitmap rectangles. The rectangles are used such that:

Example:

// Create a sound source and a slider that changes the volume of the source.

%source = sfxPlayOnce( "art/sound/testing", AudioLoop2D );

new GuiSlider()
{
   // Update the sound source volume when the slider is being dragged and released.command = %source @ ".setVolume( $ThisControl.value );";

   // Limit the range to 0..1 since that is the allowable range for sound volumes.range = "0 1";
};








Methods


	
float GuiSliderCtrl::getValue()


	Get the current value of the slider based on the position of the thumb.


	Returns

	Slider position (from range.x to range.y).










	
bool GuiSliderCtrl::isThumbBeingDragged()


	Returns true if the thumb is currently being dragged by the user. This method is mainly useful for scrubbing type sliders where the slider position is sync’d to a changing value. When the user is dragging the thumb, however, the sync’ing should pause and not get in the way of the user.






	
void GuiSliderCtrl::onMouseDragged()


	Called when the left mouse button is dragged across the slider.






	
void GuiSliderCtrl::setValue(float pos, bool doCallback)


	Set position of the thumb on the slider.


	Parameters

	
	pos – New slider position (from range.x to range.y)


	doCallback – If true, the altCommand callback will be invoked















Fields


	
Point2F GuiSliderCtrl::range


	Min and max values corresponding to left and right slider position.






	
bool GuiSliderCtrl::snap


	Whether to snap the slider to tick marks.






	
int GuiSliderCtrl::ticks


	Spacing between tick marks in pixels. 0=off.






	
float GuiSliderCtrl::value


	The value corresponding to the current slider position.











          

      

      

    

  

    
      
          
            
  
GuiSpeedometerHud

Displays the speed of the current Vehicle based control object.


	Inherit:

	GuiBitmapCtrl






Description

This control only works if a server connection exists, and its control object is a Vehicle derived class. If either of these requirements is false, the control is not rendered.
The control renders the speedometer needle as a colored quad, rotated to indicate the Vehicle speed as determined by the minAngle, maxAngle, and maxSpeed properties. This control is normally placed on top of a GuiBitmapCtrl representing the speedometer dial.

Example:

newGuiSpeedometerHud()
{
   maxSpeed = "100";
   minAngle = "215";
   maxAngle = "0";
   color = "1 0.3 0.3 1";
   center = "130 123";
   length = "100";
   width = "2";
   tail = "0";
   //Properties not specific to this control have been omitted from this example.
};








Fields


	
Point2F GuiSpeedometerHud::center


	Center of the needle, offset from the GuiSpeedometerHud control top left corner.






	
ColorF GuiSpeedometerHud::color


	Color of the needle.






	
float GuiSpeedometerHud::length


	Length of the needle from center to end.






	
float GuiSpeedometerHud::maxAngle


	Angle (in radians) of the needle when the Vehicle speed is gt = maxSpeed. An angle of 0 points right, 90 points up etc).






	
float GuiSpeedometerHud::maxSpeed


	Maximum Vehicle speed (in Torque units per second) to represent on the speedo ( Vehicle speeds greater than this are clamped to maxSpeed).






	
float GuiSpeedometerHud::minAngle


	Angle (in radians) of the needle when the Vehicle speed is 0. An angle of 0 points right, 90 points up etc).






	
float GuiSpeedometerHud::tail


	Length of the needle from center to tail.






	
float GuiSpeedometerHud::width


	Width of the needle.











          

      

      

    

  

    
      
          
            
  
GuiSplitContainer

A container that splits its area between two child controls.


	Inherit:

	GuiContainer






Description

A GuiSplitContainer can be used to dynamically subdivide an area between two child controls. A splitter bar is placed between the two controls and allows to dynamically adjust the sizing ratio between the two sides. Splitting can be either horizontal (subdividing top and bottom) or vertical (subdividing left and right) depending on orientation.

By using fixedPanel, one of the panels can be chosen to remain at a fixed size (fixedSize).

Example:

// Create a vertical splitter with a fixed-size left panel.
%splitter = newGuiSplitContainer()
{
   orientation = "Vertical";
   fixedPanel = "FirstPanel";
   fixedSize = 100;

   newGuiScrollCtrl()
   {
      newGuiMLTextCtrl()
      {
         text = %longText;
      };
   };

   newGuiScrollCtrl()
   {
      newGuiMLTextCtrl()
      {
         text = %moreLongText;
      };
   };
};








Fields


	
GuiSplitFixedPanel GuiSplitContainer::fixedPanel


	Which (if any) side of the splitter to keep at a fixed size.






	
int GuiSplitContainer::fixedSize


	Width of the fixed panel specified by fixedPanel (if any).






	
GuiSplitOrientation GuiSplitContainer::orientation


	Whether to split between top and bottom (horizontal) or between left and right (vertical).






	
Point2I GuiSplitContainer::splitPoint


	Point on control through which the splitter goes. Changed relatively if size of control changes.






	
int GuiSplitContainer::splitterSize


	Width of the splitter bar between the two sides. Default is 2.











          

      

      

    

  

    
      
          
            
  
GuiStackControl

A container that stacks its children horizontally or vertically.


	Inherit:

	GuiControl






Description

This container maintains a horizontal or vertical stack of GUI controls. If one is added, deleted, or resized, then the stack is resized to fit. The order of the stack is determined by the internal order of the children (ie. the order of addition).

Example:

newGuiStackControl()
{
   stackingType = "Dynamic";
   horizStacking = "Left to Right";
   vertStacking = "Top to Bottom";
   padding = "4";
   dynamicSize = "1";
   dynamicNonStackExtent = "0";
   dynamicPos = "0";
   changeChildSizeToFit = "1";
   changeChildPosition = "1";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiStackControl::freeze(bool freeze)


	Prevents control from restacking - useful when adding or removing child controls.


	Parameters

	freeze – True to freeze the control, false to unfreeze it





Example:

%stackCtrl.freeze(true);
// add controls to stack
%stackCtrl.freeze(false);










	
bool GuiStackControl::isFrozen()


	Return whether or not this control is frozen.






	
void GuiStackControl::updateStack()


	Restack the child controls.








Fields


	
bool GuiStackControl::changeChildPosition


	Determines whether to reposition child controls. If true, horizontally stacked children are aligned along the top edge of the stack control. Vertically stacked children are aligned along the left edge of the stack control. If false, horizontally stacked children retain their Y position, and vertically stacked children retain their X position.






	
bool GuiStackControl::changeChildSizeToFit


	Determines whether to resize child controls. If true, horizontally stacked children keep their width, but have their height set to the stack control height. Vertically stacked children keep their height, but have their width set to the stack control width. If false, child controls are not resized.






	
bool GuiStackControl::dynamicNonStackExtent


	Determines whether to resize the stack control along the non-stack axis (change height for horizontal stacking, change width for vertical stacking). No effect if dynamicSize is false. If true, the stack will be resized to the maximum of the child control widths/heights. If false, the stack will not be resized.






	
bool GuiStackControl::dynamicPos


	Determines whether to reposition the stack along the stack axis when it is auto-resized. No effect if dynamicSize is false. If true, the stack will grow left for horizontal stacking, and grow up for vertical stacking. If false, the stack will grow right for horizontal stacking, and grow down for vertical stacking.






	
bool GuiStackControl::dynamicSize


	Determines whether to resize the stack control along the stack axis (change width for horizontal stacking, change height for vertical stacking). If true, the stack width/height will be resized to the sum of the child control widths/heights. If false, the stack will not be resized.






	
GuiHorizontalStackingType GuiStackControl::horizStacking


	Controls the type of horizontal stacking to use ( Left to Right or Right to Left ).






	
int GuiStackControl::padding


	Distance (in pixels) between stacked child controls.






	
GuiStackingType GuiStackControl::stackingType


	Determines the method used to position the child controls.






	
GuiVerticalStackingType GuiStackControl::vertStacking


	Controls the type of vertical stacking to use ( Top to Bottom or Bottom to Top ).











          

      

      

    

  

    
      
          
            
  
GuiSwatchButtonCtrl

A button that is used to represent color; often used in correlation with a color picker.


	Inherit:

	GuiButtonBaseCtrl






Description

A swatch button is a push button that uses its color field to designate the color drawn over an image, on top of a button.

The color itself is a float value stored inside the GuiSwatchButtonCtrl::color field. The texture path that represents the image underlying the color is stored inside the GuiSwatchButtonCtrl::gridBitmap field. The default value assigned toGuiSwatchButtonCtrl::color is “1 1 1 1”( White ). The default/fallback image assigned to GuiSwatchButtonCtrl::gridBitmap is “tools/gui/images/transp_grid”.

Example:

// Create a GuiSwatchButtonCtrl that calls randomFunction with its current color when clicked
%swatchButton = newGuiSwatchButtonCtrl()
{
   profile = "GuiInspectorSwatchButtonProfile";
   command = "randomFunction( $ThisControl.color );";
};








Methods


	
void GuiSwatchButtonCtrl::setColor(string newColor)


	Set the color of the swatch control.


	Parameters

	newColor – The new color string given to the swatch control in float format “r g b a”.












Fields


	
ColorF GuiSwatchButtonCtrl::color


	The foreground color of GuiSwatchButtonCtrl .






	
string GuiSwatchButtonCtrl::gridBitmap


	The bitmap used for the transparent grid.











          

      

      

    

  

    
      
          
            
  
GuiTSCtrl

Abstract base class for controls that render 3D scenes.


	Inherit:

	GuiContainer






Description

GuiTSCtrl is the base class for controls that render 3D camera views in Torque. The class itself does not implement a concrete scene rendering. Use GuiObjectView to display invidiual shapes in the Gui and GameTSCtrl to render full scenes.




Methods


	
float GuiTSCtrl::calculateViewDistance(float radius)


	Given the camera’s current FOV, get the distance from the camera’s viewpoint at which the given radius will fit in the render area.


	Parameters

	radius – Radius in world-space units which should fit in the view.



	Returns

	The distance from the viewpoint at which the given radius would be fully visible.










	
Point2F GuiTSCtrl::getWorldToScreenScale()


	Get the ratio between world-space units and pixels.


	Returns

	The amount of world-space units covered by the extent of a single pixel.










	
Point3F GuiTSCtrl::project(Point3F worldPosition)


	Transform world-space coordinates to screen-space (x, y, depth) coordinates.


	Parameters

	worldPosition – The world-space position to transform to screen-space.



	Returns

	The










	
Point3F GuiTSCtrl::unproject(Point3F screenPosition)


	Transform 3D screen-space coordinates (x, y, depth) to world space. This method can be, for example, used to find the world-space position relating to the current mouse cursor position.


	Parameters

	screenPosition – The x/y position on the screen plus the depth from the screen-plane outwards.



	Returns

	The world-space position corresponding to the given screen-space coordinates.












Fields


	
float GuiTSCtrl::cameraZRot


	Z rotation angle of camera.






	
float GuiTSCtrl::forceFOV


	The vertical field of view in degrees or zero to use the normal camera FOV.






	
float GuiTSCtrl::reflectPriority


	The share of the per-frame reflection update work this control’s rendering should run. The reflect update priorities of all visible GuiTSCtrls are added together and each control is assigned a share of the per-frame reflection update time according to its percentage of the total priority value.






	
GuiTSRenderStyles GuiTSCtrl::renderStyle


	Indicates how this control should render its contents.











          

      

      

    

  

    
      
          
            
  
GuiTabBookCtrl

A container.


	Inherit:

	GuiContainer






Description

A container.

Example:

// Create








Methods


	
void GuiTabBookCtrl::addPage(string title)


	Add a new tab page to the control.


	Parameters

	title – Title text for the tab page header.










	
int GuiTabBookCtrl::getSelectedPage()


	Get the index of the currently selected tab page.


	Returns

	Index of the selected tab page or -1 if no tab page is selected.










	
void GuiTabBookCtrl::onTabRightClick(String text, int index)


	Called when the user right-clicks on a tab page header.


	Parameters

	
	text – Text of the page header for the tab that is being selected.


	index – Index of the tab page being selected.













	
void GuiTabBookCtrl::onTabSelected(String text, int index)


	Called when a new tab page is selected.


	Parameters

	
	text – Text of the page header for the tab that is being selected.


	index – Index of the tab page being selected.













	
void GuiTabBookCtrl::selectPage(int index)


	Set the selected tab page.


	Parameters

	index – Index of the tab page.












Fields


	
bool GuiTabBookCtrl::allowReorder


	Whether reordering tabs with the mouse is allowed.






	
int GuiTabBookCtrl::defaultPage


	Index of page to select on first onWake() call (-1 to disable).






	
int GuiTabBookCtrl::frontTabPadding


	X offset of first tab page header.






	
int GuiTabBookCtrl::minTabWidth


	Minimum width allocated to a tab page header.






	
int GuiTabBookCtrl::selectedPage


	Index of currently selected page.






	
int GuiTabBookCtrl::tabHeight


	Height of tab page headers.






	
int GuiTabBookCtrl::tabMargin


	Spacing to put between individual tab page headers.






	
GuiTabPosition GuiTabBookCtrl::tabPosition


	Where to place the tab page headers.











          

      

      

    

  

    
      
          
            
  
GuiTabPageCtrl

A single page in a GuiTabBookCtrl.


	Inherit:

	GuiTextCtrl






Description

A single page in a GuiTabBookCtrl.

Example:

newGuiTabPageCtrl()
{
   fitBook = "1";
   //Properties not specific to this control have been omitted from this example.
};








Methods


	
void GuiTabPageCtrl::select()


	Select this page in its tab book.








Fields


	
bool GuiTabPageCtrl::fitBook


	Determines whether to resize this page when it is added to the tab book. If true, the page will be resized according to the tab book extents and tabPosition property.











          

      

      

    

  

    
      
          
            
  
GuiTextCtrl

GUI control object this displays a single line of text, without TorqueML.


	Inherit:

	GuiContainer






Description

GUI control object this displays a single line of text, without TorqueML.

Example:

newGuiTextCtrl()
   {
      text = "Hello World";
      textID = ""STR_HELLO"";
      maxlength = "1024";
       //Properties not specific to this control have been omitted from this example.
   };








Methods


	
void GuiTextCtrl::setText(string text)


	Sets the text in the control. Reimplemented in GuiTextEditCtrl , and GuiPopUpMenuCtrlEx .


	Parameters

	text – Text to display in the control.





Example:

// Set the text to show in the control
%text = "Gideon - Destroyer of World";

// Inform the GuiTextCtrl control to change its text to the defined value
%thisGuiTextCtrl.setText(%text);










	
void GuiTextCtrl::setTextID(string textID)


	Maps the text ctrl to a variable used in localization, rather than raw text.


	Parameters

	textID – Name of variable text should be mapped to





Example:

// Inform the GuiTextCtrl control of the textID to use
%thisGuiTextCtrl.setTextID("STR_QUIT");












Fields


	
int GuiTextCtrl::maxLength


	Defines the maximum length of the text. The default is 1024.






	
caseString GuiTextCtrl::text


	The text to show on the control.






	
string GuiTextCtrl::textID


	Maps the text of this control to a variable used in localization, rather than raw text.











          

      

      

    

  

    
      
          
            
  
GuiTextEditCtrl

A component that places a text entry box on the screen.


	Inherit:

	GuiTextCtrl






Description

A component that places a text entry box on the screen.

Fonts and sizes are changed using profiles. The text value can be set or entered by a user.

Example:

newGuiTextEditCtrl(MessageHud_Edit)
   {
       text = "Hello World";
       validate = "validateCommand();"escapeCommand = "escapeCommand();";
       historySize = "5";
       tabComplete = "true";
       deniedSound = "DeniedSoundProfile";
       sinkAllKeyEvents = "true";
       password = "true";
       passwordMask = "*";
        //Properties not specific to this control have been omitted from this example.
   };








Methods


	
void GuiTextEditCtrl::clearSelectedText()


	Unselects all selected text in the control.

Example:

// Inform the control to unselect all of its selected text
%thisGuiTextEditCtrl.clearSelectedText();










	
void GuiTextEditCtrl::forceValidateText()


	Force a validation to occur.

Example:

// Inform the control to force a validation of its text.
%thisGuiTextEditCtrl.forceValidateText();










	
int GuiTextEditCtrl::getCursorPos()


	Returns the current position of the text cursor in the control.


	Returns

	Text cursor position within the control.





Example:

// Acquire the cursor position in the control
%position = %thisGuiTextEditCtrl.getCursorPost();










	
string GuiTextEditCtrl::getText()


	Acquires the current text displayed in this control.


	Returns

	The current text within the control.





Example:

// Acquire the value of the text control.
%text = %thisGuiTextEditCtrl.getText();










	
bool GuiTextEditCtrl::isAllTextSelected()


	Checks to see if all text in the control has been selected.


	Returns

	True if all text in the control is selected, otherwise false.





Example:

// Check to see if all text has been selected or not.
%allSelected = %thisGuiTextEditCtrl.isAllTextSelected();










	
void GuiTextEditCtrl::onReturn()


	Called when the ‘Return’ or ‘Enter’ key is pressed.

Example:

// Return or Enter key was pressed, causing the callback to occur.GuiTextEditCtrl::onReturn(%this)
   {
      // Code to run when the onReturn callback occurs
   }










	
void GuiTextEditCtrl::onTabComplete(string val)


	Called if tabComplete is true, and the ‘tab’ key is pressed.


	Parameters

	val – Input to mimick the ‘1’ sent by the actual tab key button press.





Example:

// Tab key has been pressed, causing the callback to occur.GuiTextEditCtrl::onTabComplete(%this,%val)
   {
      //Code to run when the onTabComplete callback occurs
   }










	
void GuiTextEditCtrl::onValidate()


	Called whenever the control is validated.

Example:

// The control gets validated, causing the callback to occur
GuiTextEditCtrl::onValidated(%this)
   {
      // Code to run when the control is validated
   }










	
void GuiTextEditCtrl::selectAllText()


	Selects all text within the control.

Example:

// Inform the control to select all of its text.
%thisGuiTextEditCtrl.selectAllText();










	
void GuiTextEditCtrl::setCursorPos(int position)


	Sets the text cursor at the defined position within the control.


	Parameters

	position – Text position to set the text cursor.





Example:

// Define the cursor position
%position = "12";

// Inform the GuiTextEditCtrl control to place the text cursor at the defined position
%thisGuiTextEditCtrl.setCursorPos(%position);










	
void GuiTextEditCtrl::setText(string text)


	Sets the text in the control. Reimplemented from GuiTextCtrl .


	Parameters

	text – Text to place in the control.





Example:

// Define the text to display
%text = "Text!"// Inform the GuiTextEditCtrl to display the defined text
%thisGuiTextEditCtrl.setText(%text);












Fields


	
SFXTrack GuiTextEditCtrl::deniedSound


	If the attempted text cannot be entered, this sound effect will be played.






	
string GuiTextEditCtrl::escapeCommand


	Script command to be called when the Escape key is pressed.






	
int GuiTextEditCtrl::historySize


	How large of a history buffer to maintain.






	
bool GuiTextEditCtrl::password


	If true, all characters entered will be stored in the control, however will display as the character stored in passwordMask.






	
string GuiTextEditCtrl::passwordMask


	If ‘password’ is true, this is the character that will be used to mask the characters in the control.






	
bool GuiTextEditCtrl::sinkAllKeyEvents


	If true, every key event will act as if the Enter key was pressed.






	
bool GuiTextEditCtrl::tabComplete


	If true, when the ‘tab’ key is pressed, it will act as if the Enter key was pressed on the control.






	
string GuiTextEditCtrl::validate


	Script command to be called when the first validater is lost.











          

      

      

    

  

    
      
          
            
  
GuiTextEditSliderBitmapCtrl

GUI Control which displays a numerical value which can be increased or decreased using a pair of bitmap up/down buttons.


	Inherit:

	GuiTextEditCtrl






Description

This control uses the bitmap specified in it’s profile (GuiControlProfile::bitmapName). It takes this image and breaks up aspects of it to render the up and down arrows. It is also important to set GuiControlProfile::hasBitmapArray to true on the profile as well.

The bitmap referenced should be broken up into a 1 x 4 grid (using the top left color pixel as a border color between each of the images) in which it will map to the following places:

Example:

singleton GuiControlProfile (SliderBitmapGUIProfile)
{
   bitmap = "core/art/gui/images/sliderArray";
   hasBitmapArray = true;
   opaque = false;
};

newGuiTextEditSliderBitmapCtrl()
{
   profile = "SliderBitmapGUIProfile";
   format = "%3.2f";
   range = "-1e+03 1e+03";
   increment = "0.1";
   focusOnMouseWheel = "0";
   bitmap = "";
   //Properties not specific to this control have been omitted from this example.
};








Fields


	
filename GuiTextEditSliderBitmapCtrl::bitmap


	Unused.






	
bool GuiTextEditSliderBitmapCtrl::focusOnMouseWheel


	If true, the control will accept giving focus to the user when the mouse wheel is used.






	
string GuiTextEditSliderBitmapCtrl::format


	Character format type to place in the control.






	
float GuiTextEditSliderBitmapCtrl::increment


	How far to increment the slider on each step.






	
Point2F GuiTextEditSliderBitmapCtrl::range


	Maximum vertical and horizontal range to allow in the control.











          

      

      

    

  

    
      
          
            
  
GuiTextEditSliderCtrl

GUI Control which displays a numerical value which can be increased or decreased using a pair of arrows.


	Inherit:

	GuiTextEditCtrl






Description

GUI Control which displays a numerical value which can be increased or decreased using a pair of arrows.

Example:

newGuiTextEditSliderCtrl()
{
   format = "%3.2f";
   range = "-1e+03 1e+03";
   increment = "0.1";
   focusOnMouseWheel = "0";
   //Properties not specific to this control have been omitted from this example.
};








Fields


	
bool GuiTextEditSliderCtrl::focusOnMouseWheel


	If true, the control will accept giving focus to the user when the mouse wheel is used.






	
string GuiTextEditSliderCtrl::format


	Character format type to place in the control.






	
float GuiTextEditSliderCtrl::increment


	How far to increment the slider on each step.






	
Point2F GuiTextEditSliderCtrl::range


	Maximum vertical and horizontal range to allow in the control.











          

      

      

    

  

    
      
          
            
  
GuiTextListCtrl

GUI control that displays a list of text. Text items in the list can be individually selected.


	Inherit:

	GuiArrayCtrl






Description

GUI control that displays a list of text. Text items in the list can be individually selected.

Example:

newGuiTextListCtrl(EndGameGuiList)
      {
         columns = "0 256";
           fitParentWidth = "1";
         clipColumnText = "0";
          //Properties not specific to this control have been omitted from this example.
      };








Methods


	
int GuiTextListCtrl::addRow(int id, string text, int index)


	Adds a new row at end of the list with the defined id and text. If index is used, then the new row is inserted at the row location of ‘index’.


	Parameters

	
	id – Id of the new row.


	text – Text to display at the new row.


	index – Index to insert the new row at. If not used, new row will be placed at the end of the list.






	Returns

	Returns the row index of the new row. If ‘index’ was defined, then this just returns the number of rows in the list.





Example:

// Define the id
%id = "4";

// Define the text to display
%text = "Display Text"// Define the index (optional)
%index = "2"// Inform the GuiTextListCtrl control to add the new row with the defined information.
%rowIndex = %thisGuiTextListCtrl.addRow(%id,%text,%index);










	
void GuiTextListCtrl::clear()


	Clear the list.

Example:

// Inform the GuiTextListCtrl control to clear its contents
%thisGuiTextListCtrl.clear();










	
void GuiTextListCtrl::clearSelection()


	Set the selection to nothing.

Example:

// Deselect anything that is currently selected
%thisGuiTextListCtrl.clearSelection();










	
int GuiTextListCtrl::findTextIndex(string needle)


	Find needle in the list, and return the row number it was found in.


	Parameters

	needle – Text to find in the list.



	Returns

	Row number that the defined text was found in,





Example:

// Define the text to find in the list
%needle = "Text To Find";

// Request the row number that contains the defined text to find

%rowNumber = %thisGuiTextListCtrl.findTextIndex(%needle);










	
int GuiTextListCtrl::getRowId(int index)


	Get the row ID for an index.


	Parameters

	index – Index to get the RowID at



	Returns

	RowId at the defined index.





Example:

// Define the index
%index = "3";

// Request the row ID at the defined index
%rowId = %thisGuiTextListCtrl.getRowId(%index);










	
int GuiTextListCtrl::getRowNumById(int id)


	Get the row number for a specified id.


	Parameters

	id – Id to get the row number at





Example:

// Define the id
%id = "4";

// Request the row number from the GuiTextListCtrl control at the defined id.
%rowNumber = %thisGuiTextListCtrl.getRowNumById(%id);










	
string GuiTextListCtrl::getRowText(int index)


	Get the text of the row with the specified index.


	Parameters

	index – Row index to acquire the text at.



	Returns

	Text at the defined row index.





Example:

// Define the row index
%index = "5";

// Request the text from the row at the defined index
%rowText = %thisGuiTextListCtrl.getRowText(%index);










	
string GuiTextListCtrl::getRowTextById(int id)


	Get the text of a row with the specified id.


	Returns

	Row text at the requested row id.





Example:

// Define the id
%id = "4";

// Inform the GuiTextListCtrl control to return the text at the defined row id
%rowText = %thisGuiTextListCtrl.getRowTextById(%id);










	
int GuiTextListCtrl::getSelectedId()


	Get the ID of the currently selected item.


	Returns

	The id of the selected item in the list.





Example:

// Acquire the ID of the selected item in the list.
%id = %thisGuiTextListCtrl.getSelectedId();










	
int GuiTextListCtrl::getSelectedRow()


	Returns the selected row index (not the row ID).


	Returns

	Index of the selected row





Example:

// Acquire the selected row index
%rowIndex = %thisGuiTextListCtrl.getSelectedRow();










	
bool GuiTextListCtrl::isRowActive(int rowNum)


	Check if the specified row is currently active or not.


	Parameters

	rowNum – Row number to check the active state.



	Returns

	Active state of the defined row number.





Example:

// Define the row number
%rowNum = "5";

// Request the active state of the defined row number from the GuiTextListCtrl control.
%rowActiveState = %thisGuiTextListCtrl.isRowActive(%rowNum);










	
void GuiTextListCtrl::onDeleteKey(string id)


	Called when the delete key has been pressed.


	Parameters

	id – Id of the selected item in the list





Example:

// The delete key was pressed while the GuiTextListCtrl was in focus, causing the callback to occur.GuiTextListCtrl::onDeleteKey(%this,%id)
   {
      // Code to run when the delete key is pressed
   }










	
void GuiTextListCtrl::onSelect(string cellid, string text)


	Called whenever an item in the list is selected.


	Parameters

	
	cellid – The ID of the cell that was selected


	text – The text in the selected cel








Example:

// A cel in the control was selected, causing the callback to occurGuiTextListCtrl::onSelect(%this,%callid,%text)
   {
      // Code to run when a cel item is selected
   }










	
void GuiTextListCtrl::removeRow(int index)


	Remove a row from the table, based on its index.


	Parameters

	index – Row index to remove from the list.





Example:

// Define the row index
%index = "4";

// Inform the GuiTextListCtrl control to remove the row at the defined row index
%thisGuiTextListCtrl.removeRow(%index);










	
void GuiTextListCtrl::removeRowById(int id)


	Remove row with the specified id.


	Parameters

	id – Id to remove the row entry at





Example:

// Define the id
%id = "4";

// Inform the GuiTextListCtrl control to remove the row at the defined id
%thisGuiTextListCtrl.removeRowById(%id);










	
int GuiTextListCtrl::rowCount()


	Get the number of rows.


	Returns

	Number of rows in the list.





Example:

// Get the number of rows in the list
%rowCount = %thisGuiTextListCtrl.rowCount();










	
void GuiTextListCtrl::scrollVisible(int rowNum)


	Scroll so the specified row is visible.


	Parameters

	rowNum – Row number to make visible





Example:

// Define the row number to make visible
%rowNum = "4";

// Inform the GuiTextListCtrl control to scroll the list so the defined rowNum is visible.
%thisGuiTextListCtrl.scrollVisible(%rowNum);










	
void GuiTextListCtrl::setRowActive(int rowNum, bool active)


	Mark a specified row as active/not.


	Parameters

	
	rowNum – Row number to change the active state.


	active – Boolean active state to set the row number.








Example:

// Define the row number
%rowNum = "4";

// Define the boolean active state
%active = "true";

// Informthe GuiTextListCtrl control to set the defined active state at the defined row number.
%thisGuiTextListCtrl.setRowActive(%rowNum,%active);










	
void GuiTextListCtrl::setRowById(int id, string text)


	Sets the text at the defined id.


	Parameters

	
	id – Id to change.


	text – Text to use at the Id.








Example:

// Define the id
%id = "4";

// Define the text
%text = "Text To Display";

// Inform the GuiTextListCtrl control to display the defined text at the defined id
%thisGuiTextListCtrl.setRowById(%id,%text);










	
void GuiTextListCtrl::setSelectedById(int id)


	Finds the specified entry by id, then marks its row as selected.


	Parameters

	id – Entry within the text list to make selected.





Example:

// Define the id
%id = "5";

// Inform the GuiTextListCtrl control to set the defined id entry as selected
%thisGuiTextListCtrl.setSelectedById(%id);










	
void GuiTextListCtrl::setSelectedRow(int rowNum)


	the specified row.


	Parameters

	rowNum – Row number to set selected.





Example:

// Define the row number to set selected
%rowNum = "4";

%guiTextListCtrl.setSelectedRow(%rowNum);










	
void GuiTextListCtrl::sort(int columnId, bool increasing)


	Performs a standard (alphabetical) sort on the values in the specified column.


	Parameters

	
	columnId – Column ID to perform the sort on.


	increasing – If false, sort will be performed in reverse.








Example:

// Define the columnId
%id = "1";

// Define if we are increasing or not
%increasing = "false";

// Inform the GuiTextListCtrl to perform the sort operation
%thisGuiTextListCtrl.sort(%id,%increasing);










	
void GuiTextListCtrl::sortNumerical(int columnID, bool increasing)


	Perform a numerical sort on the values in the specified column. Detailed description


	Parameters

	
	columnId – Column ID to perform the sort on.


	increasing – If false, sort will be performed in reverse.








Example:

// Define the columnId
%id = "1";

// Define if we are increasing or not
%increasing = "false";

// Inform the GuiTextListCtrl to perform the sort operation
%thisGuiTextListCtrl.sortNumerical(%id,%increasing);












Fields


	
bool GuiTextListCtrl::clipColumnText


	If true, text exceeding a column’s given width will get clipped.






	
intList GuiTextListCtrl::columns


	A vector of column offsets. The number of values determines the number of columns in the table.






	
bool GuiTextListCtrl::fitParentWidth


	If true, the width of this control will match the width of its parent.











          

      

      

    

  

    
      
          
            
  
GuiTheoraCtrl

A control to playing Theora videos.


	Inherit:

	GuiControl






Description

This control can be used to play videos in the Theora video format. The videos may include audio in Vorbis format. The codecs for both formats are integrated with the engine and no codecs must be present on the user’s machine.

Example:

%video = newGuiTheoraCtrl()
{
   theoraFile = "videos/intro.ogv";
   playOnWake = false;
   stopOnSleep = true;
}

Canvas.setContent( %video );
%video.play();








Methods


	
float GuiTheoraCtrl::getCurrentTime()


	Get the current playback time.


	Returns

	The elapsed playback time in seconds.










	
bool GuiTheoraCtrl::isPlaybackDone()


	Test whether the video has finished playing.


	Returns

	True if the video has finished playing, false otherwise.










	
void GuiTheoraCtrl::pause()


	Pause playback of the video. If the video is not currently playing, the call is ignored. While stopped, the control displays the last frame.






	
void GuiTheoraCtrl::play()


	Start playing the video. If the video is already playing, the call is ignored.






	
void GuiTheoraCtrl::setFile(string filename)


	Set the video file to play. If a video is already playing, playback is stopped and the new video file is loaded.


	Parameters

	filename – The video file to load.










	
void GuiTheoraCtrl::stop()


	Stop playback of the video. The next call to play() will then start playback from the beginning of the video. While stopped, the control renders empty with just the background color.








Fields


	
ColorI GuiTheoraCtrl::backgroundColor


	Fill color when video is not playing.






	
bool GuiTheoraCtrl::matchVideoSize


	Whether to automatically match control extents to the video size.






	
bool GuiTheoraCtrl::playOnWake


	Whether to start playing video when control is woken up.






	
bool GuiTheoraCtrl::renderDebugInfo


	If true, displays an overlay on top of the video with useful debugging information.






	
bool GuiTheoraCtrl::stopOnSleep


	Whether to stop video when control is set to sleep. If this is not set to true, the video will be paused when the control is put to sleep. This is because there is no support for seeking in the video stream in the player backend and letting the time source used to synchronize video (either audio or a raw timer) get far ahead of frame decoding will cause possibly very long delays when the control is woken up again.






	
filename GuiTheoraCtrl::theoraFile


	Theora video file to play.






	
GuiTheoraTranscoder GuiTheoraCtrl::transcoder


	The routine to use for Y’CbCr to RGB conversion.











          

      

      

    

  

    
      
          
            
  
GuiTickCtrl

Brief Description.


	Inherit:

	GuiControl






Description

This Gui Control is designed to be subclassed to let people create controls which want to receive update ticks at a constant interval. This class was created to be the Parent class of a control which used a DynamicTexture along with a VectorField to create warping effects much like the ones found in visualization displays for iTunes or Winamp. Those displays are updated at the framerate frequency. This works fine for those effects, however for an application of the same type of effects for things like Gui transitions the framerate-driven update frequency is not desirable because it does not allow the developer to be able to have any idea of a consistent user-experience.

Enter the ITickable interface. This lets the Gui control, in this case, update the dynamic texture at a constant rate of once per tick, even though it gets rendered every frame, thus creating a framerate-independent update frequency so that the effects are at a consistent speed regardless of the specifics of the system the user is on. This means that the screen-transitions will occur in the same time on a machine getting 300fps in the Gui shell as a machine which gets 150fps in the Gui shell.




Methods


	
void GuiTickCtrl::setProcessTicks(bool tick)


	This will set this object to either be processing ticks or not. This will set this object to either be processing ticks or not.


	Parameters

	tick – (optional) True or nothing to enable ticking, false otherwise.





Example:

// Turn off ticking for a control, like a MenuBar (declared previously)
%sampleMenuBar.setProcessTicks(false);















          

      

      

    

  

    
      
          
            
  
GuiTreeViewCtrl

Hierarchical list of text items with optional icons.


	Inherit:

	GuiArrayCtrl






Description

Can also be used to inspect SimObject hierarchies, primarily within editors.

GuiTreeViewCtrls can either display arbitrary user-defined trees or can be used to display SimObject hierarchies where each parent node in the tree is a SimSet or SimGroup and each leaf node is a SimObject.

Each item in the tree has a text and a value. For trees that display SimObject hierarchies, the text for each item is automatically derived from objects while the value for each item is the ID of the respective SimObject. For trees that are not tied to SimObjects, both text and value of each item are set by the user.

Additionally, items in the tree can have icons.

Each item in the tree has a distinct numeric ID that is unique within its tree. The ID of the root item, which is always present on a tree, is 0.

Example:

newGuiTreeViewCtrl(DatablockEditorTree)
{
   tabSize = "16";
   textOffset = "2";
   fullRowSelect = "0";
   itemHeight = "21";
   destroyTreeOnSleep = "0";
   MouseDragging = "0";
   MultipleSelections = "1";
   DeleteObjectAllowed = "1";
   DragToItemAllowed = "0";
   ClearAllOnSingleSelection = "1";
   showRoot = "1";
   internalNamesOnly = "0";
   objectNamesOnly = "0";
   compareToObjectID = "0";
   Profile = "GuiTreeViewProfile";
   tooltipprofile = "GuiToolTipProfile";
   hovertime = "1000";
};








Methods


	
void GuiTreeViewCtrl::addSelection(int id, bool isLastSelection)


	Add an item/object to the current selection.


	Parameters

	
	id – ID of item/object to add to the selection.


	isLastSelection – Whether there are more pending items/objects to be added to the selection. If false, the control will defer refreshing the tree and wait until addSelection() is called with this parameter set to true.













	
bool GuiTreeViewCtrl::buildIconTable()


	Builds an icon table.






	
bool GuiTreeViewCtrl::canRenameObject(SimObject object)


	




	
void GuiTreeViewCtrl::clear()


	Empty tree.






	
void GuiTreeViewCtrl::clearFilterText()


	Clear the current item filtering pattern.






	
void GuiTreeViewCtrl::clearSelection()


	Unselect all currently selected items.






	
void GuiTreeViewCtrl::deleteSelection()


	Delete all items/objects in the current selection.






	
bool GuiTreeViewCtrl::editItem(TreeItemId item, string newText, string newValue)


	




	
bool GuiTreeViewCtrl::expandItem(TreeItemId item, bool expand)


	




	
int GuiTreeViewCtrl::findChildItemByName(int parentId, string childName)


	Get the child item of the given parent item whose text matches childName .


	Parameters

	
	parentId – Item ID of the parent in which to look for the child.


	childName – Text of the child item to find.






	Returns

	.












	
int GuiTreeViewCtrl::findItemByName(string text)


	Get the ID of the item whose text matches the given text .


	Parameters

	text – Item text to match.



	Returns

	ID of the item or -1 if no item matches the given text.










	
int GuiTreeViewCtrl::findItemByObjectId(int id)


	Find item by object id and returns the mId






	
int GuiTreeViewCtrl::findItemByValue(string value)


	Get the ID of the item whose value matches value .


	Parameters

	value – Value text to match.



	Returns

	ID of the item or -1 if no item has the given value.










	
int GuiTreeViewCtrl::getChild(TreeItemId item)


	




	
string GuiTreeViewCtrl::getFilterText()


	Get the current filter expression. Only tree items whose text matches this expression are displayed. By default, the expression is empty and all items are shown.


	Returns

	The current filter pattern or an empty string if no filter pattern is currently active.










	
string GuiTreeViewCtrl::getItemText(TreeItemId item)


	




	
string GuiTreeViewCtrl::getItemValue(TreeItemId item)


	




	
int GuiTreeViewCtrl::getNextSibling(TreeItemId item)


	




	
int GuiTreeViewCtrl::getParent(TreeItemId item)


	




	
int GuiTreeViewCtrl::getPrevSibling(TreeItemId item)


	




	
int GuiTreeViewCtrl::getSelectedItem(int index)


	Return the selected item at the given index.






	
int GuiTreeViewCtrl::getSelectedObject(int index)


	Return the currently selected SimObject at the given index in inspector mode or -1.






	
string GuiTreeViewCtrl::getTextToRoot(TreeItemId item, Delimiter = , none)


	gets the text from the current node to the root, concatenating at each branch upward, with a specified delimiter optionally






	
bool GuiTreeViewCtrl::handleRenameObject(string newName, SimObject object)


	




	
void GuiTreeViewCtrl::hideSelection(bool state)


	Call SimObject::setHidden ( state ) on all objects in the current selection.


	Parameters

	state – Visibility state to set objects in selection to.










	
int GuiTreeViewCtrl::insertItem(int parentId, string text, string value, string icon, int normalImage, int expandedImage)


	Add a new item to the tree.


	Parameters

	
	parentId – Item ID of parent to which to add the item as a child. 0 is root item.


	text – Text to display on the item in the tree.


	value – Behind-the-scenes value of the item.


	icon – 


	normalImage – 


	expandedImage – 






	Returns

	The ID of the newly added item.










	
bool GuiTreeViewCtrl::isItemSelected(int id)


	Check whether the given item is currently selected in the tree.


	Parameters

	id – Item/object ID.



	Returns

	True if the given item/object is currently selected in the tree.










	
bool GuiTreeViewCtrl::isParentItem(int id)


	Returns true if the given item contains child items.






	
bool GuiTreeViewCtrl::isValidDragTarget(int id, string value)


	




	
void GuiTreeViewCtrl::lockSelection(bool lock)


	Set whether the current selection can be changed by the user or not.


	Parameters

	lock – If true, the current selection is frozen and cannot be changed. If false, the selection may be modified.










	
bool GuiTreeViewCtrl::markItem(TreeItemId item, bool mark)


	




	
void GuiTreeViewCtrl::moveItemDown(TreeItemId item)


	




	
void GuiTreeViewCtrl::moveItemUp(TreeItemId item)


	




	
void GuiTreeViewCtrl::onAddGroupSelected(SimGroup group)


	




	
void GuiTreeViewCtrl::onAddMultipleSelectionBegin()


	




	
void GuiTreeViewCtrl::onAddMultipleSelectionEnd()


	




	
void GuiTreeViewCtrl::onAddSelection(int itemOrObjectId, bool isLastSelection)


	




	
void GuiTreeViewCtrl::onBeginReparenting()


	




	
void GuiTreeViewCtrl::onClearSelection()


	




	
void GuiTreeViewCtrl::onDefineIcons()


	




	
bool GuiTreeViewCtrl::onDeleteObject(SimObject object)


	




	
void GuiTreeViewCtrl::onDeleteSelection()


	




	
void GuiTreeViewCtrl::onDragDropped()


	




	
void GuiTreeViewCtrl::onEndReparenting()


	




	
void GuiTreeViewCtrl::onInspect(int itemOrObjectId)


	




	
void GuiTreeViewCtrl::onKeyDown(int modifier, int keyCode)


	




	
void GuiTreeViewCtrl::onMouseDragged()


	




	
void GuiTreeViewCtrl::onMouseUp(int hitItemId, int mouseClickCount)


	




	
void GuiTreeViewCtrl::onObjectDeleteCompleted()


	




	
void GuiTreeViewCtrl::onRemoveSelection(int itemOrObjectId)


	




	
void GuiTreeViewCtrl::onReparent(int itemOrObjectId, int oldParentItemOrObjectId, int newParentItemOrObjectId)


	




	
void GuiTreeViewCtrl::onRightMouseDown(int itemId, Point2I mousePos, SimObject object)


	




	
void GuiTreeViewCtrl::onRightMouseUp(int itemId, Point2I mousePos, SimObject object)


	




	
void GuiTreeViewCtrl::onSelect(int itemOrObjectId)


	




	
void GuiTreeViewCtrl::onUnselect(int itemOrObjectId)


	




	
void GuiTreeViewCtrl::open(SimSet obj, bool okToEdit)


	Set the root of the tree view to the specified object, or to the root set.






	
bool GuiTreeViewCtrl::removeItem(TreeItemId item)


	




	
void GuiTreeViewCtrl::removeSelection()


	Deselects an item.






	
void GuiTreeViewCtrl::scrollVisible(TreeItemId item)


	




	
int GuiTreeViewCtrl::scrollVisibleByObjectId(int id)


	Show item by object id.returns true if sucessful.






	
bool GuiTreeViewCtrl::selectItem(TreeItemId item, bool select)


	




	
void GuiTreeViewCtrl::setDebug(bool value)


	Enable/disable debug output.






	
void GuiTreeViewCtrl::setFilterText(string pattern)


	Set the pattern by which to filter items in the tree. Only items in the tree whose text matches this pattern are displayed.


	Parameters

	pattern – New pattern based on which visible items in the tree should be filtered. If empty, all items become visible.










	
void GuiTreeViewCtrl::setItemImages(int id, int normalImage, int expandedImage)


	Sets the normal and expanded images to show for the given item.






	
void GuiTreeViewCtrl::setItemTooltip(int id, string text)


	Set the tooltip to show for the given item.






	
void GuiTreeViewCtrl::showItemRenameCtrl(TreeItemId id)


	Show the rename text field for the given item (only one at a time).






	
void GuiTreeViewCtrl::sort(int parent, bool traverseHierarchy, bool parentsFirst, bool caseSensitive)


	Sorts all items of the given parent (or root). With ‘hierarchy’, traverses hierarchy.






	
void GuiTreeViewCtrl::toggleHideSelection()


	Toggle the hidden state of all objects in the current selection.






	
void GuiTreeViewCtrl::toggleLockSelection()


	Toggle the locked state of all objects in the current selection.








Fields


	
void GuiTreeViewCtrl::addChildSelectionByValue


	addChildSelectionByValue(TreeItemId parent, value)






	
void GuiTreeViewCtrl::buildVisibleTree


	Build the visible tree.






	
void GuiTreeViewCtrl::cancelRename


	For internal use.






	
bool GuiTreeViewCtrl::canRenameObjects


	If true clicking on a selected item ( that is an object and not the root ) will allow you to rename it.






	
bool GuiTreeViewCtrl::clearAllOnSingleSelection


	




	
bool GuiTreeViewCtrl::compareToObjectID


	




	
bool GuiTreeViewCtrl::deleteObjectAllowed


	




	
bool GuiTreeViewCtrl::destroyTreeOnSleep


	If true, the entire tree item hierarchy is deleted when the control goes to sleep.






	
bool GuiTreeViewCtrl::dragToItemAllowed


	




	
bool GuiTreeViewCtrl::fullRowSelect


	




	
int GuiTreeViewCtrl::getFirstRootItem


	Get id for root item.






	
int GuiTreeViewCtrl::getItemCount


	




	
string GuiTreeViewCtrl::getSelectedItemList


	returns a space seperated list of mulitple item ids






	
int GuiTreeViewCtrl::getSelectedItemsCount


	




	
string GuiTreeViewCtrl::getSelectedObjectList


	Returns a space sperated list of all selected object ids.






	
int GuiTreeViewCtrl::itemHeight


	




	
bool GuiTreeViewCtrl::mouseDragging


	




	
bool GuiTreeViewCtrl::multipleSelections


	If true, multiple items can be selected concurrently.






	
void GuiTreeViewCtrl::onRenameValidate


	For internal use.






	
void GuiTreeViewCtrl::removeAllChildren


	removeAllChildren(TreeItemId parent)






	
void GuiTreeViewCtrl::removeChildSelectionByValue


	removeChildSelectionByValue(TreeItemId parent, value)






	
bool GuiTreeViewCtrl::renameInternal


	If true then object renaming operates on the internalName rather than the object name.






	
bool GuiTreeViewCtrl::showClassNameForUnnamedObjects


	If true, class names will be used as object names for unnamed objects.






	
bool GuiTreeViewCtrl::showClassNames


	If true, item text labels for objects will include class names.






	
bool GuiTreeViewCtrl::showInternalNames


	If true, item text labels for obje ts will include internal names.






	
bool GuiTreeViewCtrl::showObjectIds


	If true, item text labels for objects will include object IDs.






	
bool GuiTreeViewCtrl::showObjectNames


	If true, item text labels for objects will include object names.






	
bool GuiTreeViewCtrl::showRoot


	If true, the root item is shown in the tree.






	
int GuiTreeViewCtrl::tabSize


	




	
int GuiTreeViewCtrl::textOffset


	




	
bool GuiTreeViewCtrl::tooltipOnWidthOnly


	




	
bool GuiTreeViewCtrl::useInspectorTooltips


	









          

      

      

    

  

    
      
          
            
  
GuiWindowCtrl

A window with a title bar and an optional set of buttons.


	Inherit:

	GuiContainer






Description

The GuiWindowCtrl class implements windows that can be freely placed within the render window. Additionally, the windows can be resized and maximized/minimized.

Example:

newGuiWindowCtrl( MyWindow )
{
   text = "My Window"; // The text that is displayed on the title bar.
   resizeWidth = true; // Allow horizontal resizing by user via mouse.
   resizeHeight = true; // Allow vertical resizing by user via mouse.
   canClose = true; // Display a close button in the title bar.
   canMinimize = true; // Display a minimize button in the title bar.
   canMaximize = true; // Display a maximize button in the title bar.
};








Methods


	
static void GuiWindowCtrl::attach(GuiWindowCtrl bottomWindow, GuiWindowCtrl topWindow)


	Attach bottomWindow to  so that bottomWindow moves along with topWindow when it is dragged.


	Parameters

	
	bottomWindow – 


	topWindow – 













	
void GuiWindowCtrl::attachTo(GuiWindowCtrl window)


	




	
void GuiWindowCtrl::onClose()


	Called when the close button has been pressed.






	
void GuiWindowCtrl::onCollapse()


	Called when the window is collapsed by clicking its title bar.






	
void GuiWindowCtrl::onMaximize()


	Called when the window has been maximized.






	
void GuiWindowCtrl::onMinimize()


	Called when the window has been minimized.






	
void GuiWindowCtrl::onRestore()


	Called when the window is restored from minimized, maximized, or collapsed state.






	
void GuiWindowCtrl::selectWindow()


	Bring the window to the front.






	
void GuiWindowCtrl::setCollapseGroup(bool state)


	Set the window’s collapsing state.






	
void GuiWindowCtrl::toggleCollapseGroup()


	Toggle the window collapsing.








Fields


	
bool GuiWindowCtrl::canClose


	Whether the window has a close button.






	
bool GuiWindowCtrl::canCollapse


	Whether the window can be collapsed by clicking its title bar.






	
bool GuiWindowCtrl::canMaximize


	Whether the window has a maximize button.






	
bool GuiWindowCtrl::canMinimize


	Whether the window has a minimize button.






	
bool GuiWindowCtrl::canMove


	Whether the window can be moved by dragging its titlebar.






	
string GuiWindowCtrl::closeCommand


	Script code to execute when the window is closed.






	
bool GuiWindowCtrl::edgeSnap


	If true, the window will snap to the edges of other windows when moved close to them.






	
bool GuiWindowCtrl::resizeHeight


	Whether the window can be resized vertically.






	
bool GuiWindowCtrl::resizeWidth


	Whether the window can be resized horizontally.






	
string GuiWindowCtrl::text


	Text label to display in titlebar.











          

      

      

    

  

    
      
          
            
  
HTTPObject

Allows communications between the game and a server using HTTP.


	Inherit:

	TCPObject






Description

HTTPObject is derrived from TCPObject and makes use of the same callbacks for dealing with connections and received data. However, the way in which you use HTTPObject to connect with a server is different than TCPObject. Rather than opening a connection, sending data, waiting to receive data, and then closing the connection, you issue a get() or post() and handle the response. The connection is automatically created and destroyed for you.

Example:

// In this example well retrieve the weather in Las Vegas using
// Googles API.  The response is in XML which could be processed
// and used by the game using SimXMLDocument, but well just output
// the results to the console in this example.

// Define callbacks for our specific HTTPObject using our instances
// name (WeatherFeed) as the namespace.

// Handle an issue with resolving the servers name
function WeatherFeed::onDNSFailed(%this)
{
   // Store this state
   %this.lastState = "DNSFailed";

   // Handle DNS failure
}

function WeatherFeed::onConnectFailed(%this)
{
   // Store this state
   %this.lastState = "ConnectFailed";

   // Handle connection failure
}

function WeatherFeed::onDNSResolved(%this)
{
   // Store this state
   %this.lastState = "DNSResolved";

}

function WeatherFeed::onConnected(%this)
{
   // Store this state
   %this.lastState = "Connected";

   // Clear our buffer
   %this.buffer = "";
}

function WeatherFeed::onDisconnect(%this)
{
   // Store this state
   %this.lastState = "Disconnected";

   // Output the buffer to the consoleecho("Google Weather Results:");
   echo(%this.buffer);
}

// Handle a line from the server
function WeatherFeed::onLine(%this, %line)
{
   // Store this line in out buffer
   %this.buffer = %this.buffer @ %line;
}

// Create the HTTPObject
%feed = newHTTPObject(WeatherFeed);

// Define a dynamic field to store the last connection state
%feed.lastState = "None";

// Send the GET command
%feed.get("www.google.com:80", "/ig/api", "weather=Las-Vegas,US");








Methods


	
void HTTPObject::get(string Address, string requirstURI, string query)


	Send a GET command to a server to send or retrieve data.


	Parameters

	
	Address – HTTP web address to send this get call to. Be sure to include the port at the end (IE: “www.garagegames.com:80”).


	requirstURI – Specific location on the server to access (IE: “index.php”.)


	query – Optional. Actual data to transmit to the server. Can be anything required providing it sticks with limitations of the HTTP protocol. If you were building the URL manually, this is the text that follows the question mark. For example: http://www.google.com/ig/api?weather=Las-Vegas,US








Example:

// Create an HTTP object for communications
%httpObj = newHTTPObject();

// Specify a URL to transmit to
%url = "www.garagegames.com:80";

// Specify a URI to communicate with
%URI = "/index.php";

// Specify a query to send.
%query = "";

// Send the GET command to the server
%httpObj.get(%url,%URI,%query);










	
void HTTPObject::post(string Address, string requirstURI, string query, string post)


	Send POST command to a server to send or retrieve data.


	Parameters

	
	Address – HTTP web address to send this get call to. Be sure to include the port at the end (IE: “www.garagegames.com:80”).


	requirstURI – Specific location on the server to access (IE: “index.php”.)


	query – Actual data to transmit to the server. Can be anything required providing it sticks with limitations of the HTTP protocol.


	post – Submission data to be processed.








Example:

// Create an HTTP object for communications
%httpObj = newHTTPObject();

// Specify a URL to transmit to
%url = "www.garagegames.com:80";

// Specify a URI to communicate with
%URI = "/index.php";

// Specify a query to send.
%query = "";

// Specify the submission data.
%post = "";

// Send the POST command to the server
%httpObj.POST(%url,%URI,%query,%post);















          

      

      

    

  

    
      
          
            
  
HoverVehicle

A hovering vehicle.


	Inherit:

	Vehicle






Description

A hover vehicle is a vehicle that maintains a specific distance between the vehicle and the ground at all times; unlike a flying vehicle which is free to ascend and descend at will.The model used for the HoverVehicle has the following requirements:







          

      

      

    

  

    
      
          
            
  
HoverVehicleData

Defines the properties of a HoverVehicle.


	Inherit:

	VehicleData






Description

Defines the properties of a HoverVehicle.




Fields


	
float HoverVehicleData::brakingActivationSpeed


	Maximum speed below which a braking force is applied.






	
float HoverVehicleData::brakingForce


	Force generated by braking. The vehicle is considered to be braking if it is moving, but the throttle is off, and no left or right thrust is being applied. This force is only applied when the vehicle’s velocity is less than brakingActivationSpeed.






	
float HoverVehicleData::dragForce


	Drag force factor that acts opposite to the vehicle velocity. Also used to determnine the vehicle’s maxThrustSpeed.






	
ParticleEmitterData HoverVehicleData::dustTrailEmitter


	Emitter to generate particles for the vehicle’s dust trail. The trail of dust particles is generated only while the vehicle is moving.






	
float HoverVehicleData::dustTrailFreqMod


	Number of dust trail particles to generate based on vehicle speed. The vehicle’s speed is divided by this value to determine how many particles to generate each frame. Lower values give a more dense trail, higher values a more sparse trail.






	
Point3F HoverVehicleData::dustTrailOffset


	“X Y Z” offset from the vehicle’s origin from which to generate dust trail particles. By default particles are emitted directly beneath the origin of the vehicle model.






	
SFXProfile HoverVehicleData::engineSound


	Looping engine sound. The volume is dynamically adjusted based on the current thrust level.






	
float HoverVehicleData::floatingGravMag


	Scale factor applied to the vehicle gravitational force when the vehicle is floating.






	
float HoverVehicleData::floatingThrustFactor


	Scalar applied to the vehicle’s thrust force when the vehicle is floating.






	
SFXProfile HoverVehicleData::floatSound


	Looping sound played while the vehicle is floating.






	
ParticleEmitterData HoverVehicleData::forwardJetEmitter


	Emitter to generate particles for forward jet thrust. Forward jet thrust particles are emitted from model nodes JetNozzle0 and JetNozzle1.






	
float HoverVehicleData::gyroDrag


	Damping torque that acts against the vehicle’s current angular momentum.






	
SFXProfile HoverVehicleData::jetSound


	Looping sound played when the vehicle is jetting.






	
float HoverVehicleData::mainThrustForce


	Force generated by thrusting the vehicle forward. Also used to determine the maxThrustSpeed:

Example:

maxThrustSpeed = (mainThrustForce + strafeThrustForce) / dragForce;










	
float HoverVehicleData::normalForce


	Force generated in the ground normal direction when the vehicle is not floating (within stabalizer length from the ground).






	
float HoverVehicleData::pitchForce


	Pitch (rotation about the X-axis) force applied when steering in the y-axis direction.






	
float HoverVehicleData::restorativeForce


	Force generated to stabalize the vehicle (return it to neutral pitch/roll) when the vehicle is floating (more than stabalizer length from the ground.






	
float HoverVehicleData::reverseThrustForce


	Force generated by thrusting the vehicle backward.






	
float HoverVehicleData::rollForce


	Roll (rotation about the Y-axis) force applied when steering in the x-axis direction.






	
float HoverVehicleData::stabDampingConstant


	Damping spring force acting against changes in the stabalizer length.






	
float HoverVehicleData::stabLenMax


	Length of the base stabalizer when travelling at maximum speed (maxThrustSpeed).






	
float HoverVehicleData::stabLenMin


	Length of the base stabalizer when travelling at minimum speed (0). Each tick, the vehicle performs 2 raycasts (from the center back and center front of the vehicle) to check for contact with the ground. The base stabalizer length determines the length of that raycast; if neither raycast hit the ground, the vehicle is floating, stabalizer spring and ground normal forces are not applied.






	
float HoverVehicleData::stabSpringConstant


	Value used to generate stabalizer spring force. The force generated depends on stabilizer compression, that is how close the vehicle is to the ground proportional to current stabalizer length.






	
float HoverVehicleData::steeringForce


	Yaw (rotation about the Z-axis) force applied when steering in the x-axis direction.about the vehicle’s Z-axis).






	
float HoverVehicleData::strafeThrustForce


	Force generated by thrusting the vehicle to one side. Also used to determine the vehicle’s maxThrustSpeed.






	
float HoverVehicleData::triggerTrailHeight


	Maximum height above surface to emit dust trail particles. If the vehicle is less than triggerTrailHeight above a static surface with a material that has ‘showDust’ set to true, the vehicle will emit particles from the dustTrailEmitter.






	
float HoverVehicleData::turboFactor


	Scale factor applied to the vehicle’s thrust force when jetting.






	
float HoverVehicleData::vertFactor


	Scalar applied to the vertical portion of the velocity drag acting on the vehicle. For the horizontal (X and Y) components of velocity drag, a factor of 0.25 is applied when the vehicle is floating, and a factor of 1.0 is applied when the vehicle is not floating. This velocity drag is multiplied by the vehicle’s dragForce, as defined above, and the result is subtracted from it’s movement force.











          

      

      

    

  

    
      
          
            
  
Item

datablock for common properties.


	Inherit:

	ShapeBase






Description

Base Item class. Uses the ItemData datablock for common properties.

Items represent an object in the world, usually one that the player will interact with. One example is a health kit on the group that is automatically picked up when the player comes into contact with it.

Example:

// This is the "health patch" dropped by a dying player.
datablock ItemData(HealthKitPatch)
{
   // Mission editor category, this datablock will show up in the// specified category under the "shapes" root category.
   category = "Health";

   className = "HealthPatch";

   // Basic Item properties
   shapeFile = "art/shapes/items/patch/healthpatch.dts";
   mass = 2;
   friction = 1;
   elasticity = 0.3;
   emap = true;

   // Dynamic properties used by the scripts
   pickupName = "a health patch";
   repairAmount = 50;
};

%obj = newItem()
{
   dataBlock = HealthKitSmall;
   parentGroup = EWCreatorWindow.objectGroup;
   static = true;
   rotate = true;
};








Methods


	
string Item::getLastStickyNormal()


	Get the normal of the surface on which the object is stuck.


	Returns

	is stuck.





Example:

// Acquire the position where this Item is currently stuck
%stuckPosition = %item.getLastStickPos();










	
string Item::getLastStickyPos()


	Get the position on the surface on which this Item is stuck.


	Returns

	is stuck.





Example:

// Acquire the position where this Item is currently stuck
%stuckPosition = %item.getLastStickPos();










	
bool Item::isAtRest()


	Is the object at rest (ie, no longer moving)?


	Returns

	True if the object is at rest, false if it is not.





Example:

// Query the item on if it is or is not at rest.
%isAtRest = %item.isAtRest();










	
bool Item::isRotating()


	Is the object still rotating?


	Returns

	True if the object is still rotating, false if it is not.





Example:

// Query the item on if it is or is not rotating.
%isRotating = %itemData.isRotating();










	
bool Item::isStatic()


	Is the object static (ie, non-movable)?


	Returns

	True if the object is static, false if it is not.





Example:

// Query the item on if it is or is not static.
%isStatic = %itemData.isStatic();










	
void Item::onEnterLiquid(string objID, string waterCoverage, string liquidType)


	Informs an Item object that it has entered liquid, along with information about the liquid type.


	Parameters

	
	objID – Object ID for this Item object.


	waterCoverage – How much coverage of water this Item object has.


	liquidType – The type of liquid that this Item object has entered.













	
void Item::onLeaveLiquid(string objID, string liquidType)


	Informs an Item object that it has left a liquid, along with information about the liquid type.


	Parameters

	
	objID – Object ID for this Item object.


	liquidType – The type of liquid that this Item object has left.













	
void Item::onStickyCollision(string objID)


	Informs the Item object that it is now sticking to another object. This callback is only called if the ItemData::sticky property for this Item is true.


	Parameters

	objID – Object ID this Item object.










	
bool Item::setCollisionTimeout(int ignoreColObj)


	Temporarily disable collisions against a specific ShapeBase object. This is useful to prevent a player from immediately picking up an Item they have just thrown. Only one object may be on the timeout list at a time. The timeout is defined as 15 ticks.


	Parameters

	objectID – ShapeBase object ID to disable collisions against.



	Returns

	object requested could be found, false if it could not.





Example:

// Set the ShapeBase Object ID to disable collisions against
%ignoreColObj = %player.getID();

// Inform this Item object to ignore collisions temproarily against the %ignoreColObj.
%item.setCollisionTimeout(%ignoreColObj);












Fields


	
int Item::maxWarpTicks[static]


	When a warp needs to occur due to the client being too far off from the server, this is the maximum number of ticks we’ll allow the client to warp to catch up.






	
float Item::minWarpTicks[static]


	Fraction of tick at which instant warp occures on the client.






	
bool Item::rotate


	If true, the object will automatically rotate around its Z axis.






	
bool  Item::static

	If true, the object is not moving in the world.











          

      

      

    

  

    
      
          
            
  
ItemData

type.


	Inherit:

	ShapeBaseData






Description

Stores properties for an individual Item type.

Items represent an object in the world, usually one that the player will interact with. One example is a health kit on the group that is automatically picked up when the player comes into contact with it.

ItemData provides the common properties for a set of Items. These properties include a DTS or DAE model used to render the Item in the world, its physical properties for when the Item interacts with the world (such as being tossed by the player), and any lights that emit from the Item.

Example:

datablock ItemData(HealthKitSmall)
{
   category ="Health";
   className = "HealthPatch";
   shapeFile = "art/shapes/items/kit/healthkit.dts";
   gravityMod = "1.0";
   mass = 2;
   friction = 1;
   elasticity = 0.3;
   density = 2;
   drag = 0.5;
   maxVelocity = "10.0";
   emap = true;
   sticky = false;
   dynamicType = "0"
;   lightOnlyStatic = false;
   lightType = "NoLight";
   lightColor = "1.0 1.0 1.0 1.0";
   lightTime = 1000;
   lightRadius = 10.0;
   simpleServerCollision = true;   // Dynamic properties used by the scripts

   pickupName = "a small health kit";
   repairAmount = 50;
};








Fields


	
float ItemData::elasticity


	A floating-point value specifying how ‘bouncy’ this ItemData is.






	
float ItemData::friction


	A floating-point value specifying how much velocity is lost to impact and sliding friction.






	
float ItemData::gravityMod


	Floating point value to multiply the existing gravity with, just for this ItemData .






	
ColorF ItemData::lightColor


	Color value to make this light. Example: “1.0,1.0,1.0”.






	
bool ItemData::lightOnlyStatic


	If true, this ItemData will only cast a light if the Item for this ItemData has a static value of true.






	
float ItemData::lightRadius


	Distance from the center point of this ItemData for the light to affect.






	
int ItemData::lightTime


	Time value for the light of this ItemData , used to control the pulse speed of the PulsingLight LightType.






	
ItemLightType ItemData::lightType


	Type of light to apply to this ItemData . Options are NoLight, ConstantLight, PulsingLight. Default is NoLight.






	
float ItemData::maxVelocity


	Maximum velocity that this ItemData is able to move.






	
bool ItemData::simpleServerCollision


	Determines if only simple server-side collision will be used (for pick ups). If set to true then only simple, server-side collision detection will be used. This is often the case if the item is used for a pick up object, such as ammo. If set to false then a full collision volume will be used as defined by the shape. The default is true.






	
bool ItemData::sticky


	If true, ItemData will ‘stick’ to any surface it collides with. When an item does stick to a surface, the Item::onStickyCollision() callback is called. The Item has methods to retrieve the world position and normal the Item is stuck to.











          

      

      

    

  

    
      
          
            
  
LangTable

Provides the code necessary to handle the low level management of the string tables for localization.


	Inherit:

	SimObject






Description

One LangTable is created for each mod, as well as one for the C++ code. LangTable is responsible for obtaining the correct strings from each and relaying it to the appropriate controls.




Methods


	
int LangTable::addLanguage(string filename)


	Adds a language to the table.


	Parameters

	
	filename – Name and path to the language file


	languageName – Optional name to assign to the new language entry






	Returns

	True If file was successfully found and language created










	
int LangTable::getCurrentLanguage()


	Get the ID of the current language table.


	Returns

	Numerical ID of the current language table










	
string LangTable::getLangName(int language)


	Return the readable name of the language table.


	Parameters

	language – Numerical ID of the language table to access



	Returns

	String containing the name of the table, NULL if ID was invalid or name was never specified










	
int LangTable::getNumLang()


	Used to find out how many languages are in the table.


	Returns

	Size of the vector containing the languages, numerical










	
string LangTable::getString(string filename)


	Grabs a string from the specified table. If an invalid is passed, the function will attempt to to grab from the default table


	Parameters

	filename – Name of the language table to access



	Returns

	Text from the specified language table, “” if ID was invalid and default table is not set










	
void LangTable::setCurrentLanguage(int language)


	Sets the current language table for grabbing text.


	Parameters

	language – ID of the table










	
void LangTable::setDefaultLanguage(int language)


	Sets the default language table.


	Parameters

	language – ID of the table















          

      

      

    

  

    
      
          
            
  
LeapMotionFrame


	Inherit:

	SimObject






Description

UNDOCUMENTED!




Methods


	
int LeapMotionFrame::getFrameInternalId()


	Provides the internal ID for this frame.


	Returns

	Internal ID of this frame.










	
int LeapMotionFrame::getFrameRealTime()


	Get the real time that this frame was generated.


	Returns

	Real time of this frame in milliseconds.










	
int LeapMotionFrame::getFrameSimTime()


	Get the sim time that this frame was generated.


	Returns

	Sim time of this frame in milliseconds.










	
int LeapMotionFrame::getHandCount()


	Get the number of hands defined in this frame.


	Returns

	The number of defined hands.










	
int LeapMotionFrame::getHandId(int index)


	Get the ID of the requested hand.


	Parameters

	index – The hand index to check.



	Returns

	ID of the requested hand.










	
int LeapMotionFrame::getHandPointablesCount(int index)


	Get the number of pointables associated with this hand.


	Parameters

	index – The hand index to check.



	Returns

	Number of pointables that belong with this hand.










	
Point3I LeapMotionFrame::getHandPos(int index)


	Get the position of the requested hand. The position is the hand’s integer position converted to Torque 3D coordinates (in millimeters).


	Parameters

	index – The hand index to check.



	Returns

	Integer position of the requested hand (in millimeters).










	
Point3F LeapMotionFrame::getHandRawPos(int index)


	Get the raw position of the requested hand. The raw position is the hand’s floating point position converted to Torque 3D coordinates (in millimeters).


	Parameters

	index – The hand index to check.



	Returns

	Raw position of the requested hand.










	
TransformF LeapMotionFrame::getHandRawTransform(int index)


	Get the raw transform of the requested hand.


	Parameters

	index – The hand index to check.



	Returns

	The raw position and rotation of the requested hand (in Torque 3D coordinates).










	
AngAxisF LeapMotionFrame::getHandRot(int index)


	Get the rotation of the requested hand. The Leap Motion hand rotation as converted into the Torque 3Dcoordinate system.


	Parameters

	index – The hand index to check.



	Returns

	Rotation of the requested hand.










	
Point2F LeapMotionFrame::getHandRotAxis(int index)


	Get the axis rotation of the requested hand. This is the axis rotation of the hand as if the hand were a gamepad thumb stick. Imagine a stick coming out the top of the hand and tilting the hand front, back, left and right controls that stick. The values returned along the x and y stick axis are normalized from -1.0 to 1.0 with the maximum hand tilt angle for these values as defined by $LeapMotion::MaximumHandAxisAngle .


	Parameters

	index – The hand index to check.



	Returns

	Axis rotation of the requested hand.










	
TransformF LeapMotionFrame::getHandTransform(int index)


	Get the transform of the requested hand.


	Parameters

	index – The hand index to check.



	Returns

	The position and rotation of the requested hand (in Torque 3D coordinates).










	
bool LeapMotionFrame::getHandValid(int index)


	Check if the requested hand is valid.


	Parameters

	index – The hand index to check.



	Returns

	True if the hand is valid.










	
int LeapMotionFrame::getPointableHandIndex(int index)


	Get the index of the hand that this pointable belongs to, if any.


	Parameters

	index – The pointable index to check.



	Returns

	Index of the hand this pointable belongs to, or -1 if there is no associated hand.










	
int LeapMotionFrame::getPointableId(int index)


	Get the ID of the requested pointable.


	Parameters

	index – The pointable index to check.



	Returns

	ID of the requested pointable.










	
float LeapMotionFrame::getPointableLength(int index)


	Get the length of the requested pointable.


	Parameters

	index – The pointable index to check.



	Returns

	Length of the requested pointable (in millimeters).










	
Point3I LeapMotionFrame::getPointablePos(int index)


	Get the position of the requested pointable. The position is the pointable’s integer position converted to Torque 3D coordinates (in millimeters).


	Parameters

	index – The pointable index to check.



	Returns

	Integer position of the requested pointable (in millimeters).










	
Point3F LeapMotionFrame::getPointableRawPos(int index)


	Get the raw position of the requested pointable. The raw position is the pointable’s floating point position converted to Torque 3D coordinates (in millimeters).


	Parameters

	index – The pointable index to check.



	Returns

	Raw position of the requested pointable.










	
TransformF LeapMotionFrame::getPointableRawTransform(int index)


	Get the raw transform of the requested pointable.


	Parameters

	index – The pointable index to check.



	Returns

	The raw position and rotation of the requested pointable (in Torque 3D coordinates).










	
AngAxisF LeapMotionFrame::getPointableRot(int index)


	Get the rotation of the requested pointable. The Leap Motion pointable rotation as converted into the Torque 3Dcoordinate system.


	Parameters

	index – The pointable index to check.



	Returns

	Rotation of the requested pointable.










	
int LeapMotionFrame::getPointablesCount()


	Get the number of pointables defined in this frame.


	Returns

	The number of defined pointables.










	
TransformF LeapMotionFrame::getPointableTransform(int index)


	Get the transform of the requested pointable.


	Parameters

	index – The pointable index to check.



	Returns

	The position and rotation of the requested pointable (in Torque 3D coordinates).










	
LeapMotionFramePointableType LeapMotionFrame::getPointableType(int index)


	Get the type of the requested pointable.


	Parameters

	index – The pointable index to check.



	Returns

	Type of the requested pointable.










	
bool LeapMotionFrame::getPointableValid(int index)


	Check if the requested pointable is valid.


	Parameters

	index – The pointable index to check.



	Returns

	True if the pointable is valid.










	
float LeapMotionFrame::getPointableWidth(int index)


	Get the width of the requested pointable.


	Parameters

	index – The pointable index to check.



	Returns

	Width of the requested pointable (in millimeters).










	
bool LeapMotionFrame::isFrameValid()


	Checks if this frame is valid.


	Returns

	True if the frame is valid.















          

      

      

    

  

    
      
          
            
  
LevelInfo

Stores and controls the rendering and status information for a game level.


	Inherit:

	NetObject






Description

Stores and controls the rendering and status information for a game level.

Example:

newLevelInfo(theLevelInfo)
{
  visibleDistance = "1000";
  fogColor = "0.6 0.6 0.7 1";
  fogDensity = "0";
  fogDensityOffset = "700";
  fogAtmosphereHeight = "0";
  canvasClearColor = "0 0 0 255";
  canSaveDynamicFields = "1";
  levelName = "Blank Room";
  desc0 = "A blank room ready to be populated with Torque objects.";
  Enabled = "1";
};








Fields


	
bool LevelInfo::advancedLightmapSupport


	Enable expanded support for mixing static and dynamic lighting (more costly).






	
EaseF LevelInfo::ambientLightBlendCurve


	Interpolation curve to use for blending from one ambient light color to a different one.






	
float LevelInfo::ambientLightBlendPhase


	Number of seconds it takes to blend from one ambient light color to a different one.






	
ColorI LevelInfo::canvasClearColor


	The color used to clear the background before the scene or any GUIs are rendered.






	
float LevelInfo::decalBias


	NearPlane bias used when rendering Decal and DecalRoad . This should be tuned to the visibleDistance in your level.






	
float LevelInfo::fogAtmosphereHeight


	A height in meters for altitude fog falloff.






	
ColorF LevelInfo::fogColor


	The default color for the scene fog.






	
float LevelInfo::fogDensity


	The 0 to 1 density value for the exponential fog falloff.






	
float LevelInfo::fogDensityOffset


	An offset from the camera in meters for moving the start of the fog effect.






	
float LevelInfo::nearClip


	Closest distance from the camera’s position to render the world.






	
SFXAmbience LevelInfo::soundAmbience


	The global ambient sound environment.






	
SFXDistanceModel LevelInfo::soundDistanceModel


	The distance attenuation model to use.






	
float LevelInfo::visibleDistance


	Furthest distance fromt he camera’s position to render the world.











          

      

      

    

  

    
      
          
            
  
LightAnimData

A datablock which defines and performs light animation, such as rotation, brightness fade, and colorization.


	Inherit:

	SimDataBlock






Description

A datablock which defines and performs light animation, such as rotation, brightness fade, and colorization.

Example:

datablock LightAnimData( SubtlePulseLightAnim )
{
   brightnessA = 0.5;
   brightnessZ = 1;
   brightnessPeriod = 1;
   brightnessKeys = "aza";
   brightnessSmooth = true;
};








Fields


	
float LightAnimData::brightnessA


	The value of the A key in the keyframe sequence.






	
string LightAnimData::brightnessKeys


	The keyframe sequence encoded into a string where characters from A to Z define a position between the two animation values.






	
float LightAnimData::brightnessPeriod


	The animation time for keyframe sequence.






	
bool LightAnimData::brightnessSmooth


	If true the transition between keyframes will be smooth.






	
float LightAnimData::brightnessZ


	The value of the Z key in the keyframe sequence.






	
float LightAnimData::colorA[3]


	The value of the A key in the keyframe sequence.






	
string LightAnimData::colorKeys[3]


	The keyframe sequence encoded into a string where characters from A to Z define a position between the two animation values.






	
float LightAnimData::colorPeriod[3]


	The animation time for keyframe sequence.






	
bool LightAnimData::colorSmooth[3]


	If true the transition between keyframes will be smooth.






	
float LightAnimData::colorZ[3]


	The value of the Z key in the keyframe sequence.






	
float LightAnimData::offsetA[3]


	The value of the A key in the keyframe sequence.






	
string LightAnimData::offsetKeys[3]


	The keyframe sequence encoded into a string where characters from A to Z define a position between the two animation values.






	
float LightAnimData::offsetPeriod[3]


	The animation time for keyframe sequence.






	
bool LightAnimData::offsetSmooth[3]


	If true the transition between keyframes will be smooth.






	
float LightAnimData::OffsetZ[3]


	The value of the Z key in the keyframe sequence.






	
float LightAnimData::rotA[3]


	The value of the A key in the keyframe sequence.






	
string LightAnimData::rotKeys[3]


	The keyframe sequence encoded into a string where characters from A to Z define a position between the two animation values.






	
float LightAnimData::rotPeriod[3]


	The animation time for keyframe sequence.






	
bool LightAnimData::rotSmooth[3]


	If true the transition between keyframes will be smooth.






	
float LightAnimData::rotZ[3]


	The value of the Z key in the keyframe sequence.











          

      

      

    

  

    
      
          
            
  
LightBase

This is the base class for light objects.


	Inherit:

	SceneObject






Description

It is NOT intended to be used directly in script, but exists to provide the base member variables and generic functionality. You should be using the derived classes PointLight and SpotLight, which can be declared in TorqueScript or added from the World Editor.

For this class, we only add basic lighting options that all lighting systems would use. The specific lighting system options are injected at runtime by the lighting system itself.




Methods


	
void LightBase::playAnimation()


	Plays the light animation assigned to this light with the existing LightAnimData datablock.

Example:

// Play the animation assigned to this light
CrystalLight.playAnimation();










	
void LightBase::playAnimation(LightAnimData anim)


	Plays the light animation on this light using a new LightAnimData . If no LightAnimData is passed the existing one is played.


	Parameters

	anim – Name of the LightAnimData datablock to be played





Example:

// Play the animation using a new LightAnimData datablock
CrystalLight.playAnimation(SubtlePulseLightAnim);










	
void LightBase::setLightEnabled(bool state)


	Toggles the light on and off.


	Parameters

	state – Turns the light on (true) or off (false)





Example:

// Disable the light
CrystalLight.setLightEnabled(false);

// Renable the light
CrystalLight.setLightEnabled(true);












Fields


	
bool LightBase::animate


	Toggles animation for the light on and off.






	
float LightBase::animationPeriod


	The length of time in seconds for a single playback of the light animation (must be gt 0).






	
float LightBase::animationPhase


	The phase used to offset the animation start time to vary the animation of nearby lights.






	
LightAnimData LightBase::animationType


	Datablock containing light animation information ( LightAnimData ).






	
Point3F LightBase::attenuationRatio


	The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.






	
float LightBase::brightness


	Adjusts the lights power, 0 being off completely.






	
bool LightBase::castShadows


	Enables/disabled shadow casts by this light.






	
ColorF LightBase::color


	Changes the base color hue of the light.






	
filename LightBase::cookie


	A custom pattern texture which is projected from the light.






	
float LightBase::fadeStartDistance


	Start fading shadows out at this distance. 0 = auto calculate this distance.






	
float LightBase::flareScale


	Globally scales all features of the light flare.






	
LightFlareData LightBase::flareType


	Datablock containing light flare information ( LightFlareData ).






	
bool LightBase::includeLightmappedGeometryInShadow


	This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedInLightmap’ is false).






	
bool LightBase::isEnabled


	Enables/Disables the object rendering and functionality in the scene.






	
bool LightBase::lastSplitTerrainOnly


	This toggles only terrain being rendered to the last split of a PSSM shadow map.






	
float LightBase::logWeight


	The logrithmic PSSM split distance factor.






	
int LightBase::numSplits


	The logrithmic PSSM split distance factor.






	
Point4F LightBase::overDarkFactor


	The ESM shadow darkening factor.






	
void LightBase::pauseAnimation


	Stops the light animation.






	
float LightBase::priority


	Used for sorting of lights by the light manager. Priority determines if a light has a stronger effect than, those with a lower value.






	
bool LightBase::representedInLightmap


	This light is represented in lightmaps (static light, default: false).






	
ColorF LightBase::shadowDarkenColor


	The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘representedInLightmap’ is false).






	
float LightBase::shadowDistance


	The distance from the camera to extend the PSSM shadow.






	
float LightBase::shadowSoftness


	




	
ShadowType LightBase::shadowType


	The type of shadow to use on this light.






	
int LightBase::texSize


	The texture size of the shadow map.











          

      

      

    

  

    
      
          
            
  
LightDescription

A helper datablock used by classes (such as shapebase) that submit lights to the scene but do not use actual “LightBase” objects.


	Inherit:

	SimDataBlock






Description

A helper datablock used by classes (such as shapebase) that submit lights to the scene but do not use actual “LightBase” objects.

This datablock stores the properties of that light as fields that can be initialized from script.

Example:

// Declare a light description to be used on a rocket launcher projectile
datablock LightDescription(RocketLauncherLightDesc)
{
   range = 4.0;
   color = "1 1 0";
   brightness = 5.0;
   animationType = PulseLightAnim;
   animationPeriod = 0.25;
};

// Declare a ProjectileDatablock which uses the light description
datablock ProjectileData(RocketLauncherProjectile)
{
   lightDesc = RocketLauncherLightDesc;

   projectileShapeName = "art/shapes/weapons/SwarmGun/rocket.dts";

   directDamage = 30;
   radiusDamage = 30;
   damageRadius = 5;
   areaImpulse = 2500;

   // ... remaining ProjectileData fields not listed for this example
};








Methods


	
void LightDescription::apply()


	Force an inspectPostApply call for the benefit of tweaking via the console. Normally this functionality is only exposed to objects via the World Editor, once changes have been made. Exposing apply to script allows you to make changes to it on the fly without the World Editor.

Example:

// Change a property of the light description
RocketLauncherLightDesc.brightness = 10;

// Make it so
RocketLauncherLightDesc.apply();












Fields


	
float LightDescription::animationPeriod


	The length of time in seconds for a single playback of the light animation.






	
float LightDescription::animationPhase


	The phase used to offset the animation start time to vary the animation of nearby lights.






	
LightAnimData LightDescription::animationType


	Datablock containing light animation information ( LightAnimData ).






	
Point3F LightDescription::attenuationRatio


	The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.






	
float LightDescription::brightness


	Adjusts the lights power, 0 being off completely.






	
bool LightDescription::castShadows


	Enables/disabled shadow casts by this light.






	
ColorF LightDescription::color


	Changes the base color hue of the light.






	
filename LightDescription::cookie


	A custom pattern texture which is projected from the light.






	
float LightDescription::fadeStartDistance


	Start fading shadows out at this distance. 0 = auto calculate this distance.






	
float LightDescription::flareScale


	Globally scales all features of the light flare.






	
LightFlareData LightDescription::flareType


	Datablock containing light flare information ( LightFlareData ).






	
bool LightDescription::includeLightmappedGeometryInShadow


	This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedInLightmap’ is false).






	
bool LightDescription::lastSplitTerrainOnly


	This toggles only terrain being rendered to the last split of a PSSM shadow map.






	
float LightDescription::logWeight


	The logrithmic PSSM split distance factor.






	
int LightDescription::numSplits


	The logrithmic PSSM split distance factor.






	
Point4F LightDescription::overDarkFactor


	The ESM shadow darkening factor.






	
float LightDescription::range


	Controls the size (radius) of the light.






	
bool LightDescription::representedInLightmap


	This light is represented in lightmaps (static light, default: false).






	
ColorF LightDescription::shadowDarkenColor


	The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘representedInLightmap’ is false).






	
float LightDescription::shadowDistance


	The distance from the camera to extend the PSSM shadow.






	
float LightDescription::shadowSoftness


	




	
ShadowType LightDescription::shadowType


	The type of shadow to use on this light.






	
int LightDescription::texSize


	The texture size of the shadow map.











          

      

      

    

  

    
      
          
            
  
LightFlareData

Defines a light flare effect usable by scene lights.


	Inherit:

	SimDataBlock






Description

LightFlareData is a datablock which defines a type of flare effect. This may then be referenced by other classes which support the rendering of a flare: Sun, ScatterSky, LightBase.

A flare contains one or more elements defined in the element* named fields of LightFlareData, with a maximum of ten elements. Each element is rendered as a 2D sprite in screenspace.

Example:

// example from Full Template, core/art/datablocks/lights.cs
datablock LightFlareData( LightFlareExample0 )
{
   overallScale = 2.0;
   flareEnabled = true;
   renderReflectPass = true;
   flareTexture = "./../special/lensFlareSheet1";
   occlusionRadius = 0.25;

   elementRect[0] = "0 512 512 512";
   elementDist[0] = 0.0;
   elementScale[0] = 0.5;
   elementTint[0] = "1.0 1.0 1.0";
   elementRotate[0] = false;
   elementUseLightColor[0] = false;

   elementRect[1] = "512 0 512 512";
   elementDist[1] = 0.0;
   elementScale[1] = 2.0;
   elementTint[1] = "0.5 0.5 0.5";
   elementRotate[1] = false;
   elementUseLightColor[1] = false;
};





The elementDist field defines where along the flare’s beam the element appears. A distance of 0.0 is directly over the light source, a distance of 1.0 is at the screen center, and a distance of 2.0 is at the position of the light source mirrored across the screen center.




Methods


	
void LightFlareData::apply()


	Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply








Fields


	
float LightFlareData::elementDist[20]


	Where this element appears along the flare beam.






	
RectF LightFlareData::elementRect[20]


	A rectangle specified in pixels of the flareTexture image.






	
bool LightFlareData::elementRotate[20]


	Defines if this element orients to point along the flare beam or if it is always upright.






	
float LightFlareData::elementScale[20]


	Size scale applied to this element.






	
ColorF LightFlareData::elementTint[20]


	Used to modulate this element’s color if elementUseLightColor is false.






	
bool LightFlareData::elementUseLightColor[20]


	If true this element’s color is modulated by the light color. If false, elementTint will be used.






	
bool LightFlareData::flareEnabled


	Allows the user to disable this flare globally for any lights referencing it.






	
filename LightFlareData::flareTexture


	The texture / sprite sheet for this flare.






	
float LightFlareData::occlusionRadius


	If positive an occlusion query is used to test flare visibility, else it uses simple raycasts.






	
float LightFlareData::overallScale


	Size scale applied to all elements of the flare.






	
bool LightFlareData::renderReflectPass


	If false the flare does not render in reflections, else only non-zero distance elements are rendered.











          

      

      

    

  

    
      
          
            
  
Lightning

An emitter for lightning bolts.


	Inherit:

	GameBase






Description

An emitter for lightning bolts.

Lightning strike events are created on the server and transmitted to all clients to render the bolt. The strike may be followed by a random thunder sound. Player or Vehicle objects within the Lightning strike range can be hit and damaged by bolts.




Methods


	
void Lightning::applyDamage(Point3F hitPosition, Point3F hitNormal, SceneObject hitObject)


	Informs an object that it was hit by a lightning bolt and needs to take damage.


	Parameters

	
	hitPosition – World position hit by the lightning bolt.


	hitNormal – Surface normal at hitPosition.


	hitObject – Player or Vehicle object that was hit.








Example:

function Lightning::applyDamage( %this, %hitPosition, %hitNormal, %hitObject )
{
   // apply damage to the player
   %hitObject.applyDamage( 25 );
}










	
void Lightning::strikeObject(int id)


	Creates a LightningStrikeEvent which strikes a specific object.






	
void Lightning::strikeRandomPoint()


	Creates a LightningStrikeEvent which attempts to strike and damage a random object in range of the Lightning object.

Example:

// Generate a damaging lightning strike effect on all clients
%lightning.strikeRandomPoint();










	
void Lightning::warningFlashes()


	Creates a LightningStrikeEvent that triggers harmless lightning bolts on all clients. No objects will be damaged by these bolts.

Example:

// Generate a harmless lightning strike effect on all clients
%lightning.warningFlashes();












Fields


	
float Lightning::boltStartRadius


	Radial distance from the center of the Lightning object for the start point of the bolt. The actual start point will be a random point within this radius.






	
float Lightning::chanceToHitTarget


	Percentage chance (0-1) that a given lightning bolt will hit something.






	
ColorF Lightning::color


	Color to blend the strike texture with.






	
ColorF Lightning::fadeColor


	Color to blend the strike texture with when the bolt is fading away. Bolts fade away automatically shortly after the strike occurs.






	
float Lightning::strikeRadius


	Horizontal size (XY plane) of the search box used to find and damage Player or Vehicle objects within range of the strike. Only the object at highest altitude with a clear line of sight to the bolt will be hit.






	
int Lightning::strikesPerMinute


	Number of lightning strikes to perform per minute. Automatically invokes strikeRandomPoint() at regular intervals.






	
float Lightning::strikeWidth


	Width of a lightning bolt.






	
bool Lightning::useFog


	Controls whether lightning bolts are affected by fog when they are rendered.











          

      

      

    

  

    
      
          
            
  
LightningData

emitter object.


	Inherit:

	GameBaseData






Description

Common data for a Lightning emitter object.




Fields


	
SFXTrack LightningData::strikeSound


	Sound profile to play when a lightning strike occurs.






	
string LightningData::strikeTextures[8]


	List of textures to use to render lightning strikes.






	
SFXTrack LightningData::thunderSounds[8]


	List of thunder sound effects to play. A random one of these sounds will be played shortly after each strike occurs.











          

      

      

    

  

    
      
          
            
  
LightningStrikeEvent

Network event that triggers a lightning strike on the client when it is received.
Description
———–

Network event that triggers a lightning strike on the client when it is received.

This event is sent to all clients when the warningFlashes(), strikeRandomPoint() or strikeObject() methods are invoked on the Lightning object on the server.





          

      

      

    

  

    
      
          
            
  
Marker

A single joint, or knot, along a path.


	Inherit:

	SceneObject






Description

A single joint, or knot, along a path. Should be stored inside a Path container object. A path markers can be one of three primary movement types: “normal”, “Position Only”, or “Kink”.

Example:

new path()
   {
     isLooping = "1";

     newMarker()
      {
         seqNum = "0";
         type = "Normal";
         msToNext = "1000";
         smoothingType = "Spline";
         position = "-0.054708 -35.0612 234.802";
         rotation = "1 0 0 0";
      };

   };








Fields


	
int Marker::msToNext


	Milliseconds to next marker in sequence.






	
int Marker::seqNum


	Marker position in sequence of markers on this path.






	
MarkerSmoothingType Marker::smoothingType


	Path smoothing at this marker/knot. “Linear” means no smoothing, while “Spline” means to smooth.






	
MarkerKnotType Marker::type


	Type of this marker/knot. A “normal” knot will have a smooth camera translation/rotation effect. “Position Only” will do the same for translations, leaving rotation un-touched. Lastly, a “Kink” means the rotation will take effect immediately for an abrupt rotation change.











          

      

      

    

  

    
      
          
            
  
Material

A material in Torque 3D is a data structure that describes a surface.


	Inherit:

	SimObject






Description

It contains many different types of information for rendering properties. Torque 3D generates shaders from Material definitions. The shaders are compiled at runtime and output into the example/shaders directory. Any errors or warnings generated from compiling the procedurally generated shaders are output to the console as well as the output window in the Visual C IDE.

Example:

singleton Material(DECAL_scorch)
{
   baseTex[0] = "./scorch_decal.png";
   vertColor[ 0 ] = true;

   translucent = true;
   translucentBlendOp = None;
   translucentZWrite = true;
   alphaTest = true;
   alphaRef = 84;
};








Fields


	
int Material::alphaRef


	The alpha reference value for alpha testing. Must be between 0 to 255.






	
bool Material::alphaTest


	Enables alpha test when rendering the material.






	
MaterialAnimType Material::animFlags[4]


	The types of animation to play on this material.






	
filename Material::baseTex[4]


	For backwards compatibility.






	
bool Material::bumpAtlas[4]


	




	
filename Material::bumpTex[4]


	For backwards compatibility.






	
bool Material::castShadows


	If set to false the lighting system will not cast shadows from this material.






	
Point2I Material::cellIndex[4]


	




	
Point2I Material::cellLayout[4]


	




	
int Material::cellSize[4]


	




	
ColorF Material::colorMultiply[4]


	For backwards compatibility.






	
string Material::cubemap


	The name of a CubemapData for environment mapping.






	
SFXTrack Material::customFootstepSound


	The sound to play when the player walks over the material. If this is set, it overrides footstepSoundId . This field is useful for directly assigning custom footstep sounds to materials without having to rely on the PlayerData sound assignment. Be aware that materials are client-side objects. This means that the SFXTracks assigned to materials must be client-side, too.






	
SFXTrack Material::customImpactSound


	The sound to play when the player impacts on the surface with a velocity equal or greater than PlayerData::groundImpactMinSpeed . If this is set, it overrides impactSoundId . This field is useful for directly assigning custom impact sounds to materials without having to rely on the PlayerData sound assignment. Be aware that materials are client-side objects. This means that the SFXTracks assigned to materials must be client-side, too.






	
filename Material::detailMap[4]


	A typically greyscale detail texture additively blended into the material.






	
filename Material::detailNormalMap[4]


	A second normal map texture applied at the detail scale. You can use the DXTnm format only when per-pixel specular highlights are disabled.






	
float Material::detailNormalMapStrength[4]


	Used to scale the strength of the detail normal map when blended with the base normal map.






	
Point2F Material::detailScale[4]


	The scale factor for the detail map.






	
filename Material::detailTex[4]


	For backwards compatibility.






	
ColorF Material::diffuseColor[4]


	This color is multiplied against the diffuse texture color. If no diffuse texture is present this is the material color.






	
filename Material::diffuseMap[4]


	The diffuse color texture map.






	
bool Material::doubleSided


	Disables backface culling casing surfaces to be double sided. Note that the lighting on the backside will be a mirror of the front side of the surface.






	
void Material::dumpInstances


	Dumps a formatted list of the currently allocated material instances for this material to the console.






	
bool Material::dynamicCubemap


	Enables the material to use the dynamic cubemap from the ShapeBase object its applied to.






	
ColorF Material::effectColor[2]


	If showDust is true, this is the set of colors to use for the ParticleData of the dust emitter.






	
bool Material::emissive[4]


	Enables emissive lighting for the material.






	
filename Material::envMap[4]


	The name of an environment map cube map to apply to this material.






	
filename Material::envTex[4]


	For backwards compatibility.






	
void Material::flush


	Flushes all material instances that use this material.






	
int Material::footstepSoundId


	What sound to play from the PlayerData sound list when the player walks over the material. -1 (default) to not play any sound. The IDs are:



	0:


	PlayerData::FootSoftSound


	1:


	PlayerData::FootHardSound


	2:


	PlayerData::FootMetalSound


	3:


	PlayerData::FootSnowSound


	4:


	PlayerData::FootShallowSound


	5:


	PlayerData::FootWadingSound


	6:


	PlayerData::FootUnderwaterSound


	7:


	PlayerData::FootBubblesSound


	8:


	PlayerData::movingBubblesSound


	9:


	PlayerData::waterBreathSound


	10:


	PlayerData::impactSoftSound


	11:


	PlayerData::impactHardSound


	12:


	PlayerData::impactMetalSound


	13:


	PlayerData::impactSnowSound


	14:


	PlayerData::impactWaterEasy


	15:


	PlayerData::impactWaterMedium


	16:


	PlayerData::impactWaterHard


	17:


	PlayerData::exitingWater












	
string Material::getAnimFlags


	




	
string Material::getFilename


	Get filename of material.






	
bool Material::glow[4]


	Enables rendering this material to the glow buffer.






	
int Material::impactSoundId


	What sound to play from the PlayerData sound list when the player impacts on the surface with a velocity equal or greater than PlayerData::groundImpactMinSpeed . For a list of IDs, see footstepSoundId






	
bool Material::isAutoGenerated


	Returns true if this Material was automatically generated by MaterialList::mapMaterials().






	
filename Material::lightMap[4]


	The lightmap texture used with pureLight.






	
string Material::mapTo


	Used to map this material to the material name used by TSShape.






	
float Material::minnaertConstant[4]


	The Minnaert shading constant value. Must be greater than 0 to enable the effect.






	
filename Material::normalMap[4]


	The normal map texture. You can use the DXTnm format only when per-pixel specular highlights are disabled, or a specular map is in use.






	
filename Material::overlayMap[4]


	A secondary diffuse color texture map which will use the second texcoord of a mesh.






	
filename Material::overlayTex[4]


	For backwards compatibility.






	
float Material::parallaxScale[4]


	Enables parallax mapping and defines the scale factor for the parallax effect. Typically this value is less than 0.4 else the effect breaks down.






	
bool Material::pixelSpecular[4]


	This enables per-pixel specular highlights controlled by the alpha channel of the normal map texture. Note that if pixel specular is enabled the DXTnm format will not work with your normal map, unless you are also using a specular map.






	
bool Material::planarReflection


	




	
void Material::reload


	Reloads all material instances that use this material.






	
Point2F Material::rotPivotOffset[4]


	The piviot position in UV coordinates to center the rotation animation.






	
float Material::rotSpeed[4]


	The speed to rotate the texture in degrees per second when rotation animation is enabled.






	
Point2F Material::scrollDir[4]


	The scroll direction in UV space when scroll animation is enabled.






	
float Material::scrollSpeed[4]


	The speed to scroll the texture in UVs per second when scroll animation is enabled.






	
float Material::sequenceFramePerSec[4]


	The number of frames per second for frame based sequence animations if greater than zero.






	
float Material::sequenceSegmentSize[4]


	The size of each frame in UV units for sequence animations.






	
void Material::setAutoGenerated


	setAutoGenerated(bool isAutoGenerated): Set whether or not the Material is autogenerated.






	
bool Material::showDust


	Whether to emit dust particles from a shape moving over the material. This is, for example, used by vehicles or players to decide whether to show dust trails.






	
bool Material::showFootprints


	Whether to show player footprint decals on this material.






	
ColorF Material::specular[4]


	The color of the specular highlight when not using a specularMap.






	
filename Material::specularMap[4]


	The specular map texture. The RGB channels of this texture provide a per-pixel replacement for the ‘specular’ parameter on the material. If this texture contains alpha information, the alpha channel of the texture will be used as the gloss map. This provides a per-pixel replacement for the ‘specularPower’ on the material.






	
float Material::specularPower[4]


	The hardness of the specular highlight when not using a specularMap.






	
float Material::specularStrength[4]


	The strength of the specular highlight when not using a specularMap.






	
bool Material::subSurface[4]


	Enables the subsurface scattering approximation.






	
ColorF Material::subSurfaceColor[4]


	The color used for the subsurface scattering approximation.






	
float Material::subSurfaceRolloff[4]


	The 0 to 1 rolloff factor used in the subsurface scattering approximation.






	
filename Material::toneMap[4]


	The tonemap texture used with pureLight.






	
bool Material::translucent


	If true this material is translucent blended.






	
MaterialBlendOp Material::translucentBlendOp


	The type of blend operation to use when the material is translucent.






	
bool Material::translucentZWrite


	If enabled and the material is translucent it will write into the depth buffer.






	
bool Material::useAnisotropic[4]


	Use anisotropic filtering for the textures of this stage.






	
bool Material::vertColor[4]


	If enabled, vertex colors are premultiplied with diffuse colors.






	
bool Material::vertLit[4]


	If true the vertex color is used for lighting.






	
float Material::waveAmp[4]


	The wave amplitude when wave animation is enabled.






	
float Material::waveFreq[4]


	The wave frequency when wave animation is enabled.






	
MaterialWaveType Material::waveType[4]


	The type of wave animation to perform when wave animation is enabled.











          

      

      

    

  

    
      
          
            
  
MeshRoad

A strip of rectangular mesh segments defined by a 3D spline for prototyping road-shaped objects in your scene.


	Inherit:

	SceneObject






Description

A strip of rectangular mesh segments defined by a 3D spline for prototyping road-shaped objects in your scene.

User may control width and depth per node, overall spline shape in three dimensions, and seperate Materials for rendering the top, bottom, and side surfaces.

MeshRoad is not capable of handling intersections, branches, curbs, or other desirable features in a final ‘road’ asset and is therefore intended for prototyping and experimentation.

Materials assigned to MeshRoad should tile vertically.




Methods


	
void MeshRoad::postApply()


	Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit material and other fields ( not including nodes ) to client objects.






	
void MeshRoad::regenerate()


	Intended as a helper to developers and editor scripts. Force MeshRoad to recreate its geometry.






	
void MeshRoad::setNodeDepth(int idx, float meters)


	Intended as a helper to developers and editor scripts. Sets the depth in meters of a particular node.








Fields


	
string MeshRoad::bottomMaterial


	Material for the bottom surface of the road.






	
float MeshRoad::breakAngle


	Angle in degrees - MeshRoad will subdivide the spline if its curve is greater than this threshold.






	
bool MeshRoad::EditorOpen[static]


	True if the MeshRoad editor is open, otherwise false.






	
string MeshRoad::Node


	Do not modify, for internal use.






	
bool MeshRoad::showBatches[static]


	Determines if the debug rendering of the batches cubes is displayed or not.






	
bool MeshRoad::showRoad[static]


	If true, the road will be rendered. When in the editor, roads are always rendered regardless of this flag.






	
bool MeshRoad::showSpline[static]


	If true, the spline on which the curvature of this road is based will be rendered.






	
string MeshRoad::sideMaterial


	Material for the left, right, front, and back surfaces of the road.






	
float MeshRoad::textureLength


	The length in meters of textures mapped to the MeshRoad .






	
string MeshRoad::topMaterial


	Material for the upper surface of the road.






	
int MeshRoad::widthSubdivisions


	Subdivide segments widthwise this many times when generating vertices.






	
bool MeshRoad::wireframe[static]


	If true, will render the wireframe of the road.











          

      

      

    

  

    
      
          
            
  
Message

Base class for messages.


	Inherit:

	SimObject






Description

Message is the base class for C++ defined messages, and may also be used in script for script defined messages if no C++ subclass is appropriate.

Messages are reference counted and will be automatically deleted when their reference count reaches zero. When you dispatch a message, a reference will be added before the dispatch and freed after the dispatch. This allows for temporary messages with no additional code. If you want to keep the message around, for example to dispatch it to multiple queues, call addReference() before dispatching it and freeReference() when you are done with it. Never delete a Message object directly unless addReference() has not been called or the message has not been dispatched.

Message IDs are pooled similarly to datablocks, with the exception that IDs are reused. If you keep a message for longer than a single dispatch, then you should ensure that you clear any script variables that refer to it after the last freeReference(). If you don’t, then it is probable that the object ID will become valid again in the future and could cause hard to track down bugs.

Messages have a unique type to simplify message handling code. For object messages, the type is defined as either the script defined class name or the C++ class name if no script class was defined. The message type may be obtained through the getType() method.

By convention, any data for the message is held in script accessible fields. Messages that need to be handled in C++ as well as script provide the relevant data through persistent fields in a subclass of Message to provide best performance on the C++ side. Script defined messages usually their through dynamic fields, and may be accessed in C++ using the SimObject::getDataField() method.




Methods


	
void Message::addReference()


	Increment the reference count for this message.






	
void Message::freeReference()


	Decrement the reference count for this message.






	
string Message::getType()


	Get message type (script class name or C++ class name if no script defined class).






	
void Message::onAdd()


	Script callback when a message is first created and registered.

Example:

function Message::onAdd(%this)
{
   // Perform on add code here
}










	
void Message::onRemove()


	Script callback when a message is deleted.

Example:

function Message::onRemove(%this)
{
   // Perform on remove code here
}















          

      

      

    

  

    
      
          
            
  
MessageForwarder

Forward messages from one queue to another.


	Inherit:

	ScriptMsgListener






Description

MessageForwarder is a script class that can be used to forward messages from one queue to another.

Example:

%fwd = newMessageForwarder()
{
   toQueue = "QueueToSendTo";
};

registerMessageListener("FromQueue", %fwd);





Where “QueueToSendTo” is the queue you want to forward to, and “FromQueue” is the queue you want to forward from.




Fields


	
caseString MessageForwarder::toQueue


	Name of queue to forward to.











          

      

      

    

  

    
      
          
            
  
MessageVector

Store a list of chat messages.


	Inherit:

	SimObject






Description

This is responsible for managing messages which appear in the chat HUD, not the actual control rendered to the screen

Example:

// Declare ChatHud, which is what will display the actual chat from a MessageVectornewGuiMessageVectorCtrl(ChatHud) {
   profile = "ChatHudMessageProfile";
   horizSizing = "width";
   vertSizing = "height";
   position = "1 1";
   extent = "252 16";
   minExtent = "8 8";
   visible = "1";
   helpTag = "0";
   lineSpacing = "0";
   lineContinuedIndex = "10";
   matchColor = "0 0 255 255";
   maxColorIndex = "5";
};

// All messages are stored in this HudMessageVector, the actual// MainChatHud only displays the contents of this vector.newMessageVector(HudMessageVector);

// Attach the MessageVector to the chat control
chatHud.attach(HudMessageVector);








Methods


	
void MessageVector::clear()


	Clear all messages in the vector.

Example:

HudMessageVector.clear();










	
bool MessageVector::deleteLine(int deletePos)


	Delete the line at the specified position.


	Parameters

	deletePos – Position in the vector containing the line to be deleted



	Returns

	False if deletePos is greater than the number of lines in the current vector





Example:

// Delete the first line (index 0) in the vector...
HudMessageVector.deleteLine(0);










	
void MessageVector::dump(string filename)


	Dump the message vector to a file without a header.


	Parameters

	filename – Name and path of file to dump text to.





Example:

// Dump the entire chat log to a text file
HudMessageVector.dump("./chatLog.txt");










	
void MessageVector::dump(string filename, string header)


	Dump the message vector to a file with a header.


	Parameters

	
	filename – Name and path of file to dump text to.


	header – Prefix information for write out








Example:

// Arbitrary header data
%headerInfo = "Ars Moriendi Chat Log";

// Dump the entire chat log to a text file
HudMessageVector.dump("./chatLog.txt", %headerInfo);










	
int MessageVector::getLineIndexByTag(int tag)


	Scan through the vector, returning the line number of the first line that matches the specified tag; else returns -1 if no match was found.


	Parameters

	tag – Numerical value assigned to a message when it was added or inserted



	Returns

	Line with matching tag, other wise -1





Example:

// Locate a line of text tagged with the value "1", then delete it.
%taggedLine = HudMessageVector.getLineIndexByTag(1);
HudMessageVector.deleteLine(%taggedLine);










	
int MessageVector::getLineTag(int pos)


	Get the tag of a specified line.


	Parameters

	pos – Position in vector to grab tag from



	Returns

	Tag value of a given line, if the position is greater than the number of lines return 0





Example:

// Remove all lines that do not have a tag value of 1.while( HudMessageVector.getNumLines())
{
   %tag = HudMessageVector.getLineTag(1);
   if(%tag != 1)
      %tag.delete();
   HudMessageVector.popFrontLine();
}










	
string MessageVector::getLineText(int pos)


	Get the text at a specified line.


	Parameters

	pos – Position in vector to grab text from



	Returns

	Text at specified line, if the position is greater than the number of lines return “”





Example:

// Print a line of text at position 1.
%text = HudMessageVector.getLineText(1);
echo(%text);










	
string MessageVector::getLineTextByTag(int tag)


	Scan through the lines in the vector, returning the first line that has a matching tag.


	Parameters

	tag – Numerical value assigned to a message when it was added or inserted



	Returns

	Text from a line with matching tag, other wise “”





Example:

// Locate text in the vector tagged with the value "1", then print it
%taggedText = HudMessageVector.getLineTextByTag(1);
echo(%taggedText);










	
int MessageVector::getNumLines()


	Get the number of lines in the vector.

Example:

// Find out how many lines have been stored in HudMessageVector
%chatLines = HudMessageVector.getNumLines();
echo(%chatLines);










	
bool MessageVector::insertLine(int insertPos, string msg, int tag)


	Push a line onto the back of the list.


	Parameters

	
	msg – Text that makes up the message


	tag – Numerical value associated with this message, useful for searching.






	Returns

	False if insertPos is greater than the number of lines in the current vector





Example:

// Add the message...
HudMessageVector.insertLine(1, "Hello World", 0);










	
bool MessageVector::popBackLine()


	Pop a line from the back of the list; destroys the line.


	Returns

	False if there are no lines to pop (underflow), true otherwise





Example:

HudMessageVector.popBackLine();










	
bool MessageVector::popFrontLine()


	Pop a line from the front of the vector, destroying the line.


	Returns

	False if there are no lines to pop (underflow), true otherwise





Example:

HudMessageVector.popFrontLine();










	
void MessageVector::pushBackLine(string msg, int tag)


	Push a line onto the back of the list.


	Parameters

	
	msg – Text that makes up the message


	tag – Numerical value associated with this message, useful for searching.








Example:

// Add the message...
HudMessageVector.pushBackLine("Hello World", 0);










	
void MessageVector::pushFrontLine(string msg, int tag)


	Push a line onto the front of the vector.


	Parameters

	
	msg – Text that makes up the message


	tag – Numerical value associated with this message, useful for searching.








Example:

// Add the message...
HudMessageVector.pushFrontLine("Hello World", 0);















          

      

      

    

  

    
      
          
            
  
MissionArea

Level object which defines the boundaries of the level.


	Inherit:

	NetObject






Description

This is a simple box with starting points, width, depth, and height. It does not have any default functionality. Instead, when objects hit the boundaries certain script callbacks will be made allowing you to control the reaction.

Example:

newMissionArea(GlobalMissionArea)
{
     Area = "-152 -352 1008 864";
     flightCeiling = "300";
     flightCeilingRange = "20";
     canSaveDynamicFields = "1";
       enabled = "1";
       TypeBool locked = "false";
};








Methods


	
string MissionArea::getArea()


	Returns 4 fields: starting x, starting y, extents x, extents y.






	
void MissionArea::postApply()


	Intended as a helper to developers and editor scripts. Force trigger an inspectPostApply. This will transmit material and other fields ( not including nodes ) to client objects.






	
void MissionArea::setArea(int x, int y, int width, int height)


	Defines the size of the MissionArea param x Starting X coordinate position for MissionArea param y Starting Y coordinate position for MissionArea param width New width of the MissionArea param height New height of the MissionArea








Fields


	
RectI MissionArea::area


	Four corners (X1, X2, Y1, Y2) that makes up the level’s boundaries.






	
float MissionArea::flightCeiling


	Represents the top of the mission area, used by FlyingVehicle .






	
float MissionArea::flightCeilingRange


	Distance from ceiling before FlyingVehicle thrust is cut off.











          

      

      

    

  

    
      
          
            
  
MissionMarker

This is a base class for all “marker” related objets. It is a 3D representation of a point in the level.


	Inherit:

	ShapeBase






Description

The main use of a MissionMarker is to represent a point in 3D space with a mesh and basic ShapeBase information. If you simply need to mark a spot in your level, with no overhead from additional fields, this is a useful object.

Example:

newMissionMarker()
{
   dataBlock = "WayPointMarker";
   position = "295.699 -171.817 280.124";
   rotation = "0 0 -1 13.8204";
   scale = "1 1 1";
   isRenderEnabled = "true";
   canSaveDynamicFields = "1";
   enabled = "1";
};











          

      

      

    

  

    
      
          
            
  
MissionMarkerData

A very basic class containing information used by MissionMarker objects for rendering.


	Inherit:

	ShapeBaseData






Description

MissionMarkerData, is an extremely barebones class derived from ShapeBaseData. It is solely used by MissionMarker classes (such as SpawnSphere), so that you can see the object while editing a level.

Example:

datablock MissionMarkerData(SpawnSphereMarker)
{
   category = "Misc";
   shapeFile = "core/art/shapes/octahedron.dts";
};











          

      

      

    

  

    
      
          
            
  
NavMesh


	Inherit:

	SceneObject






Description

UNDOCUMENTED!




Methods


	
bool NavMesh::build(bool background, bool save)


	Create a Recast nav mesh.






	
void NavMesh::buildTiles(Box3F box)


	Rebuild the tiles overlapped by the input box.






	
void NavMesh::cancelBuild()


	Cancel the current NavMesh build.






	
bool NavMesh::load()


	Load this NavMesh from its file.






	
void NavMesh::save()


	Save this NavMesh to its file.








Fields


	
float NavMesh::actorClimb


	Maximum climbing height of an actor.






	
float NavMesh::actorHeight


	Height of an actor.






	
float NavMesh::actorRadius


	Radius of an actor.






	
bool NavMesh::alwaysRender


	Display this NavMesh even outside the editor.






	
int NavMesh::borderSize


	Size of the non-walkable border around the navigation mesh (in voxels).






	
float NavMesh::cellHeight


	Height of a voxel.






	
float NavMesh::cellSize


	Length/width of a voxel.






	
float NavMesh::detailSampleDist


	Sets the sampling distance to use when generating the detail mesh.






	
float NavMesh::detailSampleError


	The maximum distance the detail mesh surface should deviate from heightfield data.






	
string NavMesh::fileName


	Name of the data file to store this navmesh in (relative to engine executable).






	
int NavMesh::maxEdgeLen


	The maximum allowed length for contour edges along the border of the mesh.






	
int NavMesh::maxPolysPerTile


	The maximum number of polygons allowed in a tile.






	
int NavMesh::mergeRegionArea


	Any regions with a span count smaller than this value will, if possible, be merged with larger regions.






	
int NavMesh::minRegionArea


	The minimum number of cells allowed to form isolated island areas.






	
float NavMesh::simplificationError


	The maximum distance a simplfied contour’s border edges should deviate from the original raw contour.






	
float NavMesh::tileSize


	The horizontal size of tiles.






	
float NavMesh::walkableSlope


	Maximum walkable slope in degrees.











          

      

      

    

  

    
      
          
            
  
NavPath


	Inherit:

	SceneObject






Description

UNDOCUMENTED!




Methods


	
int NavPath::getCount()


	Return the number of nodes in this path.






	
float NavPath::getLength()


	Get the length of this path in Torque units (i.e. the total distance it covers).






	
Point3F NavPath::getNode(int idx)


	Get a specified node along the path.






	
bool NavPath::replan()


	Find a path using the already-specified path properties.








Fields


	
bool NavPath::alwaysRender


	Render this NavPath even when not selected.






	
Point3F NavPath::from


	World location this path starts at.






	
bool NavPath::isLooping


	Does this path loop?






	
NavMesh NavPath::mesh


	NavMesh object this path travels within.






	
Point3F NavPath::to


	World location this path should end at.






	
Path NavPath::waypoints


	Path containing waypoints for this NavPath to visit.






	
bool NavPath::xray


	Render this NavPath through other objects.











          

      

      

    

  

    
      
          
            
  
NetConnection

Provides the basis for implementing a multiplayer game protocol.


	Inherit:

	SimGroup






Description

NetConnection combines a low-level notify protocol implemented in ConnectionProtocol with a SimGroup, and implements several distinct subsystems:


	Event Manager

	This is responsible for transmitting NetEvents over the wire. It deals with ensuring that the various types of NetEvents are delivered appropriately, and with notifying the event of its delivery status.



	Move Manager

	This is responsible for transferring a Move to the server 32 times a second (on the client) and applying it to the control object (on the server).



	Ghost Manager

	This is responsible for doing scoping calculations (on the server side) and transmitting most-recent ghost information to the client.



	File Transfer

	It is often the case that clients will lack important files when connecting to a server which is running a mod or new map. This subsystem allows the server to transfer such files to the client.



	Networked String Table

	String data can easily soak up network bandwidth, so for efficiency, we implement a networked string table. We can then notify the connection of strings we will reference often, such as player names, and transmit only a tag, instead of the whole string.



	Demo Recording

	A demo in Torque is a log of the network traffic between client and server; when a NetConnection records a demo, it simply logs this data to a file. When it plays a demo back, it replays the logged data.



	Connection Database

	This is used to keep track of all the NetConnections; it can be iterated over (for instance, to send an event to all active connections), or queried by address.





The NetConnection is a SimGroup. On the client side, it contains all the objects which have been ghosted to that client. On the server side, it is empty; it can be used (typically in script) to hold objects related to the connection. For instance, you might place an observation camera in the NetConnnection. In both cases, when the connection is destroyed, so are the contained objects.

The NetConnection also has the concept of local connections. These are used when the client and server reside in the same process. A local connection is typically required to use the standard Torque world building tools. A local connection is also required when building a single player game.




Methods


	
void NetConnection::checkMaxRate()


	Ensures that all configured packet rates and sizes meet minimum requirements. This method is normally only called when a NetConnection class is first constructed. It need only be manually called if the global variables that set the packet rate or size have changed.






	
void NetConnection::clearPaths()


	On the server, resets the connection to indicate that motion spline paths have not been transmitted. Typically when a mission has ended on the server, all connected clients are informed of this change and their connections are reset back to a starting state. This method resets a connection on the server to indicate that motion spline paths have not been transmitted.

Example:

// Inform the clients
for (%clientIndex = 0; %clientIndex < ClientGroup.getCount(); %clientIndex++)
   {
      // clear ghosts and paths from all clients
      %cl = ClientGroup.getObject(%clientIndex);
      %cl.endMission();
      %cl.resetGhosting();
      %cl.clearPaths();
   }










	
void NetConnection::connect(string remoteAddress)


	Connects to the remote address. Attempts to connect with another NetConnection on the given address. Typically once connected, a game’s information is passed along from the server to the client, followed by the player entering the game world. The actual procedure is dependent on the NetConnection subclass that is used. i.e. GameConnection .


	Parameters

	remoteAddress – The address to connect to in the form of IP:<address>:<port although the IP: portion is optional. The address portion may be in the form of w.x.y.z or as a host name, in which case a DNS lookup will be performed. You may also substitue the word broadcast for the address to broadcast the connect request over the local subnet.










	
string NetConnection::connectLocal()


	Connects with the server that is running within the same process as the client.


	Returns

	An error text message upon failure, or an empty string when successful.










	
string NetConnection::getAddress()


	Returns the far end network address for the connection. The address will be in one of the following forms:


	IP:Broadcast:<port> for broadcast type addresses


	IP:<address>:<port> for IP addresses


	local when connected locally (server and client running in same process









	
int NetConnection::getGhostID(int realID)


	On server or client, convert a real id to the ghost id for this connection. Torque’s network ghosting system only exchanges ghost ID’s between the server and client. Use this method on the server or client to discover an object’s ghost ID based on its real SimObject ID.


	Parameters

	realID – The real SimObject ID of the object.



	Returns

	The ghost ID of the object for this connection, or -1 if it could not be resolved.










	
int NetConnection::getGhostsActive()


	Provides the number of active ghosts on the connection.


	Returns

	The number of active ghosts.










	
int NetConnection::getPacketLoss()


	Returns the percentage of packets lost per tick.






	
int NetConnection::getPing()


	Returns the average round trip time (in ms) for the connection. The round trip time is recalculated every time a notify packet is received. Notify packets are used to information the connection that the far end successfully received the sent packet.






	
int NetConnection::resolveGhostID(int ghostID)


	On the client, convert a ghost ID from this connection to a real SimObject ID. Torque’s network ghosting system only exchanges ghost ID’s between the server and client. Use this method on the client to discover an object’s local SimObject ID when you only have a ghost ID.


	Parameters

	ghostID – The ghost ID of the object as sent by the server.



	Returns

	ID of the object, or 0 if it could not be resolved.





Example:

%object = ServerConnection.resolveGhostID( %ghostId );










	
int NetConnection::resolveObjectFromGhostIndex(int ghostID)


	On the server, convert a ghost ID from this connection to a real SimObject ID. Torque’s network ghosting system only exchanges ghost ID’s between the server and client. Use this method on the server to discover an object’s local SimObject ID when you only have a ghost ID.


	Parameters

	ghostID – The ghost ID of the object as sent by the server.



	Returns

	ID of the object, or 0 if it could not be resolved.





Example:

%object = %client.resolveObjectFromGhostIndex( %ghostId );










	
void NetConnection::setSimulatedNetParams(float packetLoss, int delay)


	Simulate network issues on the connection for testing.


	Parameters

	
	packetLoss – The fraction of packets that will be lost. Ranges from 0.0 (no loss) to 1.0 (complete loss)


	delay – Delays packets being transmitted by simulating a particular ping. This is an absolute integer, measured in ms.













	
void NetConnection::transmitPaths()


	Sent by the server during phase 2 of the mission download to update motion spline paths. The server transmits all spline motion paths that are within the mission ( Path ) separate from other objects. This is due to the potentially large number of nodes within each path, which may saturate a packet sent to the client. By managing this step separately, Torque has finer control over how packets are organised vs. doing it during the ghosting stage. Internally a PathManager is used to track all paths defined within a mission on the server, and each one is transmitted using a PathManagerEvent. The client side collects these events and builds the given paths within its own PathManager. This is typically done during the standard mission start phase 2 when following Torque’s example mission startup sequence. When a mission is ended, all paths need to be cleared from their respective path managers.

Example:

function serverCmdMissionStartPhase2Ack(%client, %seq, %playerDB)
{
   // Make sure to ignore calls from a previous mission load
   if (%seq != $missionSequence || !$MissionRunning)
      return;
   if (%client.currentPhase != 1.5)
      return;
   %client.currentPhase = 2;

   // Set the player datablock choice
   %client.playerDB = %playerDB;

   // Update mission paths (SimPath), this needs to get there before the objects.
   %client.transmitPaths();

   // Start ghosting objects to the client
   %client.activateGhosting();
}















          

      

      

    

  

    
      
          
            
  
NetObject

Superclass for all ghostable networked objects.


	Inherit:

	SimObject






Description


Introduction To NetObject And Ghosting

This class is the basis of the ghost implementation in Torque 3D. Every 3D object is a NetObject. One of the most powerful aspects of Torque’s networking code is its support for ghosting and prioritized, most-recent-state network updates. The way this works is a bit complex, but it is immensely efficient. Let’s run through the steps that the server goes through for each client in this part of Torque’s networking:


	First, the server determines what objects are in-scope for the client. This is done by calling onCameraScopeQuery() on the object which is considered the “scope” object. This is usually the player object, but it can be something else. (For instance, the current vehicle, or a object we’re remote controlling.)


	Second, it ghosts them to the client; this is implemented in netGhost.cc.


	Finally, it sends updates as needed, by checking the dirty list and packing updates.




There several significant advantages to using this networking system:


	Efficient network usage, since we only send data that has changed. In addition, since we only care about most-recent data, if a packet is dropped, we don’t waste effort trying to deliver stale data.


	Cheating protection; since we don’t deliver information about game objects which aren’t in scope, we dramatically reduce the ability of clients to hack the game and gain a meaningful advantage. (For instance, they can’t find out about things behind them, since objects behind them don’t fall in scope.) In addition, since ghost IDs are assigned per-client, it’s difficult for any sort of co-ordination between cheaters to occur.




NetConnection contains the Ghost Manager implementation, which deals with transferring data to the appropriate clients and keeping state in synch.




An Example Implementation

The basis of the ghost implementation in Torque is NetObject. It tracks the dirty flags for the various states that the object wants to network, and does some other book-keeping to allow more efficient operation of the networking layer.

Using a NetObject is very simple; let’s go through a simple example implementation:

class SimpleNetObject : public NetObject
{
public:
  typedef NetObject Parent;
  DECLARE_CONOBJECT(SimpleNetObject);





Above is the standard boilerplate code for a Torque class. You can find out more about this in SimObject:

char message1[256];
char message2[256];
enum States {
   Message1Mask = BIT(0),
   Message2Mask = BIT(1),
};





For our example, we’re having two “states” that we keep track of, message1 and message2. In a real object, we might map our states to health and position, or some other set of fields. You have 32 bits to work with, so it’s possible to be very specific when defining states. In general, you should try to use as few states as possible (you never know when you’ll need to expand your object’s functionality!), and in fact, most of your fields will end up changing all at once, so it’s not worth it to be too fine-grained. (As an example, position and velocity on Player are controlled by the same bit, as one rarely changes without the other changing, too.):

SimpleNetObject()
{
   // In order for an object to be considered by the network system,
   // the Ghostable net flag must be set.
   // The ScopeAlways flag indicates that the object is always scoped
   // on all active connections.
   mNetFlags.set(ScopeAlways | Ghostable);
   dStrcpy(message1, "Hello World 1!");
   dStrcpy(message2, "Hello World 2!");
}





Here is the constructor. Here, you see that we initialize our net flags to show that we should always be scoped, and that we’re to be taken into consideration for ghosting. We also provide some initial values for the message fields:

U32 packUpdate(NetConnection *, U32 mask, BitStream *stream)
{
   // check which states need to be updated, and update them
   if(stream->writeFlag(mask & Message1Mask))
      stream->writeString(message1);
   if(stream->writeFlag(mask & Message2Mask))
      stream->writeString(message2);


   // the return value from packUpdate can set which states still
   // need to be updated for this object.
   return 0;
}





Here’s half of the meat of the networking code, the packUpdate() function. (The other half, unpackUpdate(), we’ll get to in a second.) The comments in the code pretty much explain everything, however, notice that the code follows a pattern of if(writeFlag(mask & StateMask)) { … write data … }. The packUpdate()/unpackUpdate() functions are responsible for reading and writing the dirty bits to the bitstream by themselves:

void unpackUpdate(NetConnection *, BitStream *stream)
{
   // the unpackUpdate function must be symmetrical to packUpdate
   if(stream->readFlag())
   {
      stream->readString(message1);
      Con::printf("Got message1: %s", message1);
   }
   if(stream->readFlag())
   {
      stream->readString(message2);
      Con::printf("Got message2: %s", message2);
   }
}





The other half of the networking code in any NetObject, unpackUpdate(). In our simple example, all that the code does is print the new messages to the console; however, in a more advanced object, you might trigger animations, update complex object properties, or even spawn new objects, based on what packet data you unpack:

void setMessage1(const char *msg)
{
   setMaskBits(Message1Mask);
   dStrcpy(message1, msg);
}
void setMessage2(const char *msg)
{
   setMaskBits(Message2Mask);
   dStrcpy(message2, msg);
}





Here are the accessors for the two properties. It is good to encapsulate your state variables, so that you don’t have to remember to make a call to setMaskBits every time you change anything; the accessors can do it for you. In a more complex object, you might need to set multiple mask bits when you change something; this can be done using the | operator, for instance, setMaskBits( Message1Mask | Message2Mask ); if you changed both messages:

IMPLEMENT_CO_NETOBJECT_V1(SimpleNetObject);


ConsoleMethod(SimpleNetObject, setMessage1, void, 3, 3, "(string msg) Set message 1.")
{
   object->setMessage1(argv[2]);
}


ConsoleMethod(SimpleNetObject, setMessage2, void, 3, 3, "(string msg) Set message 2.")
{
   object->setMessage2(argv[2]);
}





Finally, we use the NetObject implementation macro, IMPLEMENT_CO_NETOBJECT_V1(), to implement our NetObject. It is important that we use this, as it makes Torque perform certain initialization tasks that allow us to send the object over the network. IMPLEMENT_CONOBJECT() doesn’t perform these tasks, see the documentation on AbstractClassRep for more details.






Methods


	
void NetObject::clearScopeToClient(NetConnection client)


	Undo the effects of a scopeToClient() call.


	Parameters

	client – The connection to remove this object’s scoping from










	
int NetObject::getClientObject()


	Returns a pointer to the client object when on a local connection. Short-Circuit-Networking: this is only valid for a local-client / singleplayer situation.


	Returns

	ID of the client object.





Example:

// Psuedo-code, some values left out for this example
%node = newParticleEmitterNode(){};
%clientObject = %node.getClientObject();
if(isObject(%clientObject)
   %clientObject.setTransform("0 0 0");










	
int NetObject::getGhostID()


	Get the ghost index of this object from the server.


	Returns

	on the server





Example:

%ghostID = LocalClientConnection.getGhostId( %serverObject );










	
int NetObject::getServerObject()


	Returns a pointer to the client object when on a local connection. Short-Circuit-Netorking: this is only valid for a local-client / singleplayer situation.


	Returns

	ID of the server object.





Example:

// Psuedo-code, some values left out for this example
%node = newParticleEmitterNode(){};
%serverObject = %node.getServerObject();
if(isObject(%serverObject)
   %serverObject.setTransform("0 0 0");










	
bool NetObject::isClientObject()


	Called to check if an object resides on the clientside.


	Returns

	True if the object resides on the client, false otherwise.










	
bool NetObject::isServerObject()


	Checks if an object resides on the server.


	Returns

	True if the object resides on the server, false otherwise.










	
void NetObject::scopeToClient(NetConnection client)


	Cause the NetObject to be forced as scoped on the specified NetConnection .


	Parameters

	client – The connection this object will always be scoped to





Example:

// Called to create new cameras in TorqueScript
// %this - The active GameConnection
// %spawnPoint - The spawn point location where we creat the camera
function GameConnection::spawnCamera(%this, %spawnPoint)
{
   // If this connections camera existsif(isObject(%this.camera))
   {
      // Add it to the mission group to be cleaned up later
      MissionCleanup.add( %this.camera );

      // Force it to scope to the client side
      %this.camera.scopeToClient(%this);
   }
}










	
void NetObject::setScopeAlways()


	Always scope this object on all connections. The object is marked as ScopeAlways and is immediately ghosted to all active connections. This function has no effect if the object is not marked as Ghostable.











          

      

      

    

  

    
      
          
            
  
OcclusionVolume

An invisible shape that causes objects hidden from view behind it to not be rendered.


	Inherit:

	SceneObject






Description

OcclusionVolume is a class for scene optimization. It’s main use is for outdoor spaces where zones and portals do not help in optimizing scene culling as they almost only make sense for modeling visibility in indoor scenarios (and for connecting indoor spaces to outdoor spaces).

During rendering, every object that is fully behind an occluder

Be aware that occluders add overhead to scene culling. Only if this overhead is outweighed by the time saved by not rendering hidden objects, is the occluder actually effective. Because of this, chose only those spots for placing occluders where a significant number of objects will be culled from points that the player will actually be at during the game.

Like zones and portals, OcclusionVolumes may have a default box shape or a more complex.




Fields


	
string OcclusionVolume::edge


	For internal use only.






	
string OcclusionVolume::plane


	For internal use only.






	
string OcclusionVolume::point


	For internal use only.











          

      

      

    

  

    
      
          
            
  
OpenFileDialog

Derived from FileDialog, this class is responsible for opening a file browser with the intention of opening a file.


	Inherit:

	FileDialog






Description

The core usage of this dialog is to locate a file in the OS and return the path and name. This does not handle the actual file parsing or data manipulation. That functionality is left up to the FileObject class.

Example:

// Create a dialog dedicated to opening files
 %openFileDlg = newOpenFileDialog()
 {
    // Look for jpg image files
    // First part is the descriptor|second part is the extension
    Filters = "Jepg Files|*.jpg";
    // Allow browsing through other folders
    ChangePath = true;

    // Only allow opening of one file at a time
    MultipleFiles = false;
 };

 // Launch the open file dialog
 %result = %openFileDlg.Execute();

 // Obtain the chosen file name and pathif ( %result )
 {
    %seletedFile = %openFileDlg.file;
 }
 else
 {
    %selectedFile = "";
 }

 // Cleanup
 %openFileDlg.delete();








Fields


	
bool OpenFileDialog::MultipleFiles


	True/False whether multiple files may be selected and returned or not.






	
bool OpenFileDialog::MustExist


	True/False whether the file returned must exist or not.











          

      

      

    

  

    
      
          
            
  
OpenFolderDialog

OS level dialog used for browsing folder structures.


	Inherit:

	OpenFileDialog






Description

This is essentially an OpenFileDialog, but only used for returning directory paths, not files.




Fields


	
filename OpenFolderDialog::fileMustExist


	File that must be in selected folder for it to be valid.











          

      

      

    

  

    
      
          
            
  
ParticleData

Contains information for how specific particles should look and react including particle colors, particle imagemap, acceleration value for individual particles and spin information.


	Inherit:

	SimDataBlock






Description

Contains information for how specific particles should look and react including particle colors, particle imagemap, acceleration value for individual particles and spin information.

Example:

datablock ParticleData( GLWaterExpSmoke )
{
   textureName = "art/shapes/particles/smoke";
   dragCoefficient = 0.4;
   gravityCoefficient = -0.25;
   inheritedVelFactor = 0.025;
   constantAcceleration = -1.1;
   lifetimeMS = 1250;
   lifetimeVarianceMS = 0;
   useInvAlpha = false;
   spinSpeed = 1;
   spinRandomMin = -200.0;
   spinRandomMax = 200.0;

   colors[0] = "0.1 0.1 1.0 1.0";
   colors[1] = "0.4 0.4 1.0 1.0";
   colors[2] = "0.4 0.4 1.0 0.0";

   sizes[0] = 2.0;
   sizes[1] = 6.0;
   sizes[2] = 2.0;

   times[0] = 0.0;
   times[1] = 0.5;
   times[2] = 1.0;
};








Methods


	
void ParticleData::reload()


	Reloads this particle.

Example:

// Get the editors current particle
%particle = PE_ParticleEditor.currParticle

// Change a particle value
%particle.setFieldValue( %propertyField, %value );

// Reload it
%particle.reload();












Fields


	
bool ParticleData::animateTexture


	If true, allow the particle texture to be an animated sprite.






	
string ParticleData::animTexFrames


	A list of frames and/or frame ranges to use for particle animation if animateTexture is true. Each frame token must be separated by whitespace. A frame token must be a positive integer frame number or a range of frame numbers separated with a ‘-‘. The range separator, ‘-‘, cannot have any whitspace around it. Ranges can be specified to move through the frames in reverse as well as forward (eg. 19-14). Frame numbers exceeding the number of tiles will wrap.

Example:

animTexFrames = "0-16 20 19 18 17 31-21";










	
string ParticleData::animTexName


	Texture file to use for this particle if animateTexture is true. Deprecated. Use textureName instead.






	
Point2I ParticleData::animTexTiling


	The number of frames, in rows and columns stored in textureName (when animateTexture is true). A maximum of 256 frames can be stored in a single texture when using animTexTiling. Value should be “NumColumns NumRows”, for example “4 4”.






	
ColorF ParticleData::colors[4]


	Particle RGBA color keyframe values. The particle color will linearly interpolate between the color/time keys over the lifetime of the particle.






	
float ParticleData::constantAcceleration


	Constant acceleration to apply to this particle.






	
float ParticleData::dragCoefficient


	Particle physics drag amount.






	
int ParticleData::framesPerSec


	If animateTexture is true, this defines the frames per second of the sprite animation.






	
float ParticleData::gravityCoefficient


	Strength of gravity on the particles.






	
float ParticleData::inheritedVelFactor


	Amount of emitter velocity to add to particle initial velocity.






	
int ParticleData::lifetimeMS


	Time in milliseconds before this particle is destroyed.






	
int ParticleData::lifetimeVarianceMS


	Variance in lifetime of particle, from 0 - lifetimeMS.






	
float ParticleData::sizes[4]


	Particle size keyframe values. The particle size will linearly interpolate between the size/time keys over the lifetime of the particle.






	
float ParticleData::spinRandomMax


	Maximum allowed spin speed of this particle, between spinRandomMin and 1000.






	
float ParticleData::spinRandomMin


	Minimum allowed spin speed of this particle, between -1000 and spinRandomMax.






	
float ParticleData::spinSpeed


	Speed at which to spin the particle.






	
Point2F ParticleData::textureCoords[4]


	4 element array defining the UV coords into textureName to use for this particle. Coords should be set for the first tile only when using animTexTiling; coordinates for other tiles will be calculated automatically. “0 0” is top left and “1 1” is bottom right.






	
string ParticleData::textureName


	Texture file to use for this particle.






	
float ParticleData::times[4]


	Time keys used with the colors and sizes keyframes. Values are from 0.0 (particle creation) to 1.0 (end of lifespace).






	
bool ParticleData::useInvAlpha


	Controls how particles blend with the scene. If true, particles blend like ParticleBlendStyle NORMAL, if false, blend like ParticleBlendStyle ADDITIVE.






	
float ParticleData::windCoefficient


	Strength of wind on the particles.











          

      

      

    

  

    
      
          
            
  
ParticleEmitter

This object is responsible for spawning particles.


	Inherit:

	GameBase






Description

This object is responsible for spawning particles.

This class is the main interface for creating particles - though it is usually only accessed from within another object like ParticleEmitterNode or WheeledVehicle. If using this object class (via C++) directly, be aware that it does not track changes in source axis or velocity over the course of a single update, so emitParticles should be called at a fairly fine grain. The emitter will potentially track the last particle to be created into the next call to this function in order to create a uniformly random time distribution of the particles.

If the object to which the emitter is attached is in motion, it should try to ensure that for call (n+1) to this function, start is equal to the end from call (n). This will ensure a uniform spatial distribution.







          

      

      

    

  

    
      
          
            
  
ParticleEmitterData

.


	Inherit:

	GameBaseData






Description

Defines particle emission properties such as ejection angle, period and velocity for a ParticleEmitter.

Example:

datablock ParticleEmitterData( GrenadeExpDustEmitter )
{
   ejectionPeriodMS = 1;
   periodVarianceMS = 0;
   ejectionVelocity = 15;
   velocityVariance = 0.0;
   ejectionOffset = 0.0;
   thetaMin = 85;
   thetaMax = 85;
   phiReferenceVel = 0;
   phiVariance = 360;
   overrideAdvance = false;
   lifetimeMS = 200;
   particles = "GrenadeExpDust";
};








Methods


	
void ParticleEmitterData::reload()


	Reloads the ParticleData datablocks and other fields used by this emitter.

Example:

// Get the editors current particle emitter
%emitter = PE_EmitterEditor.currEmitter

// Change a field value
%emitter.setFieldValue( %propertyField, %value );

// Reload this emitter
%emitter.reload();












Fields


	
Point3F ParticleEmitterData::alignDirection


	The direction aligned particles should face, only valid if alignParticles is true.






	
bool ParticleEmitterData::alignParticles


	If true, particles always face along the axis defined by alignDirection.






	
float ParticleEmitterData::ambientFactor


	Used to generate the final particle color by controlling interpolation between the particle color and the particle color multiplied by the ambient light color.






	
ParticleBlendStyle ParticleEmitterData::blendStyle


	String value that controls how emitted particles blend with the scene.






	
float ParticleEmitterData::ejectionOffset


	Distance along ejection Z axis from which to eject particles.






	
float ParticleEmitterData::ejectionOffsetVariance


	Distance Padding along ejection Z axis from which to eject particles.






	
int ParticleEmitterData::ejectionPeriodMS


	Time (in milliseconds) between each particle ejection.






	
float ParticleEmitterData::ejectionVelocity


	Particle ejection velocity.






	
bool ParticleEmitterData::highResOnly


	This particle system should not use the mixed-resolution renderer. If your particle system has large amounts of overdraw, consider disabling this option.






	
int ParticleEmitterData::lifetimeMS


	Lifetime of emitted particles (in milliseconds).






	
int ParticleEmitterData::lifetimeVarianceMS


	Variance in particle lifetime from 0 - lifetimeMS.






	
bool ParticleEmitterData::orientOnVelocity


	If true, particles will be oriented to face in the direction they are moving.






	
bool ParticleEmitterData::orientParticles


	If true, Particles will always face the camera.






	
bool ParticleEmitterData::overrideAdvance


	If false, particles emitted in the same frame have their positions adjusted. If true, adjustment is skipped and particles will clump together.






	
string ParticleEmitterData::particles


	List of space or TAB delimited ParticleData datablock names. A random one of these datablocks is selected each time a particle is emitted.






	
int ParticleEmitterData::periodVarianceMS


	Variance in ejection period, from 1 - ejectionPeriodMS.






	
float ParticleEmitterData::phiReferenceVel


	Reference angle, from the vertical plane, to eject particles from.






	
float ParticleEmitterData::phiVariance


	Variance from the reference angle, from 0 - 360.






	
bool ParticleEmitterData::renderReflection


	Controls whether particles are rendered onto reflective surfaces like water.






	
bool ParticleEmitterData::reverseOrder


	If true, reverses the normal draw order of particles. Particles are normally drawn from newest to oldest, or in Z order (furthest first) if sortParticles is true. Setting this field to true will reverse that order: oldest first, or nearest first if sortParticles is true.






	
float ParticleEmitterData::softnessDistance


	For soft particles, the distance (in meters) where particles will be faded based on the difference in depth between the particle and the scene geometry.






	
bool ParticleEmitterData::sortParticles


	If true, particles are sorted furthest to nearest.






	
string ParticleEmitterData::textureName


	Optional texture to override ParticleData::textureName .






	
float ParticleEmitterData::thetaMax


	Maximum angle, from the horizontal plane, to eject particles from.






	
float ParticleEmitterData::thetaMin


	Minimum angle, from the horizontal plane, to eject from.






	
bool ParticleEmitterData::useEmitterColors


	If true, use emitter specified colors instead of datablock colors. Useful for ShapeBase dust and WheeledVehicle wheel particle emitters that use the current material to control particle color.






	
bool ParticleEmitterData::useEmitterSizes


	If true, use emitter specified sizes instead of datablock sizes. Useful for Debris particle emitters that control the particle size.






	
float ParticleEmitterData::velocityVariance


	Variance for ejection velocity, from 0 - ejectionVelocity.











          

      

      

    

  

    
      
          
            
  
ParticleEmitterNode

A particle emitter object that can be positioned in the world and dynamically enabled or disabled.


	Inherit:

	GameBase






Description

A particle emitter object that can be positioned in the world and dynamically enabled or disabled.

Example:

datablock ParticleEmitterNodeData( SimpleEmitterNodeData )
{
   timeMultiple = 1.0;
};

%emitter = newParticleEmitterNode()
{
   datablock = SimpleEmitterNodeData;
   active = true;
   emitter = FireEmitterData;
   velocity = 3.5;
};

// Dynamically change emitter datablock
%emitter.setEmitterDataBlock( DustEmitterData );








Methods


	
void ParticleEmitterNode::setActive(bool active)


	Turns the emitter on or off.


	Parameters

	active – New emitter state










	
void ParticleEmitterNode::setEmitterDataBlock(ParticleEmitterData emitterDatablock)


	Assigns the datablock for this emitter node.


	Parameters

	emitterDatablock – ParticleEmitterData datablock to assign





Example:

// Assign a new emitter datablock
%emitter.setEmitterDatablock( %emitterDatablock );












Fields


	
bool ParticleEmitterNode::active


	Controls whether particles are emitted from this node.






	
ParticleEmitterData ParticleEmitterNode::emitter


	Datablock to use when emitting particles.






	
float ParticleEmitterNode::velocity


	Velocity to use when emitting particles (in the direction of the ParticleEmitterNode object’s up (Z) axis).











          

      

      

    

  

    
      
          
            
  
ParticleEmitterNodeData

.


	Inherit:

	GameBaseData






Description

Contains additional data to be associated with a ParticleEmitterNode.




Fields


	
float ParticleEmitterNodeData::timeMultiple


	Time multiplier for particle emitter nodes. Increasing timeMultiple is like running the emitter at a faster rate - single-shot emitters will complete in a shorter time, and continuous emitters will generate particles more quickly. Valid range is 0.01 - 100.











          

      

      

    

  

    
      
          
            
  
Path

A spline along which various objects can move along.


	Inherit:

	SimGroup






Description

A spline along which various objects can move along. The spline object acts like a container for Marker objects, which make up the joints, or knots, along the path. Paths can be assigned a speed, can be looping or non-looping. Each of a path’s markers can be one of three primary movement types: “normal”, “Position Only”, or “Kink”.

Example:

new path()
   {
     isLooping = "1";

     newMarker()
      {
         seqNum = "0";
         type = "Normal";
         msToNext = "1000";
         smoothingType = "Spline";
         position = "-0.054708 -35.0612 234.802";
         rotation = "1 0 0 0";
      };

   };








Methods


	
int Path::getPathId()


	Returns the PathID (not the object ID) of this path.


	Returns

	PathID (not the object ID) of this path.





Example:

// Acquire the PathID of this path object.
%pathID = %thisPath.getPathId();












Fields


	
bool Path::isLooping


	If this is true, the loop is closed, otherwise it is open.











          

      

      

    

  

    
      
          
            
  
PathCamera

A camera that moves along a path. The camera can then be made to travel along this path forwards or backwards.


	Inherit:

	ShapeBase






Description

A camera’s path is made up of knots, which define a position, rotation and speed for the camera. Traversal from one knot to another may be either linear or using a Catmull-Rom spline. If the knot is part of a spline, then it may be a normal knot or defined as a kink. Kinked knots are a hard transition on the spline rather than a smooth one. A knot may also be defined as a position only. In this case the knot is treated as a normal knot but is ignored when determining how to smoothly rotate the camera while it is travelling along the path (the algorithm moves on to the next knot in the path for determining rotation).

The datablock field for a PathCamera is a previously created PathCameraData, which acts as the interface between the script and the engine for this PathCamera object.

Example:

%newPathCamera = newPathCamera()
{
  dataBlock = LoopingCam;
  position = "0 0 300 1 0 0 0";
};








Methods


	
void PathCamera::onNode(string node)


	A script callback that indicates the path camera has arrived at a specific node in its path. Server side only.


	Parameters

	Node – Unique ID assigned to this node.










	
void PathCamera::popFront()


	Removes the knot at the front of the camera’s path.

Example:

// Remove the first knot in the cameras path.
%pathCamera.popFront();










	
void PathCamera::pushBack(TransformF transform, float speed, string type, string path)


	Adds a new knot to the back of a path camera’s path.


	Parameters

	
	transform – Transform for the new knot. In the form of “x y z ax ay az aa” such as returned by SceneObject::getTransform()


	speed – Speed setting for this knot.


	type – Knot type (Normal, Position Only, Kink).


	path – Path type (Linear, Spline).








Example:

// Transform vector for new knot.
//  (Pos_X Pos_Y Pos_Z Rot_X Rot_Y Rot_Z Angle)
%transform = "15.0 5.0 5.0 1.4 1.0 0.2 1.0"
// Speed setting for knot.
%speed = "1.0"
// Knot type.
//  (Normal, Position Only, Kink)
%type = "Normal";

// Path Type. (Linear, Spline)
%path = "Linear";

// Inform the path camera to add a new knot to the back of its path
%pathCamera.pushBack(%transform,%speed,%type,%path);










	
void PathCamera::pushFront(TransformF transform, float speed, string type, string path)


	Adds a new knot to the front of a path camera’s path.


	Parameters

	
	transform – Transform for the new knot. In the form of “x y z ax ay az aa” such as returned by SceneObject::getTransform()


	speed – Speed setting for this knot.


	type – Knot type (Normal, Position Only, Kink).


	path – Path type (Linear, Spline).








Example:

// Transform vector for new knot.
//  (Pos_X,Pos_Y,Pos_Z,Rot_X,Rot_Y,Rot_Z,Angle)
%transform = "15.0 5.0 5.0 1.4 1.0 0.2 1.0"
// Speed setting for knot.
%speed = "1.0";

// Knot type.
//  (Normal, Position Only, Kink)
%type = "Normal";

// Path Type. (Linear, Spline)
%path = "Linear";

// Inform the path camera to add a new knot to the front of its path
%pathCamera.pushFront(%transform, %speed, %type, %path);










	
void PathCamera::reset(float speed)


	Clear the camera’s path and set the camera’s current transform as the start of the new path. What specifically occurs is a new knot is created from the camera’s current transform. Then the current path is cleared and the new knot is pushed onto the path. Any previous target is cleared and the camera’s movement state is set to Forward. The camera is now ready for a new path to be defined.


	Parameters

	speed – Speed for the camera to move along its path after being reset.





Example:

//Determine the new movement speed of this camera. If not set, the speed will default to 1.0.
%speed = "0.50";

// Inform the path camera to start a new path at
// the cameras current position, and set the new
// paths speed value.
%pathCamera.reset(%speed);










	
void PathCamera::setPosition(float position)


	Set the current position of the camera along the path.


	Parameters

	position – Position along the path, from 0.0 (path start) - 1.0 (path end), to place the camera.





Example:

// Set the camera on a position along its path from 0.0 - 1.0.
%position = "0.35";

// Force the pathCamera to its new position along the path.
%pathCamera.setPosition(%position);










	
void PathCamera::setState(string newState)


	Set the movement state for this path camera.


	Parameters

	newState – New movement state type for this camera. Forward, Backward or Stop.





Example:

// Set the state type (forward, backward, stop).
// In this example, the camera will travel from the first node
// to the last node (or target if given with setTarget())
%state = "forward";

// Inform the pathCamera to change its movement state to the defined value.
%pathCamera.setState(%state);










	
void PathCamera::setTarget(float position)


	Set the movement target for this camera along its path. The camera will attempt to move along the path to the given target in the direction provided by setState() (the default is forwards). Once the camera moves past this target it will come to a stop, and the target state will be cleared.


	Parameters

	position – Target position, between 0.0 (path start) and 1.0 (path end), for the camera to move to along its path.





Example:

// Set the position target, between 0.0 (path start)
// and 1.0 (path end), for this camera to move to.
%position = "0.50";

// Inform the pathCamera of the new target position it will move to.
%pathCamera.setTarget(%position);















          

      

      

    

  

    
      
          
            
  
PathCameraData

General interface to control a PathCamera object from the script level.


	Inherit:

	ShapeBaseData






Description

General interface to control a PathCamera object from the script level.

Example:

datablock PathCameraData(LoopingCam)
   {
      mode = "";
   };











          

      

      

    

  

    
      
          
            
  
PfxVis

Singleton class that exposes ConsoleStaticFunctions for debug visualizing PostEffects.


Description

Singleton class that exposes ConsoleStaticFunctions for debug visualizing PostEffects.

Example:

// Script interface...
PfxVis::open( PostEffect )
// Multiple PostEffects can be visualized at the same time
PfxVis::clear()
// Clear all visualizer windows
PfxVis::hide()
// Hide all windows (are not destroyed)
PfxVis::show()








Methods


	
void PfxVis::clear()


	Close all visualization windows.

Example:

PfxVis::clear();










	
void PfxVis::hide()


	Hide all visualization windows (they are not destroyed).

Example:

PfxVis::hide();










	
void PfxVis::onWindowClosed(GuiWindowCtrl ctrl)


	Callback when a visualization window is closed.


	Parameters

	ctrl – Name of the GUI control being closed





Example:

PfxVis::onWindowClosed( VisWindow )










	
void PfxVis::open(PostEffect effect, bool clear)


	Open visualization windows for all input and target textures.


	Parameters

	
	effect – Name of the PostEffect to open


	clear – True to close all visualization windows before opening the effect








Example:

// Multiple PostEffects can be visualized at the same timePfxVis::open( PostEffect )










	
void PfxVis::show()


	Show all visualization windows.

Example:

PfxVis::show();















          

      

      

    

  

    
      
          
            
  
PhysicalZone

Physical Zones are areas that modify the player’s gravity and/or velocity and/or applied force.


	Inherit:

	SceneObject






Description

The datablock properties determine how the physics, velocity and applied forces affect a player who enters this zone.

Example:

newPhysicalZone(Team1JumpPad) {
velocityMod = "1";gravityMod = "0";
appliedForce = "0 0 20000";
polyhedron = "0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000 0.0000000 0.0000000 0.0000000 1.0000000";
position = "273.559 -166.371 249.856";
rotation = "0 0 1 13.0216";
scale = "8 4.95 28.31";
isRenderEnabled = "true";
canSaveDynamicFields = "1";
enabled = "1";
};








Methods


	
void PhysicalZone::activate()


	Activate the physical zone’s effects.

Example:

// Activate effects for a specific physical zone.
%thisPhysicalZone.activate();










	
void PhysicalZone::deactivate()


	Deactivate the physical zone’s effects.

Example:

// Deactivate effects for a specific physical zone.
%thisPhysicalZone.deactivate();












Fields


	
Point3F PhysicalZone::appliedForce


	Three-element floating point value representing forces in three axes to apply to objects entering PhysicalZone .






	
float PhysicalZone::gravityMod


	Gravity in PhysicalZone . Multiplies against standard gravity.






	
floatList PhysicalZone::polyhedron


	The polyhedron type is really a quadrilateral and consists of a cornerpoint followed by three vectors representing the edges extending from the corner.






	
bool PhysicalZone::renderZones[static]


	If true, a box will render around the location of all PhysicalZones.






	
float PhysicalZone::velocityMod


	Multiply velocity of objects entering zone by this value every tick.











          

      

      

    

  

    
      
          
            
  
PhysicsDebris

Represents one or more rigid bodies defined in a single mesh file with a limited lifetime.


	Inherit:

	GameBase






Description

A PhysicsDebris object can be viewed as a single system capable of generating multiple PhysicsBodies as debris when triggered. Vaguely similar to how a ParticleEmitter is capable of creating Particles, but isn’t a particle in itself. After it’s lifetime has elapsed, the object will be deleted.

PhysicsDebris loads a standard .DAE or .DTS file and creates a rigid body for each defined collision node.

For collision nodes to work correctly, they must be setup as follows:


	Visible mesh nodes are siblings of the collision node under a common parent dummy node.


	Collision node is a child of its visible mesh node.




Colmesh type nodes are NOT supported; physx and most standard rigid body simulations do not support arbitrary triangle meshs for dynamics do to the computational expense.

Therefore, collision nodes must be one of the following:


	Colbox


	Colsphere


	Colcapsule


	Col (convex)




PhysicsDebris should NOT be created on the server.







          

      

      

    

  

    
      
          
            
  
PhysicsDebrisData

Defines the properties of a PhysicsDebris object.


	Inherit:

	GameBaseData






Description

Defines the properties of a PhysicsDebris object.




Fields


	
float PhysicsDebrisData::angularDamping


	Value that reduces an object’s rotational velocity over time. Larger values will cause velocity to decay quicker.






	
float PhysicsDebrisData::angularSleepThreshold


	Minimum rotational velocity before the shape can be put to sleep. This should be a positive value. Shapes put to sleep will not be simulated in order to save system resources.






	
float PhysicsDebrisData::buoyancyDensity


	The density of this shape for purposes of calculating buoyant forces. The result of the calculated buoyancy is relative to the density of the WaterObject the PhysicsDebris is within.






	
bool PhysicsDebrisData::castShadows


	Determines if the shape’s shadow should be cast onto the environment.






	
float PhysicsDebrisData::friction


	Coefficient of kinetic friction to be applied to the shape. Kinetic friction reduces the velocity of a moving object while it is in contact with a surface. A larger coefficient will result in a larger reduction in velocity. A shape’s friction should be smaller than it’s staticFriction, but greater than 0.






	
float PhysicsDebrisData::lifetime


	Base time, in seconds, that debris persists after time of creation.






	
float PhysicsDebrisData::lifetimeVariance


	Range of variation randomly applied to lifetime when debris is created. Represents the maximum amount of seconds that will be added or subtracted to a shape’s base lifetime. A value of 0 will apply the same lifetime to each shape created.






	
float PhysicsDebrisData::linearDamping


	Value that reduces an object’s linear velocity over time. Larger values will cause velocity to decay quicker.






	
float PhysicsDebrisData::linearSleepThreshold


	Minimum linear velocity before the shape can be put to sleep. This should be a positive value. Shapes put to sleep will not be simulated in order to save system resources.






	
float PhysicsDebrisData::mass


	Value representing the mass of the shape. A shape’s mass influences the magnitude of any force applied to it.






	
void PhysicsDebrisData::preload


	Loads some information to have readily available at simulation time. Forces generation of shaders, materials, and other data used by the PhysicsDebris object. This function should be used while a level is loading in order to shorten the amount of time to create a PhysicsDebris in game.






	
float PhysicsDebrisData::restitution


	Bounce coeffecient applied to the shape in response to a collision. Restitution is a ratio of a shape’s velocity before and after a collision. A value of 0 will zero out a shape’s post-collision velocity, making it stop on contact. Larger values will remove less velocity after a collision, making it ‘bounce’ with greater force. Normal restitution values range between 0 and 1.0.






	
filename PhysicsDebrisData::shapeFile


	Path to the .DAE or .DTS file to use for this shape. Compatable with Live-Asset Reloading.






	
float PhysicsDebrisData::staticFriction


	Coefficient of static friction to be applied to the shape. Static friction determines the force needed to start moving an at-rest object in contact with a surface. If the force applied onto shape cannot overcome the force of static friction, the shape will remain at rest. A higher coefficient will require a larger force to start motion. This value should be both greater than 0 and the PhysicsDebrisData::friction .






	
float PhysicsDebrisData::waterDampingScale


	Scale to apply to linear and angular dampening while underwater.











          

      

      

    

  

    
      
          
            
  
PhysicsForce

Helper object for gameplay physical forces.


	Inherit:

	SceneObject






Description

PhysicsForces can be created and “attached” to other PhysicsBodies to attract them to the position of the PhysicsForce.




Methods


	
void PhysicsForce::attach(Point3F start, Point3F direction, float maxDist)


	Attempts to associate the PhysicsForce with a PhysicsBody. Performs a physics ray cast of the provided length and direction. The PhysicsForce will attach itself to the first dynamic PhysicsBody the ray collides with. On every tick, the attached body will be attracted towards the position of the PhysicsForce. A PhysicsForce can only be attached to one body at a time.






	
void PhysicsForce::detach(Point3F force)


	Disassociates the PhysicsForce from any attached PhysicsBody.


	Parameters

	force – Optional force to apply to the attached PhysicsBody before detaching.










	
bool PhysicsForce::isAttached()


	Returns true if the PhysicsForce is currently attached to an object.











          

      

      

    

  

    
      
          
            
  
PhysicsShape

Represents a destructible physical object simulated through the plugin system.


	Inherit:

	GameBase






Description

Represents a destructible physical object simulated through the plugin system.




Methods


	
void PhysicsShape::destroy()


	Disables rendering and physical simulation. Calling destroy() will also spawn any explosions, debris, and/or destroyedShape defined for it, as well as remove it from the scene graph. Destroyed objects are only created on the server. Ghosting will later update the client.






	
bool PhysicsShape::isDestroyed()


	Returns if a PhysicsShape has been destroyed or not.






	
void PhysicsShape::restore()


	Restores the shape to its state before being destroyed. Re-enables rendering and physical simulation on the object and adds it to the client’s scene graph. Has no effect if the shape is not destroyed.








Fields


	
bool PhysicsShape::playAmbient


	Enables or disables playing of an ambient animation upon loading the shape.











          

      

      

    

  

    
      
          
            
  
PhysicsShapeData

Defines the properties of a PhysicsShape.


	Inherit:

	GameBaseData






Description

Defines the properties of a PhysicsShape.




Fields


	
float PhysicsShapeData::angularDamping


	Value that reduces an object’s rotational velocity over time. Larger values will cause velocity to decay quicker.






	
float PhysicsShapeData::angularSleepThreshold


	Minimum rotational velocity before the shape can be put to sleep. This should be a positive value. Shapes put to sleep will not be simulated in order to save system resources.






	
float PhysicsShapeData::buoyancyDensity


	The density of the shape for calculating buoyant forces. The result of the calculated buoyancy is relative to the density of the WaterObject the PhysicsShape is within.






	
PhysicsDebrisData PhysicsShapeData::Debris


	Name of a PhysicsDebrisData to spawn when this shape is destroyed (optional).






	
PhysicsShapeData PhysicsShapeData::destroyedShape


	Name of a PhysicsShapeData to spawn when this shape is destroyed (optional).






	
ExplosionData PhysicsShapeData::Explosion


	Name of an ExplosionData to spawn when this shape is destroyed (optional).






	
float PhysicsShapeData::friction


	Coefficient of kinetic friction to be applied to the shape. Kinetic friction reduces the velocity of a moving object while it is in contact with a surface. A higher coefficient will result in a larger velocity reduction. A shape’s friction should be lower than it’s staticFriction, but larger than 0.






	
float PhysicsShapeData::linearDamping


	Value that reduces an object’s linear velocity over time. Larger values will cause velocity to decay quicker.






	
float PhysicsShapeData::linearSleepThreshold


	Minimum linear velocity before the shape can be put to sleep. This should be a positive value. Shapes put to sleep will not be simulated in order to save system resources.






	
float PhysicsShapeData::mass


	Value representing the mass of the shape. A shape’s mass influences the magnitude of any force exerted on it. For example, a PhysicsShape with a large mass requires a much larger force to move than the same shape with a smaller mass.






	
float PhysicsShapeData::restitution


	Coeffecient of a bounce applied to the shape in response to a collision. Restitution is a ratio of a shape’s velocity before and after a collision. A value of 0 will zero out a shape’s post-collision velocity, making it stop on contact. Larger values will remove less velocity after a collision, making it ‘bounce’ with a greater force. Normal restitution values range between 0 and 1.0.






	
filename PhysicsShapeData::shapeName


	Path to the .DAE or .DTS file to use for this shape. Compatable with Live-Asset Reloading.






	
PhysicsSimType PhysicsShapeData::simType


	Controls whether this shape is simulated on the server, client, or both physics simulations.






	
float PhysicsShapeData::staticFriction


	Coefficient of static friction to be applied to the shape. Static friction determines the force needed to start moving an at-rest object in contact with a surface. If the force applied onto shape cannot overcome the force of static friction, the shape will remain at rest. A larger coefficient will require a larger force to start motion. This value should be larger than zero and the physicsShape’s friction.






	
float PhysicsShapeData::waterDampingScale


	Scale to apply to linear and angular dampening while underwater. Used with the waterViscosity of the











          

      

      

    

  

    
      
          
            
  
Player

A client-controlled player character.


	Inherit:

	ShapeBase






Description

A client-controlled player character.

The Player object is the main client-controlled object in an FPS, or indeed, any game where the user is in control of a single character. This class (and the associated datablock, PlayerData) allows you to fine-tune the movement, collision detection, animation, and SFX properties of the character. Player derives from ShapeBase, so it is recommended to have a good understanding of that class (and it’s parent classes) as well.




Movement

The Player class supports the following modes of movement, known as poses:

The acceleration, maximum speed, and bounding box for each mode can be set independently using the PlayerData datablock. The player will automatically switch between swimming and one of the other 4 ‘dry’ modes when entering/exiting the water, but transitions between the non-swimming modes are handled by controller input (such as holding down a key to begin crouching). $mvTriggerCount3 activates crouching, while $mvTriggerCount4 activates being prone.

It is important to set the bounding box correctly for each mode so that collisions with the player remain accurate:

When the player changes pose a new PlayerData callback onPoseChange() is called. This is being used as Armor::onPoseChange() to modify an animation prefix used by ShapeBaseImageData to allow the 1st person arms to change their animation based on pose.

Example:

function Armor::onPoseChange(%this, %obj, %oldPose, %newPose)
{
   // Set the script anim prefix to be that of the current pose
   %obj.setImageScriptAnimPrefix( $WeaponSlot, addTaggedString(%newPose) );
}





Another feature is being able to lock out poses for the Player at any time. This is done with allowCrouch(), allowSprinting() etc. (there is even allowJumping() and allowJetJumping() which aren’t actually poses but states). So if for some game play reason the player should not be allowed to crouch right now, that may be disabled. All poses may be allowed with allowAllPoses() on the Player class.

The pose lock out mechanism is being used by the weapon script system – see Weapon::onUse(). With this system, weapons can prevent the player from going into certain poses. This is used by the deployable turret to lock out sprinting while the turret is the current weapon.

Example:

function Weapon::onUse(%data, %obj)
{
   // Default behavior for all weapons is to mount it into the objects weapon// slot, which is currently assumed to be slot 0if (%obj.getMountedImage($WeaponSlot) != %data.image.getId())
   {
      serverPlay3D(WeaponUseSound, %obj.getTransform());

      %obj.mountImage(%data.image, $WeaponSlot);
      if (%obj.client)
      {
         if (%data.description !$= "")
            messageClient(%obj.client, MsgWeaponUsed, \c0%1 selected., %data.description);
         else
            messageClient(%obj.client, MsgWeaponUsed, \c0Weapon selected);
      }

      // If this is a Player class object then allow the weapon to modify allowed posesif (%obj.isInNamespaceHierarchy("Player"))
      {
         // Start by allowing everything
         %obj.allowAllPoses();

         // Now see what isnt allowed by the weapon

         %image = %data.image;

         if (%image.jumpingDisallowed)
            %obj.allowJumping(false);

         if (%image.jetJumpingDisallowed)
            %obj.allowJetJumping(false);

         if (%image.sprintDisallowed)
            %obj.allowSprinting(false);

         if (%image.crouchDisallowed)
            %obj.allowCrouching(false);

         if (%image.proneDisallowed)
            %obj.allowProne(false);

         if (%image.swimmingDisallowed)
            %obj.allowSwimming(false);
      }
   }
}








Sprinting

As mentioned above, sprinting is another pose for the Player class. It defines its own force and max speed in the three directions in PlayerData just like most poses, such as crouch. It is activated using $mvTriggerCount5 by default which is often connected to Left Shift. When used this way you could treat it just like a standard run – perhaps with the standard pose used for a walk in a RPG.

But sprinting is special in that you can control if a player’s movement while sprinting should be constrained. You can place scale factors on strafing, yaw and pitch. These force the player to move mostly in a straight line (or completely if you set them to 0) while sprinting by limiting their motion. You can also choose if the player can jump while sprinting. This is all set up in PlayerData.

Just like other poses, you can define which sequences should be played on the player while sprinting. These sequences are:

However, if any of these sequences are not defined for the player, then the standard root, run, back, side and side_right sequences will be used. The idea here is that the ground transform for these sequences will force them to play faster to give the appearance of sprinting. But if you want the player to do something different than just look like they’re running faster – such as holding their weapon against their body – then you’ll want to make use of the sprint specific sequences.

Sprint also provides two PlayerData callbacks: onStartSprintMotion() and onStopSprintMotion(). The start callback is called when the player is in a sprint pose and starts to move (i.e. presses the W key). The stop callback is called when either the player stops moving, or they stop sprinting. These could be used for anything, but by default they are tied into the ShapeBaseImageData system. See Armor::onStartSprintMotion() and Armor::onStopSprintMotion(). With ShapeBaseImageData supporting four generic triggers that may be used by a weapon’s state machine to do something, the first one is triggered to allow weapons to enter a special sprint state that plays a sprint animation sequence and locks out firing. However, you may choose to do something different.




Jumping

The Player class supports jumping. While the player is in contact with a surface (and optionally has enough energy as defined by the PlayerData), $mvTriggerCount2 will cause the player to jump.




Jetting

The Player class includes a simple jetpack behaviour allowing characters to ‘jet’ upwards while jumping. The jetting behaviour can be linked to the player’s energy level using datablock properties as shown below:

Example:

datablock PlayerData( JetPlayer )
{
   ...

   jetJumpForce = 16.0 * 90;
   jetJumpEnergyDrain = 10;
   jetMinJumpEnergy = 25;
   jetMinJumpSpeed = 20;
   jetMaxJumpSpeed = 100;
   jetJumpSurfaceAngle = 78;
}





This player will not be able to jet if he has less than 25 units of energy, and 10 units will be subtracted each tick.

If PlayerData::jetJumpFore is greater than zero then $mvTriggerCount1 will activate jetting.




Falling and Landing

When the player is falling they transition into the “fall” sequence. This transition doesn’t occur until the player has reached a particular speed – you don’t want the fall sequence to kick in if they’ve just gone over a small bump. This speed threshold is set by the PlayerData fallingSpeedThreshold field. By default it is set to -10.0.

When the player lands there are two possible outcomes depending on how the player is set up. With the traditional method the “land” sequence has the player start from a standing position and animates into a crouch. The playback speed of this sequence is scaled based on how hard the player hits the ground. Once the land sequence finishes playing the player does a smooth transition back into the root pose (making them effectively stand up).

Starting with 1.2 there is a new method of handling landing. Here the “land” sequence starts with the player crouching on the ground and animates getting back up. This has a look of the player hitting the ground from a fall and slowly standing back up. This new method is used when the PlayerData landSequenceTime field is given a value greater than zero. This is the amount of time taken for the player to recover form the landing, and is also how long the land sequence will play for. As this has game play ramifications (the player may have movement constraints when landing) this timing is controlled by the datablock field rather than just the length of time of the land sequence.

Also when using the new land sequence the PlayerData transitionToLand flag indicates if the player should smoothly transition between the fall sequence and the land sequence. If set to false (the default) then there is no transition and the player appears to immediately go from falling to landing, which is usually the case when mirroring real life.




Air Control

The player may optionally move itself through the air while jumping or falling. This allows the player to adjust their trajectory while in the air, and is known as air control. The PlayerData::airControl property determines what fraction of the player’s normal speed they may move while in the air. By default, air control is disabled (set to 0).




Hard Impacts

When the player hits something hard it is possible to trigger an impact (such as handled by Armor::onImpact()). The PlayerData minImpactSpeed is the threshold at which falling damage will be considered an impact. Any speed over this parameter will trigger an onImpact() call on the datablock. This allows for small falls to not cause any damage.

The PlayerData minLateralImpactSpeed is the threshold at which non-falling damage impacts will trigger the callback. This is separate from falling as you may not want a sprinting player that hits a wall to get hurt, but being thrown into a wall by an explosion will.




Dismounting

It is possible to have the player mount another object, such as a vehicle, just like any other SceneObject. While mounted, $mvTriggerCount2 will cause the player to dismount.




Triggering a Mounted Object

A Player may have other objects mounted to it, with each mounted object assigned to a slot. These Player mounted objects are known as images. See ShapeBase::mountImage(). If there is an image mounted to slot 0, $mvTriggerCount0 will trigger it. If the player dies this trigger is automatically released.

If there is an image mounted to slot 1, $mvTriggerCount1 will trigger it. Otherwise $mvTriggerCount1 will be passed along to the image in slot 0 as an alternate fire state.




Character model

The following sequences are used by the Player object to animate the character. Not all of them are required, but a model should have at least the root, run, back and side animations. And please see the section on Sprinting above for how they are handled when not present.

Looping sequence played when player is running sideways right.

Looping sequence played when the player is sprinting and moving sideways. If not present then the side_right sequence is used.

Looping sequence played when player is crouched and moving sideways.

Looping sequence played when player is prone (lying down) and moving backward.

Looping sequence played when player is swimming and moving right.

Looping sequence played when player is jetting.

Sequence to control vertical arm movement (for looking) (start=full up, end=full down).

Sequence played when player is firing a heavy weapon (Based on ShapeBaseImageData).




Mounted Image Controlled 3rd Person Animation

A player’s 3rd person action animation sequence selection may be modified based on what images are mounted on the player. When mounting a ShapeBaseImageData, the image’s imageAnimPrefix field is used to control this. If this is left blank (the default) then nothing happens to the 3rd person player – all of the sequences play as defined. If it is filled with some text (best to keep it to letters and numbers, with no spaces) then that text is added to the action animation sequence name and looked up on the player shape. For example:

A rifle ShapeBaseImageData is mounted to the player in slot 0. The rifle’s datablock doesn’t have an imageAnimPrefix defined, so the 3rd person player will use the standard action animation sequence names. i.e. “root”, “run”, “back”, “crouch_root”, etc.

Now a pistol ShapeBaseImageData is mounted to the player in slot 0. The pistol’s datablock has imageAnimPrefix = “pistol”. Now the “pistol_” (underscore is added by the system) prefix is added to each of the action animation sequence names when looking up what to play on the player’s shape. So the Player class will look for “pistol_root”, “pistol_run”, “pistol_back”, “pistol_crouch_root”, etc. If any of these new prefixed names are not found on the player’s shape, then we fall back to the standard action animation sequence names, such as “root”, “run”, etc.

In all of our T3D examples the player only mounts a single image. But Torque allows up to four images to be mounted at a time. When more than one image is mounted then the engine adds all of the prefixes together when searching for the action animation sequence name. If that combined name is not found then the engine starts removing prefixes starting with the highest slot down to the lowest slot. For example, if a player is holding a sword (slot 0) and a shield (slot 1) in each hand that are mounted as separate images (and with imageAnimPrefix’s of “sword” and “shield” respectively), then the engine will search for the following names while the player is just standing there:

The first one that is found in the above order will be used.

Another example: If the player has a jet pack (slot 3 with a prefix of “jetpack”) and two pistols being used akimbo style (slots 1 and 0, both with a prefix of “laserpistol”) with slot 2 left open for a helmet (which is skipped as it doesn’t have a prefix), then the following search order would be used:

Again, the first one that is found is used.

A player’s 3rd person animation may also be modified by the weapon being used. In T3D 1.1 there are the three recoil sequences that may be triggered on the 3rd person player by the weapon’s state. Starting with T3D 1.2 this becomes more generic (while still supporting the existing recoil sequence). When a ShapeBaseImageData state defines a stateShapeSequence, that sequence may be played on the player’s shape (the new PlayerData allowImageStateAnimation field must be set to “true” as well). The new ShapeBaseImageData state stateScaleShapeSequence flag may also be used to indicate if this player animation sequence should have its playback rate scaled to the length of the image’s state.

What exactly happens on the player depends on what else has been defined. First, there is the sequence name as passed in from the image. Then there is also the imageAnimPrefix as defined by the image. Finally, there is the generic script defined prefix that may be added with ShapeBase::setImageScriptAnimPrefix() – we’re using this to pass along the current pose, but it could be used for anything. Time for an example. We want to throw a grenade that we’re holding (mounted in slot 0). The weapon’s state that does this has stateShapeSequence set to “throw”. The grenade image itself has an imageAnimPrefix defined as “fraggrenade”. Finally, the player is crouching, so Armor::onPoseChange() sets the script prefix to “crouch”. The final search order goes like this:

The first of those sequences that is found is played as a new thread on the 3rd person player. As with recoil, only one of these 3rd person animation threads may be active at a time. If an image in another slot also asks to play a 3rd person sequence, the most recent request is what will play.




1st Person Arms

Games that have the player hold a weapon in a 1st person view often let you see the player’s arms and hands holding that weapon. Rather than requiring you to build the art for all possible combinations of character arms and weapons, T3D allows you to mix and match shapes and animation sequences.

1st person arms are an optional client-side only effect and are not used on the server. The arms are a separate shape from the normal 3rd person player shape. You reference the arms using the PlayerData “shapeNameFP” array. It is an array as we support up to four mounted images therefore we support up to four arm shapes. However, for T3D 1.2 our examples only make use of a single set of arms for the first mounting slot as our example soldier holds a single weapon at a time.

As the arms are just regular DAE/DTS files they may get their animation sequences from anywhere. For the included 1.2 art path (see the soldier in the template projects) we decided that their sequences should come from the weapons themselves. This means that the weapons include all of the bones/nodes needed to animate the arms, but none of the arm geometry. If you take a look at art/shapes/actors/Soldier/FP/FP_SoldierArms.cs you’ll see the external animation sequence references for each of the possible weapons.

As each weapon may require its own set of animation sequences (i.e. a different idle sequence for a pistol vs. a rifle) starting with T3D 1.2 a new ShapeBaseImageData field now exists: imagePrefixFP. If this field is defined for the mounted image then it is added to the sequence name as given in the current weapon state in the form of “prefix_sequence” (the underscore is added by the system). For example, the Lurker rifle has an imagePrefixFP of “Rifle”. The Lurker’s Ready state calls the idle sequence, so the arms will attempt to play the “Rifle_idle” sequence and if not found, they will play the “idle” sequence.

The advantage of having the prefix defined within the datablock and not making it part of the sequence names referenced directly in the weapon state machine is that you can do something like this:

Example:

datablock ShapeBaseImageData(Pistol1Image)
{
   imageAnimPrefixFP = "Pistol1";
   ...other data here...
   ...weapon state machine here...
};

datablock ShapeBaseImageData(Pistol2Image : Pistol1Image)
{
   imageAnimPrefixFP = "Pistol2";
};





You could define a new pistol (Pistol2Image) that uses the exact same state machine as Pistol1Image, but could use a slightly different set of animation sequences with a prefix of “Pistol2”.

As was previously discussed with 3rd person animation above, a script-based modifier may also be added when looking up the sequence name for the arms. This is currently used to pass along the player’s pose so the arm’s idle sequence could have a swimming motion when in the swim pose, for example. And as with images, the arms sequence name look up uses the following order to find a sequence to play, with the first one found being used:

Finally, the arms support an “ambient” sequence that may be used for anything and will always play, if it is defined in the arm’s shape.




Example PlayerData Datablock

An example of a player datablock appears below:

Example:

datablock PlayerData(DefaultPlayerData)
{
   renderFirstPerson = false;

   computeCRC = false;

   // Third person shape
   shapeFile = "art/shapes/actors/Soldier/soldier_rigged.dae";
   cameraMaxDist = 3;
   allowImageStateAnimation = true;

   // First person arms
   imageAnimPrefixFP = "soldier";
   shapeNameFP[0] = "art/shapes/actors/Soldier/FP/FP_SoldierArms.DAE";

   canObserve = 1;
   cmdCategory = "Clients";

   cameraDefaultFov = 55.0;
   cameraMinFov = 5.0;
   cameraMaxFov = 65.0;

   debrisShapeName = "art/shapes/actors/common/debris_player.dts";
   debris = playerDebris;

   throwForce = 30;

   aiAvoidThis = 1;

   minLookAngle = "-1.2";
   maxLookAngle = "1.2";
   maxFreelookAngle = 3.0;

   mass = 120;
   drag = 1.3;
   maxdrag = 0.4;
   density = 1.1;
   maxDamage = 100;
   maxEnergy =  60;
   repairRate = 0.33;
   energyPerDamagePoint = 75;

   rechargeRate = 0.256;

   runForce = 4320;
   runEnergyDrain = 0;
   minRunEnergy = 0;
   maxForwardSpeed = 8;
   maxBackwardSpeed = 6;
   maxSideSpeed = 6;

   sprintForce = 4320;
   sprintEnergyDrain = 0;
   minSprintEnergy = 0;
   maxSprintForwardSpeed = 14;
   maxSprintBackwardSpeed = 8;
   maxSprintSideSpeed = 6;
   sprintStrafeScale = 0.25;
   sprintYawScale = 0.05;
   sprintPitchScale = 0.05;
   sprintCanJump = true;

   crouchForce = 405;
   maxCrouchForwardSpeed = 4.0;
   maxCrouchBackwardSpeed = 2.0;
   maxCrouchSideSpeed = 2.0;

   maxUnderwaterForwardSpeed = 8.4;
   maxUnderwaterBackwardSpeed = 7.8;
   maxUnderwaterSideSpeed = 7.8;

   jumpForce = "747";
   jumpEnergyDrain = 0;
   minJumpEnergy = 0;
   jumpDelay = "15";
   airControl = 0.3;

   fallingSpeedThreshold = -6.0;

   landSequenceTime = 0.33;
   transitionToLand = false;
   recoverDelay = 0;
   recoverRunForceScale = 0;

   minImpactSpeed = 10;
   minLateralImpactSpeed = 20;
   speedDamageScale = 0.4;

   boundingBox = "0.65 0.75 1.85";
   crouchBoundingBox = "0.65 0.75 1.3";
   swimBoundingBox = "1 2 2";
   pickupRadius = 1;

   // Damage location details
   boxHeadPercentage       = 0.83;
   boxTorsoPercentage      = 0.49;
   boxHeadLeftPercentage         = 0.30;
   boxHeadRightPercentage        = 0.60;
   boxHeadBackPercentage         = 0.30;
   boxHeadFrontPercentage        = 0.60;

   // Foot Prints
   decalOffset = 0.25;

   footPuffEmitter = "LightPuffEmitter";
   footPuffNumParts = 10;
   footPuffRadius = "0.25";

   dustEmitter = "LightPuffEmitter";

   splash = PlayerSplash;
   splashVelocity = 4.0;
   splashAngle = 67.0;
   splashFreqMod = 300.0;
   splashVelEpsilon = 0.60;
   bubbleEmitTime = 0.4;
   splashEmitter[0] = PlayerWakeEmitter;
   splashEmitter[1] = PlayerFoamEmitter;
   splashEmitter[2] = PlayerBubbleEmitter;
   mediumSplashSoundVelocity = 10.0;
   hardSplashSoundVelocity = 20.0;
   exitSplashSoundVelocity = 5.0;

   // Controls over slope of runnable/jumpable surfaces
   runSurfaceAngle  = 38;
   jumpSurfaceAngle = 80;
   maxStepHeight = 0.35;  //two meters
   minJumpSpeed = 20;
   maxJumpSpeed = 30;

   horizMaxSpeed = 68;
   horizResistSpeed = 33;
   horizResistFactor = 0.35;

   upMaxSpeed = 80;
   upResistSpeed = 25;
   upResistFactor = 0.3;

   footstepSplashHeight = 0.35;

   // Footstep Sounds
   FootSoftSound        = FootLightSoftSound;
   FootHardSound        = FootLightHardSound;
   FootMetalSound       = FootLightMetalSound;
   FootSnowSound        = FootLightSnowSound;
   FootShallowSound     = FootLightShallowSplashSound;
   FootWadingSound      = FootLightWadingSound;
   FootUnderwaterSound  = FootLightUnderwaterSound;

   FootBubblesSound     = FootLightBubblesSound;
   movingBubblesSound   = ArmorMoveBubblesSound;
   waterBreathSound     = WaterBreathMaleSound;

   impactSoftSound      = ImpactLightSoftSound;
   impactHardSound      = ImpactLightHardSound;
   impactMetalSound     = ImpactLightMetalSound;
   impactSnowSound      = ImpactLightSnowSound;

   impactWaterEasy      = ImpactLightWaterEasySound;
   impactWaterMedium    = ImpactLightWaterMediumSound;
   impactWaterHard      = ImpactLightWaterHardSound;

   groundImpactMinSpeed    = "45";
   groundImpactShakeFreq   = "4.0 4.0 4.0";
   groundImpactShakeAmp    = "1.0 1.0 1.0";
   groundImpactShakeDuration = 0.8;
   groundImpactShakeFalloff = 10.0;

   exitingWater         = ExitingWaterLightSound;

   observeParameters = "0.5 4.5 4.5";
   class = "armor";

   cameraMinDist = "0";
   DecalData = "PlayerFootprint";

   // Allowable Inventory Items
   mainWeapon = Lurker;

   maxInv[Lurker] = 1;
   maxInv[LurkerClip] = 20;

   maxInv[LurkerGrenadeLauncher] = 1;
   maxInv[LurkerGrenadeAmmo] = 20;

   maxInv[Ryder] = 1;
   maxInv[RyderClip] = 10;

   maxInv[ProxMine] = 5;

   maxInv[DeployableTurret] = 5;

   // available skins (see materials.cs in model folder)
   availableSkins =  "base DarkBlue DarkGreen   LightGreen  Orange   Red   Teal  Violet   Yellow";
};








Methods


	
void Player::allowAllPoses()


	Allow all poses a chance to occur. This method resets any poses that have manually been blocked from occuring. This includes the regular pose states such as sprinting, crouch, being prone and swimming. It also includes being able to jump and jet jump. While this is allowing these poses to occur it doesn’t mean that they all can due to other conditions. We’re just not manually blocking them from being allowed.






	
void Player::allowCrouching(bool state)


	Set if the Player is allowed to crouch. The default is to allow crouching unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow crouching at any time.


	Parameters

	state – Set to true to allow crouching, false to disable it.










	
void Player::allowJetJumping(bool state)


	Set if the Player is allowed to jet jump. The default is to allow jet jumping unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow jet jumping at any time.


	Parameters

	state – Set to true to allow jet jumping, false to disable it.










	
void Player::allowJumping(bool state)


	Set if the Player is allowed to jump. The default is to allow jumping unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow jumping at any time.


	Parameters

	state – Set to true to allow jumping, false to disable it.










	
void Player::allowProne(bool state)


	Set if the Player is allowed to go prone. The default is to allow being prone unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow going prone at any time.


	Parameters

	state – Set to true to allow being prone, false to disable it.










	
void Player::allowSprinting(bool state)


	Set if the Player is allowed to sprint. The default is to allow sprinting unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow sprinting at any time.


	Parameters

	state – Set to true to allow sprinting, false to disable it.










	
void Player::allowSwimming(bool state)


	Set if the Player is allowed to swim. The default is to allow swimming unless there are other environmental concerns that prevent it. This method is mainly used to explicitly disallow swimming at any time.


	Parameters

	state – Set to true to allow swimming, false to disable it.










	
bool Player::checkDismountPoint(Point3F oldPos, Point3F pos)


	Check if it is safe to dismount at this position. Internally this method casts a ray from oldPos to pos to determine if it hits the terrain, an interior object, a water object, another player, a static shape, a vehicle (exluding the one currently mounted), or physical zone. If this ray is in the clear, then the player’s bounding box is also checked for a collision at the pos position. If this displaced bounding box is also in the clear, then checkDismountPoint() returns true.


	Parameters

	
	oldPos – The player’s current position


	pos – The dismount position to check






	Returns

	True if the dismount position is clear, false if not










	
void Player::clearControlObject()


	Clears the player’s current control object. Returns control to the player. This internally calls Player::setControlObject(0).

Example:

%player.clearControlObject();
echo(%player.getControlObject()); //<-- Returns 0, player assumes control
%player.setControlObject(%vehicle);
echo(%player.getControlObject()); //<-- Returns %vehicle, player controls the vehicle now.










	
int Player::getControlObject()


	Get the current object we are controlling.


	Returns

	object we control, or 0 if not controlling an object.










	
string Player::getDamageLocation(Point3F pos)


	Get the named damage location and modifier for a given world position. the Player object can simulate different hit locations based on a pre-defined set of PlayerData defined percentages. These hit percentages divide up the Player’s bounding box into different regions. The diagram below demonstrates how the various PlayerData properties split up the bounding volume:


	Returns

	a string containing two words (space separated strings), where the first is a location and the second is a modifier.










	
int Player::getNumDeathAnimations()


	Get the number of death animations available to this player. Death animations are assumed to be named death1-N using consecutive indices.






	
string Player::getPose()


	Get the name of the player’s current pose. The pose is one of the following:


	Stand - Standard movement pose.


	Sprint - Sprinting pose.


	Crouch - Crouch pose.


	Prone - Prone pose.


	Swim - Swimming pose.





	Returns

	The current pose; one of: “Stand”, “Sprint”, “Crouch”, “Prone”, “Swim”










	
string Player::getState()


	Get the name of the player’s current state. The state is one of the following:


	Dead - The Player is dead.


	Mounted - The Player is mounted to an object such as a vehicle.


	Move - The Player is free to move. The usual state.


	Recover - The Player is recovering from a fall. See PlayerData::recoverDelay





	Returns

	The current state; one of: “Dead”, “Mounted”, “Move”, “Recover”










	
bool Player::setActionThread(string name, bool hold, bool fsp)


	Set the main action sequence to play for this player.

The spine nodes for the Player’s shape are named as follows:


	Bip01 Pelvis


	Bip01 Spine


	Bip01 Spine1


	Bip01 Spine2


	Bip01 Neck


	Bip01 Head




You cannot use setActionThread() to have the Player play one of the motion determined action animation sequences. These sequences are chosen based on how the Player moves and the Player’s current pose. The names of these sequences are:


	root


	run


	side


	side_right


	crouch_root


	crouch_forward


	crouch_backward


	crouch_side


	crouch_right


	prone_root


	prone_forward


	prone_backward


	swim_root


	swim_forward


	swim_backward


	swim_left


	swim_right


	fall


	jump


	standjump


	land


	jet




If the player moves in any direction then the animation sequence set using this method will be cancelled and the chosen mation-based sequence will take over. This makes great for times when the Player cannot move, such as when mounted, or when it doesn’t matter if the action sequence changes, such as waving and saluting.


	Parameters

	
	name – Name of the action sequence to set


	hold – Set to false to get a callback on the datablock when the sequence ends (PlayerData::animationDone()). When set to true no callback is made.


	fsp – True if first person and none of the spine nodes in the shape should animate. False will allow the shape’s spine nodes to animate.






	Returns

	True if succesful, false if failed





Example:

// Place the player in a sitting position after being mounted
%player.setActionThread( "sitting", true, true );










	
bool Player::setArmThread(string name)


	Set the sequence that controls the player’s arms (dynamically adjusted to match look direction).


	Parameters

	name – Name of the sequence to play on the player’s arms.



	Returns

	true if successful, false if failed.










	
bool Player::setControlObject(ShapeBase obj)


	Set the object to be controlled by this player. It is possible to have the moves sent to the Player object from the GameConnection to be passed along to another object. This happens, for example when a player is mounted to a vehicle. The move commands pass through the Player and on to the vehicle (while the player remains stationary within the vehicle). With setControlObject() you can have the Player pass along its moves to any object. One possible use is for a player to move a remote controlled vehicle. In this case the player does not mount the vehicle directly, but still wants to be able to control it.


	Parameters

	obj – Object to control with this player



	Returns

	True if the object is valid, false if not












Fields


	
int Player::crouchTrigger[static]


	The move trigger index used for player crouching.






	
int Player::extendedMoveHeadPosRotIndex[static]


	The ExtendedMove position/rotation index used for head movements.






	
int Player::imageTrigger0[static]


	The move trigger index used to trigger mounted image 0.






	
int Player::imageTrigger1[static]


	The move trigger index used to trigger mounted image 1 or alternate fire on mounted image 0.






	
int Player::jumpJetTrigger[static]


	The move trigger index used for player jump jetting.






	
int Player::jumpTrigger[static]


	The move trigger index used for player jumping.






	
float Player::maxImpulseVelocity[static]


	The maximum velocity allowed due to a single impulse.






	
int Player::maxPredictionTicks[static]


	Maximum number of ticks to predict on the client from the last known move obtained from the server.






	
int Player::maxWarpTicks[static]


	When a warp needs to occur due to the client being too far off from the server, this is the maximum number of ticks we’ll allow the client to warp to catch up.






	
float Player::minWarpTicks[static]


	Fraction of tick at which instant warp occures on the client.






	
int Player::proneTrigger[static]


	The move trigger index used for player prone pose.






	
bool Player::renderCollision[static]


	Determines if the player’s collision mesh should be rendered. This is mainly used for the tools and debugging.






	
bool Player::renderMyItems[static]


	Determines if mounted shapes are rendered or not. Used on the client side to disable the rendering of all Player mounted objects. This is mainly used for the tools or debugging.






	
bool Player::renderMyPlayer[static]


	Determines if the player is rendered or not. Used on the client side to disable the rendering of all Player objects. This is mainly for the tools or debugging.






	
int Player::sprintTrigger[static]


	The move trigger index used for player sprinting.






	
int Player::vehicleDismountTrigger[static]


	The move trigger index used to dismount player.











          

      

      

    

  

    
      
          
            
  
PlayerData

object.


	Inherit:

	ShapeBaseData






Description

Defines properties for a Player object.




Methods


	
void PlayerData::animationDone(Player obj)


	Called on the server when a scripted animation completes.


	Parameters

	obj – The Player object










	
void PlayerData::doDismount(Player obj)


	Called when attempting to dismount the player from a vehicle. It is up to the doDismount() method to actually perform the dismount. Often there are some conditions that prevent this, such as the vehicle moving too fast.


	Parameters

	obj – The Player object










	
void PlayerData::onEnterLiquid(Player obj, float coverage, string type)


	Called when the player enters a liquid.


	Parameters

	
	obj – The Player object


	coverage – Percentage of the player’s bounding box covered by the liquid


	type – The type of liquid the player has entered













	
void PlayerData::onEnterMissionArea(Player obj)


	Called when the player enters the mission area.


	Parameters

	obj – The Player object










	
void PlayerData::onLeaveLiquid(Player obj, string type)


	Called when the player leaves a liquid.


	Parameters

	
	obj – The Player object


	type – The type of liquid the player has left













	
void PlayerData::onLeaveMissionArea(Player obj)


	Called when the player leaves the mission area.


	Parameters

	obj – The Player object










	
void PlayerData::onPoseChange(Player obj, string oldPose, string newPose)


	Called when the player changes poses.


	Parameters

	
	obj – The Player object


	oldPose – The pose the player is switching from.


	newPose – The pose the player is switching to.













	
void PlayerData::onStartSprintMotion(Player obj)


	Called when the player starts moving while in a Sprint pose.


	Parameters

	obj – The Player object










	
void PlayerData::onStartSwim(Player obj)


	Called when the player starts swimming.


	Parameters

	obj – The Player object










	
void PlayerData::onStopSprintMotion(Player obj)


	Called when the player stops moving while in a Sprint pose.


	Parameters

	obj – The Player object










	
void PlayerData::onStopSwim(Player obj)


	Called when the player stops swimming.


	Parameters

	obj – The Player object












Fields


	
float PlayerData::airControl


	Amount of movement control the player has when in the air. This is applied as a multiplier to the player’s x and y motion.






	
bool PlayerData::allowImageStateAnimation


	Allow mounted images to request a sequence be played on the Player . When true a new thread is added to the player to allow for mounted images to request a sequence be played on the player through the image’s state machine. It is only optional so that we don’t create a TSThread on the player if we don’t need to.






	
Point3F PlayerData::boundingBox


	Size of the bounding box used by the player for collision. Dimensions are given as “width depth height”.






	
float PlayerData::boxHeadBackPercentage


	Percentage of the player’s bounding box depth that represents the back side of the head. Used when computing the damage location.






	
float PlayerData::boxHeadFrontPercentage


	Percentage of the player’s bounding box depth that represents the front side of the head. Used when computing the damage location.






	
float PlayerData::boxHeadLeftPercentage


	Percentage of the player’s bounding box width that represents the left side of the head. Used when computing the damage location.






	
float PlayerData::boxHeadPercentage


	Percentage of the player’s bounding box height that represents the head. Used when computing the damage location.






	
float PlayerData::boxHeadRightPercentage


	Percentage of the player’s bounding box width that represents the right side of the head. Used when computing the damage location.






	
float PlayerData::boxTorsoPercentage


	Percentage of the player’s bounding box height that represents the torso. Used when computing the damage location.






	
float PlayerData::bubbleEmitTime


	Time in seconds to generate bubble particles after entering the water.






	
Point3F PlayerData::crouchBoundingBox


	Collision bounding box used when the player is crouching.






	
float PlayerData::crouchForce


	Force used to accelerate the player when crouching.






	
DecalData PlayerData::DecalData


	Decal to place on the ground for player footsteps.






	
float PlayerData::decalOffset


	Distance from the center of the model to the right foot. While this defines the distance to the right foot, it is also used to place the left foot decal as well. Just on the opposite side of the player.






	
ParticleEmitterData PlayerData::dustEmitter


	Emitter used to generate dust particles.






	
SFXTrack PlayerData::exitingWater


	Sound to play when exiting the water with velocity gt = exitSplashSoundVelocity.






	
float PlayerData::exitSplashSoundVelocity


	Minimum velocity when leaving the water for the exitingWater sound to play.






	
float PlayerData::fallingSpeedThreshold


	Downward speed at which we consider the player falling.






	
bool PlayerData::firstPersonShadows


	Forces shadows to be rendered in first person when renderFirstPerson is disabled. Defaults to false.






	
SFXTrack PlayerData::FootBubblesSound


	Sound to play when walking in water and coverage equals 1.0 (fully underwater).






	
SFXTrack PlayerData::FootHardSound


	Sound to play when walking on a surface with Material footstepSoundId 1.






	
SFXTrack PlayerData::FootMetalSound


	Sound to play when walking on a surface with Material footstepSoundId 2.






	
ParticleEmitterData PlayerData::footPuffEmitter


	Particle emitter used to generate footpuffs (particles created as the player walks along the ground).






	
int PlayerData::footPuffNumParts


	Number of footpuff particles to generate each step. Each foot puff is randomly placed within the defined foot puff radius. This includes having footPuffNumParts set to one.






	
float PlayerData::footPuffRadius


	Particle creation radius for footpuff particles. This is applied to each foot puff particle, even if footPuffNumParts is set to one. So set this value to zero if you want a single foot puff placed at exactly the same location under the player each time.






	
SFXTrack PlayerData::FootShallowSound


	Sound to play when walking in water and coverage is less than footSplashHeight.






	
SFXTrack PlayerData::FootSnowSound


	Sound to play when walking on a surface with Material footstepSoundId 3.






	
SFXTrack PlayerData::FootSoftSound


	Sound to play when walking on a surface with Material footstepSoundId 0.






	
float PlayerData::footstepSplashHeight


	Water coverage level to choose between FootShallowSound and FootWadingSound.






	
SFXTrack PlayerData::FootUnderwaterSound


	Sound to play when walking in water and coverage equals 1.0 (fully underwater).






	
SFXTrack PlayerData::FootWadingSound


	Sound to play when walking in water and coverage is less than 1, but gt footSplashHeight.






	
float PlayerData::groundImpactMinSpeed


	Minimum falling impact speed to apply damage and initiate the camera shaking effect.






	
Point3F PlayerData::groundImpactShakeAmp


	Amplitude of the camera shake effect after falling. This is how much to shake the camera.






	
float PlayerData::groundImpactShakeDuration


	Duration (in seconds) of the camera shake effect after falling. This is how long to shake the camera.






	
float PlayerData::groundImpactShakeFalloff


	Falloff factor of the camera shake effect after falling. This is how to fade the camera shake over the duration.






	
Point3F PlayerData::groundImpactShakeFreq


	Frequency of the camera shake effect after falling. This is how fast to shake the camera.






	
float PlayerData::hardSplashSoundVelocity


	Minimum velocity when entering the water for choosing between the impactWaterMedium and impactWaterHard sound to play.






	
float PlayerData::horizMaxSpeed


	Maximum horizontal speed.






	
float PlayerData::horizResistFactor


	Factor of resistence once horizResistSpeed has been reached.






	
float PlayerData::horizResistSpeed


	Horizontal speed at which resistence will take place.






	
caseString PlayerData::imageAnimPrefix


	Optional prefix to all mounted image animation sequences in third person. This defines a prefix that will be added when looking up mounted image animation sequences while in third person. It allows for the customization of a third person image based on the type of player.






	
caseString PlayerData::imageAnimPrefixFP


	Optional prefix to all mounted image animation sequences in first person. This defines a prefix that will be added when looking up mounted image animation sequences while in first person. It allows for the customization of a first person image based on the type of player.






	
SFXTrack PlayerData::impactHardSound


	Sound to play after falling on a surface with Material footstepSoundId 1.






	
SFXTrack PlayerData::impactMetalSound


	Sound to play after falling on a surface with Material footstepSoundId 2.






	
SFXTrack PlayerData::impactSnowSound


	Sound to play after falling on a surface with Material footstepSoundId 3.






	
SFXTrack PlayerData::impactSoftSound


	Sound to play after falling on a surface with Material footstepSoundId 0.






	
SFXTrack PlayerData::impactWaterEasy


	Sound to play when entering the water with velocity lt mediumSplashSoundVelocity.






	
SFXTrack PlayerData::impactWaterHard


	Sound to play when entering the water with velocity gt = hardSplashSoundVelocity.






	
SFXTrack PlayerData::impactWaterMedium


	Sound to play when entering the water with velocity gt = mediumSplashSoundVelocity and lt hardSplashSoundVelocity.






	
float PlayerData::jetJumpEnergyDrain


	Energy level drained each time the player jet jumps.






	
float PlayerData::jetJumpForce


	Force used to accelerate the player when a jet jump is initiated.






	
float PlayerData::jetJumpSurfaceAngle


	Angle from vertical (in degrees) where the player can jet jump.






	
float PlayerData::jetMaxJumpSpeed


	Maximum vertical speed before the player can no longer jet jump.






	
float PlayerData::jetMinJumpEnergy


	Minimum energy level required to jet jump.






	
float PlayerData::jetMinJumpSpeed


	Minimum speed needed to jet jump. If the player’s own z velocity is greater than this, then it is used to scale the jet jump speed, up to jetMaxJumpSpeed.






	
int PlayerData::jumpDelay


	Delay time in number of ticks ticks between jumps.






	
float PlayerData::jumpEnergyDrain


	Energy level drained each time the player jumps.






	
float PlayerData::jumpForce


	Force used to accelerate the player when a jump is initiated.






	
float PlayerData::jumpSurfaceAngle


	Angle from vertical (in degrees) where the player can jump.






	
bool PlayerData::jumpTowardsNormal


	Controls the direction of the jump impulse. When false, jumps are always in the vertical (+Z) direction. When true jumps are in the direction of the ground normal so long as the player is not directly facing the surface. If the player is directly facing the surface, then they will jump straight up.






	
float PlayerData::landSequenceTime


	Time of land sequence play back when using new recover system. If greater than 0 then the legacy fall recovery system will be bypassed in favour of just playing the player’s land sequence. The time to recover from a fall then becomes this parameter’s time and the land sequence’s playback will be scaled to match.






	
float PlayerData::maxBackwardSpeed


	Maximum backward speed when running.






	
float PlayerData::maxCrouchBackwardSpeed


	Maximum backward speed when crouching.






	
float PlayerData::maxCrouchForwardSpeed


	Maximum forward speed when crouching.






	
float PlayerData::maxCrouchSideSpeed


	Maximum sideways speed when crouching.






	
float PlayerData::maxForwardSpeed


	Maximum forward speed when running.






	
float PlayerData::maxFreelookAngle


	Defines the maximum left and right angles (in radians) the player can look in freelook mode.






	
float PlayerData::maxJumpSpeed


	Maximum vertical speed before the player can no longer jump.






	
float PlayerData::maxLookAngle


	Highest angle (in radians) the player can look.






	
float PlayerData::maxProneBackwardSpeed


	Maximum backward speed when prone (laying down).






	
float PlayerData::maxProneForwardSpeed


	Maximum forward speed when prone (laying down).






	
float PlayerData::maxProneSideSpeed


	Maximum sideways speed when prone (laying down).






	
float PlayerData::maxSideSpeed


	Maximum sideways speed when running.






	
float PlayerData::maxSprintBackwardSpeed


	Maximum backward speed when sprinting.






	
float PlayerData::maxSprintForwardSpeed


	Maximum forward speed when sprinting.






	
float PlayerData::maxSprintSideSpeed


	Maximum sideways speed when sprinting.






	
float PlayerData::maxStepHeight


	Maximum height the player can step up. The player will automatically step onto changes in ground height less than maxStepHeight. The player will collide with ground height changes greater than this.






	
float PlayerData::maxTimeScale


	Maximum time scale for action animations. If an action animation has a defined ground frame, it is automatically scaled to match the player’s ground velocity. This field limits the maximum time scale used even if the player’s velocity exceeds it.






	
float PlayerData::maxUnderwaterBackwardSpeed


	Maximum backward speed when underwater.






	
float PlayerData::maxUnderwaterForwardSpeed


	Maximum forward speed when underwater.






	
float PlayerData::maxUnderwaterSideSpeed


	Maximum sideways speed when underwater.






	
float PlayerData::mediumSplashSoundVelocity


	Minimum velocity when entering the water for choosing between the impactWaterEasy and impactWaterMedium sounds to play.






	
float PlayerData::minImpactSpeed


	Minimum impact speed to apply falling damage. This field also sets the minimum speed for the onImpact callback to be invoked.






	
float PlayerData::minJumpEnergy


	Minimum energy level required to jump.






	
float PlayerData::minJumpSpeed


	Minimum speed needed to jump. If the player’s own z velocity is greater than this, then it is used to scale the jump speed, up to maxJumpSpeed.






	
float PlayerData::minLateralImpactSpeed


	Minimum impact speed to apply non-falling damage. This field also sets the minimum speed for the onLateralImpact callback to be invoked.






	
float PlayerData::minLookAngle


	Lowest angle (in radians) the player can look.






	
float PlayerData::minRunEnergy


	Minimum energy level required to run or swim.






	
float PlayerData::minSprintEnergy


	Minimum energy level required to sprint.






	
SFXTrack PlayerData::movingBubblesSound


	Sound to play when in water and coverage equals 1.0 (fully underwater). Note that unlike FootUnderwaterSound, this sound plays even if the player is not moving around in the water.






	
string PlayerData::physicsPlayerType


	Specifies the type of physics used by the player. This depends on the physics module used. An example is ‘Capsule’.






	
float PlayerData::pickupRadius


	Radius around the player to collide with Items in the scene (on server). Internally the pickupRadius is added to the larger side of the initial bounding box to determine the actual distance, to a maximum of 2 times the bounding box size. The initial bounding box is that used for the root pose, and therefore doesn’t take into account the change in pose.






	
Point3F PlayerData::proneBoundingBox


	Collision bounding box used when the player is prone (laying down).






	
float PlayerData::proneForce


	Force used to accelerate the player when prone (laying down).






	
int PlayerData::recoverDelay


	Number of ticks for the player to recover from falling.






	
float PlayerData::recoverRunForceScale


	Scale factor applied to runForce while in the recover state. This can be used to temporarily slow the player’s movement after a fall, or prevent the player from moving at all if set to zero.






	
bool PlayerData::renderFirstPerson


	Flag controlling whether to render the player shape in first person view.






	
float PlayerData::runEnergyDrain


	Energy value drained each tick that the player is moving. The player will not be able to move when his energy falls below minRunEnergy.






	
float PlayerData::runForce


	Force used to accelerate the player when running.






	
float PlayerData::runSurfaceAngle


	Maximum angle from vertical (in degrees) the player can run up.






	
filename PlayerData::shapeNameFP[4]


	File name of this player’s shape that will be used in conjunction with the corresponding mounted image. These optional parameters correspond to each mounted image slot to indicate a shape that is rendered in addition to the mounted image shape. Typically these are a player’s arms (or arm) that is animated along with the mounted image’s state animation sequences.






	
SplashData PlayerData::Splash


	SplashData datablock used to create splashes when the player moves through water.






	
float PlayerData::splashAngle


	Maximum angle (in degrees) from pure vertical movement in water to generate splashes.






	
ParticleEmitterData PlayerData::splashEmitter[3]


	Particle emitters used to generate splash particles.






	
float PlayerData::splashFreqMod


	Multipled by speed to determine the number of splash particles to generate.






	
float PlayerData::splashVelEpsilon


	Minimum speed to generate splash particles.






	
float PlayerData::splashVelocity


	Minimum velocity when moving through water to generate splashes.






	
bool PlayerData::sprintCanJump


	Can the player jump while sprinting.






	
float PlayerData::sprintEnergyDrain


	Energy value drained each tick that the player is sprinting. The player will not be able to move when his energy falls below sprintEnergyDrain.






	
float PlayerData::sprintForce


	Force used to accelerate the player when sprinting.






	
float PlayerData::sprintPitchScale


	Amount to scale pitch motion while sprinting.






	
float PlayerData::sprintStrafeScale


	Amount to scale strafing motion vector while sprinting.






	
float PlayerData::sprintYawScale


	Amount to scale yaw motion while sprinting.






	
Point3F PlayerData::swimBoundingBox


	Collision bounding box used when the player is swimming.






	
float PlayerData::swimForce


	Force used to accelerate the player when swimming.






	
bool PlayerData::transitionToLand


	When going from a fall to a land, should we transition between the two.






	
float PlayerData::upMaxSpeed


	Maximum upwards speed.






	
float PlayerData::upResistFactor


	Factor of resistence once upResistSpeed has been reached.






	
float PlayerData::upResistSpeed


	Upwards speed at which resistence will take place.






	
SFXTrack PlayerData::waterBreathSound


	Sound to play when in water and coverage equals 1.0 (fully underwater). Note that unlike FootUnderwaterSound, this sound plays even if the player is not moving around in the water.











          

      

      

    

  

    
      
          
            
  
PointLight

Lighting object that radiates light in all directions.


	Inherit:

	LightBase






Description

PointLight is one of the two types of lighting objects that can be added to a Torque 3D level, the other being SpotLight. Unlike directional or conical light, the PointLight emits lighting in all directions. The attenuation is controlled by a single variable: LightObject::radius.

Example:

// Declaration of a point light in script, or created by World EditornewPointLight(CrystalLight)
{
   radius = "10";
   isEnabled = "1";
   color = "1 0.905882 0 1";
   brightness = "0.5";
   castShadows = "1";
   priority = "1";
   animate = "1";
   animationType = "SubtlePulseLightAnim";
   animationPeriod = "3";
   animationPhase = "3";
   flareScale = "1";
   attenuationRatio = "0 1 1";
   shadowType = "DualParaboloidSinglePass";
   texSize = "512";
   overDarkFactor = "2000 1000 500 100";
   shadowDistance = "400";
   shadowSoftness = "0.15";
   numSplits = "1";
   logWeight = "0.91";
   fadeStartDistance = "0";
   lastSplitTerrainOnly = "0";
   splitFadeDistances = "10 20 30 40";
   representedInLightmap = "0";
   shadowDarkenColor = "0 0 0 -1";
   includeLightmappedGeometryInShadow = "1";
   position = "-61.3866 1.69186 5.1464";
   rotation = "1 0 0 0";
};








Fields


	
float PointLight::radius


	Controls the falloff of the light emission.











          

      

      

    

  

    
      
          
            
  
Portal

An object that provides a “window” into a zone, allowing a viewer to see what’s rendered in the zone.


	Inherit:

	Zone






Description

A portal is an object that connects zones such that the content of one zone becomes visible in the other when looking through the portal.

Each portal is a full zone which is divided into two sides by the portal plane that intersects it. This intersection polygon is shown in red in the editor. Either of the sides of a portal can be connected to one or more zones.

A connection from a specific portal side to a zone is made in either of two ways:


	By moving a Zone object to intersect with the portal at the respective side. While usually it makes sense for this overlap to be small, the connection is established correctly as long as the center of the Zone object that should connect is on the correct side of the portal plane.


	By the respective side of the portal free of Zone objects that would connect to it. In this case, given that the other side is connected to one or more Zones, the portal will automatically connect itself to the outdoor “zone” which implicitly is present in any level.




From this, it follows that there are two types of portals:


	Exterior Portals

	An exterior portal is one that is connected to one or more Zone objects on one side and to the outdoor zone at the other side. This kind of portal is most useful for covering transitions from outdoor spaces to indoor spaces.



	Interior Portals

	An interior portal is one that is connected to one or more Zone objects on both sides. This kind of portal is most useful for covering transitions between indoor spaces





Strictly speaking, there is a third type of portal called an “invalid portal”. This is a portal that is not connected to a Zone object on either side in which case the portal serves no use.

Portals in Torque are bidirectional meaning that they connect zones both ways and you can look through the portal’s front side as well as through its back-side.

Like Zones, Portals can either be box-shaped or use custom convex polyhedral shapes.

Portals will usually be created in the editor but can, of course, also be created in script code as such:

Example:

// Example declaration of a Portal.
// This will create a box-shaped portal.
newPortal( PortalToTestZone )
{
   position = "12.8467 -4.02246 14.8017";
    rotation = "0 0 -1 97.5085";
    scale = "1 0.25 1";
    canSave = "1";
    canSaveDynamicFields = "1";
};






Note

Keep in mind that zones and portals are more or less strictly a scene optimization mechanism meant to improve render times.






Methods


	
bool Portal::isExteriorPortal()


	Test whether the portal connects interior zones to the outdoor zone.


	Returns

	True if the portal is an exterior portal.










	
bool Portal::isInteriorPortal()


	Test whether the portal connects interior zones only.


	Returns

	True if the portal is an interior portal.












Fields


	
bool Portal::backSidePassable


	Whether one can view through the back-side of the portal.






	
bool Portal::frontSidePassable


	Whether one can view through the front-side of the portal.











          

      

      

    

  

    
      
          
            
  
PostEffect

A fullscreen shader effect.


	Inherit:

	SimGroup






Description

A fullscreen shader effect.




PFXTextureIdentifiers




Methods


	
void PostEffect::clearShaderMacros()


	Remove all shader macros.






	
void PostEffect::disable()


	Disables the effect.






	
String PostEffect::dumpShaderDisassembly()


	Dumps this PostEffect shader’s disassembly to a temporary text file.


	Returns

	Full path to the dumped file or an empty string if failed.










	
void PostEffect::enable()


	Enables the effect.






	
float PostEffect::getAspectRatio()


	
	Returns

	Width over height of the backbuffer.










	
bool PostEffect::isEnabled()


	
	Returns

	True if the effect is enabled.










	
void PostEffect::onAdd()


	Called when this object is first created and registered.






	
void PostEffect::onDisabled()


	Called when this effect becomes disabled.






	
bool PostEffect::onEnabled()


	Called when this effect becomes enabled. If the user returns false from this callback the effect will not be enabled.


	Returns

	True to allow this effect to be enabled.










	
void PostEffect::preProcess()


	Called when an effect is processed but before textures are bound. This allows the user to change texture related paramaters or macros at runtime.

Example:

function SSAOPostFx::preProcess( %this )
{
   if ( $SSAOPostFx::quality !$= %this.quality )
   {
      %this.quality = mClamp( mRound( $SSAOPostFx::quality ), 0, 2 );

      %this.setShaderMacro( "QUALITY", %this.quality );
   }
   %this.targetScale = $SSAOPostFx::targetScale;
}










	
void PostEffect::reload()


	Reloads the effect shader and textures.






	
void PostEffect::removeShaderMacro(string key)


	Remove a shader macro. This will usually be called within the preProcess callback.


	Parameters

	key – Macro to remove.










	
void PostEffect::setShaderConst(string name, string value)


	Sets the value of a uniform defined in the shader. This will usually be called within the setShaderConsts callback. Array type constants are not supported.


	Parameters

	
	name – Name of the constanst, prefixed with ‘$’.


	value – Value to set, space seperate values with more than one element.








Example:

function MyPfx::setShaderConsts( %this )
{
   // example float4 uniform
   %this.setShaderConst( "$colorMod", "1.0 0.9 1.0 1.0" );
   // example float1 uniform
   %this.setShaderConst( "$strength", "3.0" );
   // example integer uniform
   %this.setShaderConst( "$loops", "5" );}










	
void PostEffect::setShaderConsts()


	Called immediate before processing this effect. This is the user’s chance to set the value of shader uniforms (constants).






	
void PostEffect::setShaderMacro(string key, string value)


	Adds a macro to the effect’s shader or sets an existing one’s value. This will usually be called within the onAdd or preProcess callback.


	Parameters

	
	key – lval of the macro.


	value – rval of the macro, or may be empty.








Example:

function MyPfx::onAdd( %this )
{
   %this.setShaderMacro( "NUM_SAMPLES", "10" );
   %this.setShaderMacro( "HIGH_QUALITY_MODE" );

   // In the shader looks like... // #define NUM_SAMPLES 10// #define HIGH_QUALITY_MODE
}










	
void PostEffect::setTexture(int index, string filePath)


	This is used to set the texture file and load the texture on a running effect. If the texture file is not different from the current file nothing is changed. If the texture cannot be found a null texture is assigned.


	Parameters

	
	index – The texture stage index.


	filePath – The file name of the texture to set.













	
bool PostEffect::toggle()


	Toggles the effect between enabled / disabled.


	Returns

	True if effect is enabled.












Fields


	
bool PostEffect::allowReflectPass


	Is this effect processed during reflection render passes.






	
bool PostEffect::isEnabled


	Is the effect on.






	
bool PostEffect::oneFrameOnly


	Allows you to turn on a PostEffect for only a single frame.






	
bool PostEffect::onThisFrame


	Allows you to turn on a PostEffect for only a single frame.






	
string PostEffect::renderBin


	Name of a renderBin, used if renderTime is PFXBeforeBin or PFXAfterBin.






	
float PostEffect::renderPriority


	PostEffects are processed in DESCENDING order of renderPriority if more than one has the same renderBin/Time.






	
PFXRenderTime PostEffect::renderTime


	When to process this effect during the frame.






	
string PostEffect::shader


	Name of a GFXShaderData for this effect.






	
bool PostEffect::skip


	Skip processing of this PostEffect and its children even if its parent is enabled. Parent and sibling PostEffects in the chain are still processed.






	
GFXStateBlockData PostEffect::stateBlock


	Name of a GFXStateBlockData for this effect.






	
string PostEffect::target


	String identifier of this effect’s target texture.






	
PFXTargetClear PostEffect::targetClear


	Describes when the target texture should be cleared.






	
ColorF PostEffect::targetClearColor


	Color to which the target texture is cleared before rendering.






	
string PostEffect::targetDepthStencil


	Optional string identifier for this effect’s target depth/stencil texture.






	
GFXFormat PostEffect::targetFormat


	Format of the target texture, not applicable if writing to the backbuffer.






	
Point2F PostEffect::targetScale


	If targetSize is zero this is used to set a relative size from the current target.






	
Point2I PostEffect::targetSize


	If non-zero this is used as the absolute target size.






	
PFXTargetViewport PostEffect::targetViewport


	Specifies how the viewport should be set up for a target texture.






	
filename PostEffect::texture[6]


	Input textures to this effect ( samplers ).











          

      

      

    

  

    
      
          
            
  
Precipitation

Defines a precipitation based storm (rain, snow, etc).


	Inherit:

	GameBase






Description

Defines a precipitation based storm (rain, snow, etc).

The Precipitation effect works by creating many ‘drops’ within a fixed size box. This box can be configured to move around with the camera (to simulate level-wide precipitation), or to remain in a fixed position (to simulate localized precipitation). When followCam is true, the box containing the droplets can be thought of as centered on the camera then pushed slightly forward in the direction the camera is facing so most of the box is in front of the camera (allowing more drops to be visible on screen at once).

The effect can also be configured to create a small ‘splash’ whenever a drop hits another world object.

Example:

// The following is added to a level file (.mis) by the World EditornewPrecipitation( TheRain )
{
   dropSize = "0.5";
   splashSize = "0.5";
   splashMS = "250";
   animateSplashes = "1";
   dropAnimateMS = "0";
   fadeDist = "0";
   fadeDistEnd = "0";
   useTrueBillboards = "0";
   useLighting = "0";
   glowIntensity = "0 0 0 0";
   reflect = "0";
   rotateWithCamVel = "1";
   doCollision = "1";
   hitPlayers = "0";
   hitVehicles = "0";
   followCam = "1";
   useWind = "0";
   minSpeed = "1.5";
   maxSpeed = "2";
   minMass = "0.75";
   maxMass = "0.85";
   useTurbulence = "0";
   maxTurbulence = "0.1";
   turbulenceSpeed = "0.2";
   numDrops = "1024";
   boxWidth = "200";
   boxHeight = "100";
   dataBlock = "HeavyRain";
};








Methods


	
void Precipitation::modifyStorm(float percentage, float seconds)


	Smoothly change the maximum number of drops in the effect (from current value to numDrops * percentage ). This method can be used to simulate a storm building or fading in intensity as the number of drops in the Precipitation box changes.


	Parameters

	
	percentage – New maximum number of drops value (as a percentage of numDrops). Valid range is 0-1.


	seconds – Length of time (in seconds) over which to increase the drops percentage value. Set to 0 to change instantly.








Example:

%percentage = 0.5;  // The percentage, from 0 to 1, of the maximum drops to display
%seconds = 5.0;     // The length of time over which to make the change.
%precipitation.modifyStorm( %percentage, %seconds );










	
void Precipitation::setPercentage(float percentage)


	Sets the maximum number of drops in the effect, as a percentage of numDrops . The change occurs instantly (use modifyStorm() to change the number of drops over a period of time.


	Parameters

	percentage – New maximum number of drops value (as a percentage of numDrops). Valid range is 0-1.





Example:

%percentage = 0.5;  // The percentage, from 0 to 1, of the maximum drops to display
%precipitation.setPercentage( %percentage );










	
void Precipitation::setTurbulence(float max, float speed, float seconds)


	Smoothly change the turbulence parameters over a period of time.


	Parameters

	
	max – New maxTurbulence value. Set to 0 to disable turbulence.


	speed – New turbulenceSpeed value.


	seconds – Length of time (in seconds) over which to interpolate the turbulence settings. Set to 0 to change instantly.








Example:

%turbulence = 0.5;     // Set the new turbulence value. Set to 0 to disable turbulence.
%speed = 5.0;          // The new speed of the turbulance effect.
%seconds = 5.0;        // The length of time over which to make the change.
%precipitation.setTurbulence( %turbulence, %speed, %seconds );












Fields


	
bool Precipitation::animateSplashes


	Set to true to enable splash animations when drops collide with other surfaces.






	
float Precipitation::boxHeight


	Height (vertical dimension) of the precipitation box.






	
float Precipitation::boxWidth


	Width and depth (horizontal dimensions) of the precipitation box.






	
bool Precipitation::doCollision


	Allow drops to collide with world objects. If animateSplashes is true, drops that collide with another object will produce a simple splash animation.






	
int Precipitation::dropAnimateMS


	Length (in milliseconds) to display each drop frame. If dropAnimateMS lt = 0, drops select a single random frame at creation that does not change throughout the drop’s lifetime. If dropAnimateMS gt 0, each drop cycles through the the available frames in the drop texture at the given rate.






	
float Precipitation::dropSize


	Size of each drop of precipitation. This will scale the texture.






	
float Precipitation::fadeDist


	The distance at which drops begin to fade out.






	
float Precipitation::fadeDistEnd


	The distance at which drops are completely faded out.






	
bool Precipitation::followCam


	Controls whether the Precipitation system follows the camera or remains where it is first placed in the scene. Set to true to make it seem like it is raining everywhere in the level (ie. the Player will always be in the rain). Set to false to have a single area affected by rain (ie. the Player can move in and out of the rainy area).






	
ColorF Precipitation::glowIntensity


	Set to 0 to disable the glow or or use it to control the intensity of each channel.






	
bool Precipitation::hitPlayers


	Allow drops to collide with Player objects; only valid if doCollision is true.






	
bool Precipitation::hitVehicles


	Allow drops to collide with Vehicle objects; only valid if doCollision is true.






	
float Precipitation::maxMass


	Maximum mass of a drop. Drop mass determines how strongly the drop is affected by wind and turbulence. On creation, the drop will be assigned a random speed between minMass and minMass .






	
float Precipitation::maxSpeed


	Maximum speed at which a drop will fall. On creation, the drop will be assigned a random speed between minSpeed and maxSpeed .






	
float Precipitation::maxTurbulence


	Radius at which precipitation drops spiral when turbulence is enabled.






	
float Precipitation::minMass


	Minimum mass of a drop. Drop mass determines how strongly the drop is affected by wind and turbulence. On creation, the drop will be assigned a random speed between minMass and minMass .






	
float Precipitation::minSpeed


	Minimum speed at which a drop will fall. On creation, the drop will be assigned a random speed between minSpeed and maxSpeed .






	
int Precipitation::numDrops


	Maximum number of drops allowed to exist in the precipitation box at any one time. The actual number of drops in the effect depends on the current percentage, which can change over time using modifyStorm() .






	
bool Precipitation::reflect


	This enables precipitation rendering during reflection passes.






	
bool Precipitation::rotateWithCamVel


	Set to true to include the camera velocity when calculating drop rotation speed.






	
int Precipitation::splashMS


	Lifetime of splashes in milliseconds.






	
float Precipitation::splashSize


	Size of each splash animation when a drop collides with another surface.






	
float Precipitation::turbulenceSpeed


	Speed at which precipitation drops spiral when turbulence is enabled.






	
bool Precipitation::useLighting


	Set to true to enable shading of the drops and splashes by the sun color.






	
bool Precipitation::useTrueBillboards


	Set to true to make drops true (non axis-aligned) billboards.






	
bool Precipitation::useTurbulence


	Check to enable turbulence. This causes precipitation drops to spiral while falling.






	
bool Precipitation::useWind


	Controls whether drops are affected by wind.











          

      

      

    

  

    
      
          
            
  
PrecipitationData

Defines the droplets used in a storm (raindrops, snowflakes, etc).


	Inherit:

	GameBaseData






Description

Defines the droplets used in a storm (raindrops, snowflakes, etc).

Example:

datablock PrecipitationData( HeavyRain )
{
   soundProfile = "HeavyRainSound";
   dropTexture = "art/environment/precipitation/rain";
   splashTexture = "art/environment/precipitation/water_splash";
   dropsPerSide = 4;
   splashesPerSide = 2;
};








Fields


	
string PrecipitationData::dropShader


	The name of the shader used for raindrops.






	
int PrecipitationData::dropsPerSide


	How many rows and columns are in the raindrop texture. For example, if the texture has 16 raindrops arranged in a grid, this field should be set to 4.






	
filename PrecipitationData::dropTexture


	Texture filename for drop particles. The drop texture can contain several different drop sub-textures arranged in a grid. There must be the same number of rows as columns. A random frame will be chosen for each drop.






	
SFXTrack PrecipitationData::soundProfile


	Looping SFXProfile effect to play while Precipitation is active.






	
int PrecipitationData::splashesPerSide


	How many rows and columns are in the splash texture. For example, if the texture has 9 splashes arranged in a grid, this field should be set to 3.






	
string PrecipitationData::splashShader


	The name of the shader used for splashes.






	
filename PrecipitationData::splashTexture


	Texture filename for splash particles. The splash texture can contain several different splash sub-textures arranged in a grid. There must be the same number of rows as columns. A random frame will be chosen for each splash.











          

      

      

    

  

    
      
          
            
  
Prefab

A collection of arbitrary objects which can be allocated and manipulated as a group.


	Inherit:

	SceneObject






Description

Prefab always points to a (.prefab) file which defines its objects. In fact more than one Prefab can reference this file and both will update if the file is modified.

Prefab is a very simple object and only exists on the server. When it is created it allocates children objects by reading the (.prefab) file like a list of instructions. It then sets their transform relative to the Prefab and Torque networking handles the rest by ghosting the new objects to clients. Prefab itself is not ghosted.




Methods


	
void Prefab::onLoad(SimGroup children)


	Called when the prefab file is loaded and children objects are created.


	Parameters

	children – SimGroup containing all children objects.












Fields


	
filename Prefab::fileName


	(.prefab) File describing objects within this prefab.











          

      

      

    

  

    
      
          
            
  
Projectile

class for properties of individual projectiles.


	Inherit:

	GameBase






Description

Base projectile class. Uses the ProjectileData class for properties of individual projectiles.




Methods


	
void Projectile::presimulate(float seconds)


	Updates the projectile’s positional and collision information. This function will first delete the projectile if it is a server object and is outside it’s ProjectileData::lifetime . Also responsible for applying gravity, determining collisions, triggering explosions, emitting trail particles, and calculating bounces if necessary.


	Parameters

	seconds – Amount of time, in seconds since the simulation’s start, to advance.





Example:

// Tell the projectile to process a simulation event, and provide the amount of time// that has passed since the simulation began.
%seconds = 2.0;
%projectile.presimulate(%seconds);












Fields


	
Point3F Projectile::initialPosition


	Starting position for the projectile.






	
Point3F Projectile::initialVelocity


	Starting velocity for the projectile.






	
int Projectile::sourceObject


	ID number of the object that fired the projectile.






	
int Projectile::sourceSlot


	The sourceObject’s weapon slot that the projectile originates from.











          

      

      

    

  

    
      
          
            
  
ProjectileData

Stores properties for an individual projectile type.


	Inherit:

	GameBaseData






Description

Stores properties for an individual projectile type.

Example:

datablock ProjectileData(GrenadeLauncherProjectile)
{
 projectileShapeName = "art/shapes/weapons/SwarmGun/rocket.dts";
directDamage = 30;
radiusDamage = 30;
damageRadius = 5;
areaImpulse = 2000;
explosion = GrenadeLauncherExplosion;
waterExplosion = GrenadeLauncherWaterExplosion;
decal = ScorchRXDecal;
splash = GrenadeSplash;
particleEmitter = GrenadeProjSmokeTrailEmitter;
particleWaterEmitter = GrenadeTrailWaterEmitter;
muzzleVelocity = 30;
velInheritFactor = 0.3;
armingDelay = 2000;
lifetime = 10000;
fadeDelay = 4500;
bounceElasticity = 0.4;
bounceFriction = 0.3;
isBallistic = true;
gravityMod = 0.9;
lightDesc = GrenadeLauncherLightDesc;
damageType = "GrenadeDamage";
};








Methods


	
void ProjectileData::onCollision(Projectile proj, SceneObject col, float fade, Point3F pos, Point3F normal)


	Called when a projectile collides with another object. This function is only called on server objects.


	Parameters

	
	proj – The projectile colliding with SceneObject col.


	col – The SceneObject hit by the projectile.


	fade – The current fadeValue of the projectile, affects its visibility.


	pos – The position of the collision.


	normal – The normal of the collision.













	
void ProjectileData::onExplode(Projectile proj, Point3F pos, float fade)


	Called when a projectile explodes. This function is only called on server objects.


	Parameters

	
	proj – The exploding projectile.


	pos – The position of the explosion.


	fade – The current fadeValue of the projectile, affects its visibility.















Fields


	
int ProjectileData::armingDelay


	Amount of time, in milliseconds, before the projectile will cause damage or explode on impact. This value must be equal to or less than the projectile’s lifetime.






	
float ProjectileData::bounceElasticity


	Influences post-bounce velocity of a projectile that does not explode on contact. Scales the velocity from a bounce after friction is taken into account. A value of 1.0 will leave it’s velocity unchanged while values greater than 1.0 will increase it.






	
float ProjectileData::bounceFriction


	Factor to reduce post-bounce velocity of a projectile that does not explode on contact. Reduces bounce velocity by this factor and a multiple of the tangent to impact. Used to simulate surface friction.






	
DecalData ProjectileData::decal


	Decal datablock used for decals placed at projectile explosion points.






	
ExplosionData ProjectileData::Explosion


	Explosion datablock used when the projectile explodes outside of water.






	
int ProjectileData::fadeDelay


	Amount of time, in milliseconds, before the projectile begins to fade out. This value must be smaller than the projectile’s lifetime to have an affect.






	
float ProjectileData::gravityMod


	Scales the influence of gravity on the projectile. The larger this value is, the more that gravity will affect the projectile. A value of 1.0 will assume “normal” influence upon it. The magnitude of gravity is assumed to be 9.81 m/s/s






	
float ProjectileData::impactForce


	




	
bool ProjectileData::isBallistic


	Detetmines if the projectile should be affected by gravity and whether or not it bounces before exploding.






	
int ProjectileData::lifetime


	Amount of time, in milliseconds, before the projectile is removed from the simulation. Used with fadeDelay to determine the transparency of the projectile at a given time. A projectile may exist up to a maximum of 131040ms (or 4095 ticks) as defined by Projectile::MaxLivingTicks in the source code.






	
LightDescription ProjectileData::lightDesc


	LightDescription datablock used for lights attached to the projectile.






	
float ProjectileData::muzzleVelocity


	Amount of velocity the projectile recieves from the “muzzle” of the gun. Used with velInheritFactor to determine the initial velocity of the projectile. This value is never modified by the engine.






	
ParticleEmitterData ProjectileData::ParticleEmitter


	Particle emitter datablock used to generate particles while the projectile is outside of water.






	
ParticleEmitterData ProjectileData::particleWaterEmitter


	Particle emitter datablock used to generate particles while the projectile is submerged in water.






	
filename ProjectileData::projectileShapeName


	File path to the model of the projectile.






	
Point3F ProjectileData::scale


	Scale to apply to the projectile’s size.






	
SFXTrack ProjectileData::sound


	SFXTrack datablock used to play sounds while in flight.






	
SplashData ProjectileData::Splash


	Splash datablock used to create splash effects as the projectile enters or leaves water.






	
float ProjectileData::velInheritFactor


	Amount of velocity the projectile recieves from the source that created it. Use an amount between 0 and 1 for the best effect. This value is never modified by the engine.






	
ExplosionData ProjectileData::waterExplosion


	Explosion datablock used when the projectile explodes underwater.











          

      

      

    

  

    
      
          
            
  
ProximityMine

A simple proximity mine.


	Inherit:

	Item






Description

A simple proximity mine.

Proximity mines can be deployed using the world editor or thrown by an in-game object. Once armed, any Player or Vehicle object that moves within the mine’s trigger area will cause it to explode.

Internally, the ProximityMine object transitions through the following states:

The shape used for the mine may optionally define the following sequences:

Example:

datablock ProximityMineData( SimpleMine )
{
   // ShapeBaseData fields
   category = "Weapon";
   shapeFile = "art/shapes/weapons/misc/proximityMine.dts";

   // ItemData fields
   sticky = true;

   // ProximityMineData fields
   armingDelay = 0.5;
   armingSound = MineArmedSound;

   autoTriggerDelay = 0;
   triggerOnOwner = true;
   triggerRadius = 5.0;
   triggerSpeed = 1.0;
   triggerDelay = 0.5;
   triggerSound = MineTriggeredSound;
   explosion = RocketLauncherExplosion;

   // dynamic fields
   pickUpName = "Proximity Mines";
   maxInventory = 20;

   damageType = "MineDamage"; // type of damage applied to objects in radius
   radiusDamage = 30;           // amount of damage to apply to objects in radius
   damageRadius = 8;            // search radius to damage objects when exploding
   areaImpulse = 2000;          // magnitude of impulse to apply to objects in radius
};

function ProximityMineData::onTriggered( %this, %obj, %target )
{
   echo( %this.name SPC "triggered by " @ %target.getClassName() );
}

function ProximityMineData::onExplode( %this, %obj, %position )
{
   // Damage objects within the mines damage radiusif ( %this.damageRadius > 0 )
      radiusDamage( %obj.sourceObject, %position, %this.damageRadius, %this.radiusDamage, %this.damageType, %this.areaImpulse );
}

function ProximityMineData::damage( %this, %obj, %position, %source, %amount, %damageType )
{
   // Explode if any damage is applied to the mine
   %obj.schedule(50 + getRandom(50), explode);
}

%obj = newProximityMine()
{
   dataBlock = SimpleMine;
};








Methods


	
void ProximityMine::explode()


	Manually cause the mine to explode.











          

      

      

    

  

    
      
          
            
  
ProximityMineData

.


	Inherit:

	ItemData






Description

Stores common properties for a ProximityMine.




Methods


	
void ProximityMineData::onExplode(ProximityMine obj, Point3F pos)


	Callback invoked when a ProximityMine is about to explode.


	Parameters

	
	obj – The ProximityMine object


	pos – The position of the mine explosion













	
void ProximityMineData::onTriggered(ProximityMine obj, SceneObject target)


	Callback invoked when an object triggers the ProximityMine .


	Parameters

	
	obj – The ProximityMine object


	target – The object that triggered the mine















Fields


	
float ProximityMineData::armingDelay


	Delay (in seconds) from when the mine is placed to when it becomes active.






	
SFXTrack ProximityMineData::armingSound


	Sound to play when the mine is armed (starts at the same time as the armed sequence if defined).






	
float ProximityMineData::autoTriggerDelay


	Delay (in seconds) from arming until the mine automatically triggers and explodes, even if no object has entered the trigger area. Set to 0 to disable.






	
float ProximityMineData::explosionOffset


	Offset from the mine’s origin where the explosion emanates from.Sometimes a thrown mine may be slightly sunk into the ground. This can be just enough to cause the explosion to occur under the ground, especially on flat ground, which can end up blocking the explosion. This offset along the mine’s ‘up’ normal allows you to raise the explosion origin to a better height.






	
float ProximityMineData::triggerDelay


	Delay (in seconds) from when the mine is triggered until it explodes.






	
bool ProximityMineData::triggerOnOwner


	Controls whether the mine can be triggered by the object that owns it. For example, a player could deploy mines that are only dangerous to other players and not himself.






	
float ProximityMineData::triggerRadius


	Distance at which an activated mine will detect other objects and explode.






	
SFXTrack ProximityMineData::triggerSound


	Sound to play when the mine is triggered (starts at the same time as the triggered sequence if defined).






	
float ProximityMineData::triggerSpeed


	Speed above which moving objects within the trigger radius will trigger the mine.











          

      

      

    

  

    
      
          
            
  
PxCloth

Rectangular patch of cloth simulated by PhysX.


	Inherit:

	GameBase






Description

PxCloth is affected by other objects in the simulation but does not itself affect others, it is essentially a visual effect. Eg, shooting at cloth will disturb it but will not explode the projectile.

Be careful with the cloth size and resolution because it can easily become performance intensive to simulate. A single piece of cloth that is very large or high resolution is also much more expensive than multiple pieces that add up to the same number of verts.

Note that most field docs have been copied from their PhysX counterpart.




Fields


	
PxClothAttachment PxCloth::attachments


	Optional way to specify cloth verts that will be attached to the world position it is created at.






	
bool PxCloth::bending


	Enables or disables bending resistance. Set the bending resistance through PxCloth::bendingStiffness .






	
float PxCloth::bendingStiffness


	Bending stiffness of the cloth in the range 0 to 1.






	
bool PxCloth::damping


	Enable/disable damping of internal velocities.






	
float PxCloth::dampingCoefficient


	Spring damping of the cloth in the range 0 to 1.






	
float PxCloth::density


	Density of the cloth (Mass per Area).






	
float PxCloth::friction


	Friction coefficient in the range 0 to 1. Defines the damping of the velocities of cloth particles that are in contact.






	
string PxCloth::Material


	Name of the material to render.






	
Point2I PxCloth::samples


	The number of cloth vertices in width and length. At least two verts should be defined.






	
bool PxCloth::selfCollision


	Enables or disables self-collision handling within a single piece of cloth.






	
Point2F PxCloth::size


	The width and height of the cloth.






	
float PxCloth::thickness


	Value representing how thick the cloth is. The thickness is usually a fraction of the overall extent of the cloth and should not be set to a value greater than that. A good value is the maximal distance between two adjacent cloth particles in their rest pose. Visual artifacts or collision problems may appear if the thickness is too small.






	
bool PxCloth::triangleCollision


	Not supported in current release (according to PhysX docs). Enables or disables collision detection of cloth triangles against the scene. If not set, only collisions of cloth particles are detected. If set, collisions of cloth triangles are detected as well.











          

      

      

    

  

    
      
          
            
  
PxMaterial

Defines a PhysX material assignable to a PxMaterial.


	Inherit:

	SimDataBlock






Description

When two actors collide, the collision behavior that results depends on the material properties of the actors’ surfaces. For example, the surface properties determine if the actors will or will not bounce, or if they will slide or stick. Currently, the only special feature supported by materials is anisotropic friction, but according to Nvidia, other effects such as moving surfaces and more types of friction are slotted for future release.

For more information, refer to Nvidia’s PhysX docs.




Fields


	
float PxMaterial::dynamicFriction


	Coefficient of dynamic friction to be applied. Dynamic friction reduces the velocity of a moving object while it is in contact with a surface. A higher coefficient will result in a larger reduction in velocity. A shape’s dynamicFriction should be equal to or larger than 0.






	
float PxMaterial::restitution


	Coeffecient of a bounce applied to the shape in response to a collision. A value of 0 makes the object bounce as little as possible, while higher values up to 1.0 result in more bounce.






	
float PxMaterial::staticFriction


	Coefficient of static friction to be applied. Static friction determines the force needed to start moving an at-rest object in contact with a surface. If the force applied onto shape cannot overcome the force of static friction, the shape will remain at rest. A higher coefficient will require a larger force to start motion.











          

      

      

    

  

    
      
          
            
  
PxMultiActor

Represents a destructible physical object simulated using PhysX.


	Inherit:

	GameBase






Description

Usually it is prefered to use PhysicsShape and not PxMultiActor because it is not PhysX specific and much easier to setup.




Methods


	
void PxMultiActor::listMeshes(enum Hidden, enum Shown, enum All)


	Lists all meshes of the provided type in the console window.


	Parameters

	
	All – Lists all of the PxMultiActor’s meshes.


	Hidden – Lists all of the PxMultiActor’s hidden meshes.


	Shown – Lists all of the PxMultiActor’s visible meshes.













	
void PxMultiActor::setAllHidden()


	Hides or unhides all meshes contained in the PxMultiActor . Hidden meshes will not be rendered.






	
void PxMultiActor::setBroken()


	Sets the PxMultiActor to a broken or unbroken state.






	
void PxMultiActor::setMeshHidden(string meshName, bool isHidden)


	Prevents the provided mesh from being rendered.








Fields


	
bool PxMultiActor::broken


	




	
bool PxMultiActor::debugRender


	









          

      

      

    

  

    
      
          
            
  
PxMultiActorData

Defines the properties of a type of PxMultiActor.


	Inherit:

	GameBaseData






Description

Usually it is prefered to use PhysicsShape rather than PxMultiActor because a PhysicsShape is not PhysX specific and can be much easier to setup.

For more information, refer to Nvidia’s PhysX docs.




Fields


	
float PxMultiActorData::angularDrag


	Value used to help calculate rotational drag force while submerged in water.






	
float PxMultiActorData::breakForce


	Force required to break an actor. This value does not apply to joints. If an actor is associated with a joint it will break whenever the joint does. This allows an actor “not” associated with a joint to also be breakable.






	
float PxMultiActorData::buoyancyDensity


	The density used to calculate buoyant forces. The result of the calculated buoyancy is relative to the density of the WaterObject the PxMultiActor is within.






	
bool PxMultiActorData::clientOnly


	




	
void PxMultiActorData::dumpModel


	Dumps model hierarchy and details to a file. The file will be created as ‘model.dump’ in the game folder. If model.dump already exists, it will be overwritten.






	
float PxMultiActorData::linearDrag


	Value used to help calculate linear drag force while submerged in water.






	
PxMaterial PxMultiActorData::Material


	An optional PxMaterial to be used for the PxMultiActor . Defines properties such as friction and restitution. Unrelated to the material used for rendering. The physXStream will contain defined materials that can be customized in 3DS Max. To override the material for all physics shapes in the physXStream, specify a material here.






	
bool PxMultiActorData::noCorrection


	




	
filename PxMultiActorData::physXStream


	.XML file containing data such as actors, shapes, and joints. These files can be created using a free PhysX plugin for 3DS Max.






	
void PxMultiActorData::reload


	Reloads all data used for the PxMultiActorData . If the reload sucessfully completes, all PxMultiActor’s will be notified.






	
filename PxMultiActorData::shapeName


	Path to the .DAE or .DTS file to render.






	
bool PxMultiActorData::singlePlayerOnly


	




	
string PxMultiActorData::string


	




	
float PxMultiActorData::waterDragScale


	Scale to apply to linear and angular dampening while submerged in water.











          

      

      

    

  

    
      
          
            
  
RadialImpulseEvent

Creates a physics-based impulse effect from a defined central point and magnitude.


Description

Creates a physics-based impulse effect from a defined central point and magnitude.




Methods


	
static void RadialImpulseEvent::send(string inPosition, float radius, float magnitude)


	Applies a radial impulse to any SceneObjects within the area of effect. This event is performed both server and client-side.


	Parameters

	
	position – Center point for this radial impulse.


	radius – Distance from the position for this radial impulse to affect.


	magnitude – The force applied to objects within the radius from the position of this radial impulse effect.








Example:

// Define the Position
%position = "10.0 15.0 10.0";

// Define the Radius
%radius = "25.0";

// Define the Magnitude
%magnitude = "30.0"
// Create a globalRadialImpulse physics effect.
RadialImpulseEvent::send(%position,%radius,%magnitude);















          

      

      

    

  

    
      
          
            
  
RazerHydraFrame


	Inherit:

	SimObject






Description

UNDOCUMENTED!




Methods


	
bool RazerHydraFrame::getControllerButton1(int index)


	Get the button 1 state for the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	Button 1 state requested controller as true or false.










	
bool RazerHydraFrame::getControllerButton2(int index)


	Get the button 2 state for the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	Button 2 state requested controller as true or false.










	
bool RazerHydraFrame::getControllerButton3(int index)


	Get the button 3 state for the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	Button 3 state requested controller as true or false.










	
bool RazerHydraFrame::getControllerButton4(int index)


	Get the button 4 state for the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	Button 4 state requested controller as true or false.










	
int RazerHydraFrame::getControllerCount()


	Get the number of controllers defined in this frame.


	Returns

	The number of defined controllers.










	
bool RazerHydraFrame::getControllerDocked(int index)


	Get the docked state of the controller.


	Parameters

	index – The controller index to check.



	Returns

	True if the requested controller is docked.










	
bool RazerHydraFrame::getControllerEnabled(int index)


	Get the enabled state of the controller.


	Parameters

	index – The controller index to check.



	Returns

	True if the requested controller is enabled.










	
Point3I RazerHydraFrame::getControllerPos(int index)


	Get the position of the requested controller. The position is the controller’s integer position converted to Torque 3D coordinates (in millimeters).


	Parameters

	index – The controller index to check.



	Returns

	Integer position of the requested controller (in millimeters).










	
Point3F RazerHydraFrame::getControllerRawPos(int index)


	Get the raw position of the requested controller. The raw position is the controller’s floating point position converted to Torque 3D coordinates (in millimeters).


	Parameters

	index – The controller index to check.



	Returns

	Raw position of the requested controller (in millimeters).










	
TransformF RazerHydraFrame::getControllerRawTransform(int index)


	Get the raw transform of the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	The raw position and rotation of the requested controller (in Torque 3D coordinates).










	
AngAxisF RazerHydraFrame::getControllerRot(int index)


	Get the rotation of the requested controller. The Razer Hydra controller rotation as converted into the Torque 3Dcoordinate system.


	Parameters

	index – The controller index to check.



	Returns

	Rotation of the requested controller.










	
Point2F RazerHydraFrame::getControllerRotAxis(int index)


	Get the axis rotation of the requested controller. This is the axis rotation of the controller as if the controller were a gamepad thumb stick. Imagine a stick coming out the top of the controller and tilting the controller front, back, left and right controls that stick. The values returned along the x and y stick axis are normalized from -1.0 to 1.0 with the maximum controller tilt angle for these values as defined by $RazerHydra::MaximumAxisAngle .


	Parameters

	index – The controller index to check.



	Returns

	Axis rotation of the requested controller.










	
int RazerHydraFrame::getControllerSequenceNum(int index)


	Get the controller sequence number.


	Parameters

	index – The controller index to check.



	Returns

	The sequence number of the requested controller.










	
bool RazerHydraFrame::getControllerShoulderButton(int index)


	Get the shoulder button state for the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	Shoulder button state requested controller as true or false.










	
bool RazerHydraFrame::getControllerStartButton(int index)


	Get the start button state for the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	Start button state requested controller as true or false.










	
bool RazerHydraFrame::getControllerThumbButton(int index)


	Get the thumb button state for the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	Thumb button state requested controller as true or false.










	
Point2F RazerHydraFrame::getControllerThumbStick(int index)


	Get the thumb stick values of the requested controller. The thumb stick values are in the range of -1.0..1.0


	Parameters

	index – The controller index to check.



	Returns

	Thumb stick values of the requested controller.










	
TransformF RazerHydraFrame::getControllerTransform(int index)


	Get the transform of the requested controller.


	Parameters

	index – The controller index to check.



	Returns

	The position and rotation of the requested controller (in Torque 3D coordinates).










	
float RazerHydraFrame::getControllerTrigger(int index)


	Get the trigger value for the requested controller. The trigger value is in the range of -1.0..1.0


	Parameters

	index – The controller index to check.



	Returns

	value of the requested controller.










	
int RazerHydraFrame::getFrameInternalId()


	Provides the internal ID for this frame.


	Returns

	Internal ID of this frame.










	
int RazerHydraFrame::getFrameRealTime()


	Get the real time that this frame was generated.


	Returns

	Real time of this frame in milliseconds.










	
int RazerHydraFrame::getFrameSimTime()


	Get the sim time that this frame was generated.


	Returns

	Sim time of this frame in milliseconds.










	
bool RazerHydraFrame::isFrameValid()


	Checks if this frame is valid.


	Returns

	True if the frame is valid.















          

      

      

    

  

    
      
          
            
  
ReflectorDesc

A datablock which defines performance and quality properties for dynamic reflections.


	Inherit:

	SimDataBlock






Description

ReflectorDesc is not itself a reflection and does not render reflections. It is a dummy class for holding and exposing to the user a set of reflection related properties. Objects which support dynamic reflections may then reference a ReflectorDesc.

Example:

datablock ReflectorDesc( ExampleReflectorDesc )
{
   texSize = 256;
   nearDist = 0.1;
   farDist = 500;
   objectTypeMask = 0xFFFFFFFF;
   detailAdjust = 1.0;
   priority = 1.0;
   maxRateMs = 0;
   useOcclusionQuery = true;
};








Fields


	
float ReflectorDesc::detailAdjust


	Scale applied to lod calculation of objects rendering into this reflection ( modulates $pref::TS::detailAdjust ).






	
float ReflectorDesc::farDist


	Far plane distance to use when rendering reflections.






	
int ReflectorDesc::maxRateMs


	If less than maxRateMs has elapsed since this relfection was last updated, then do not update it again. This ‘skip’ can be disabled by setting maxRateMs to zero.






	
float ReflectorDesc::nearDist


	Near plane distance to use when rendering this reflection. Adjust this to limit self-occlusion artifacts.






	
int ReflectorDesc::objectTypeMask


	Object types which render into this reflection.






	
float ReflectorDesc::priority


	Priority for updating this reflection, relative to others.






	
int ReflectorDesc::texSize


	Size in pixels of the (square) reflection texture. For a cubemap this value is interpreted as size of each face.






	
bool ReflectorDesc::useOcclusionQuery


	If available on the device use HOQs to determine if the reflective object is visible before updating its reflection.











          

      

      

    

  

    
      
          
            
  
RenderBinManager

The abstract base for all render bins.


	Inherit:

	SimObject






Description

The render bins are used by the engine as a high level method to order and batch rendering operations.




Methods


	
string RenderBinManager::getBinType()


	Returns the bin type string.








Fields


	
string RenderBinManager::binType


	Sets the render bin type which limits what render instances are added to this bin.






	
float RenderBinManager::processAddOrder


	Defines the order for adding instances in relation to other bins.






	
float RenderBinManager::renderOrder


	Defines the order for rendering in relation to other bins.











          

      

      

    

  

    
      
          
            
  
RenderFormatToken

Used to change the render target format when rendering in AL.


	Inherit:

	RenderPassStateToken






Description

RenderFormatToken is an implementation which changes the format of the back buffer and/or the depth buffer.

The RenderPassStateBin manager changes the rendering state associated with this token. In stock Torque 3D, a single example exists in the way of AL_FormatToken (found in renderManager.cs). In that script file, all the render managers are intialized, and a single RenderFormatToken is used. This implementation basically exists to ensure Advanced Lighting works with MSAA.

The actions for this token toggle the format of the back/depth buffers and it lets you specify a custom shader to “copy” the data so it can be reformatted or altered. This is done through the variables copyEffect and resolveEffect (which are post processes just like fog or glow)

Example:

// This token, and the associated render managers, ensure that driver MSAA does not get used for Advanced Lighting renders.// The AL_FormatResolve PostEffect copies the result to the backbuffer.newRenderFormatToken(AL_FormatToken)
{
   enabled = "false";

   format = "GFXFormatR8G8B8A8";
   depthFormat = "GFXFormatD24S8";
   aaLevel = 0; // -1 = match backbuffer
   // The contents of the back buffer before this format token is executed
   // is provided in
   $inTexcopyEffect = "AL_FormatCopy";

   // The contents of the render target created by this format token is
   // provided in
   $inTexresolveEffect = "AL_FormatCopy";
};








Fields


	
int RenderFormatToken::aaLevel


	Anti-ailiasing level for the this token. 0 disables, -1 uses adapter default.






	
PostEffect RenderFormatToken::copyEffect


	This PostEffect will be run when the render target is changed to the format specified by this token. It is used to copy/format data into the token rendertarget.






	
GFXFormat RenderFormatToken::depthFormat


	Sets the depth/stencil buffer format for this token.






	
GFXFormat RenderFormatToken::format


	Sets the color buffer format for this token.






	
PostEffect RenderFormatToken::resolveEffect


	This PostEffect will be run when the render target is changed back to the format active prior to this token. It is used to copy/format data from the token rendertarget to the backbuffer.











          

      

      

    

  

    
      
          
            
  
RenderGlowMgr

A render bin for the glow pass.


	Inherit:

	RenderTexTargetBinManager






Description

When the glow buffer PostEffect is enabled this bin gathers mesh render instances with glow materials and renders them to the glowbuffer offscreen render target.

This render target is then used by the ‘GlowPostFx’ PostEffect to blur and render the glowing portions of the screen.







          

      

      

    

  

    
      
          
            
  
RenderImposterMgr

A render bin for batch rendering imposters.


	Inherit:

	RenderBinManager






Description

This render bin gathers imposter render instances and renders them in large batches.

You can type ‘metrics( imposter )’ in the console to see rendering statistics.







          

      

      

    

  

    
      
          
            
  
RenderMeshExample

An example scene object which renders a mesh.


	Inherit:

	SceneObject






Description

This class implements a basic SceneObject that can exist in the world at a 3D position and render itself. There are several valid ways to render an object in Torque. This class implements the preferred rendering method which is to submit a MeshRenderInst along with a Material, vertex buffer, primitive buffer, and transform and allow the RenderMeshMgr handle the actual setup and rendering for you.

See the C++ code for implementation details.




Methods


	
void RenderMeshExample::postApply()


	A utility method for forcing a network update.








Fields


	
string RenderMeshExample::Material


	The name of the material used to render the mesh.











          

      

      

    

  

    
      
          
            
  
RenderMeshMgr

A render bin for mesh rendering.


	Inherit:

	RenderBinManager






Description

This is the primary render bin in Torque which does most of the work of rendering DTS shapes and arbitrary mesh geometry. It knows how to render mesh instances using materials and supports hardware mesh instancing.







          

      

      

    

  

    
      
          
            
  
RenderObjectExample

An example scene object which renders using a callback.


	Inherit:

	SceneObject






Description

This class implements a basic SceneObject that can exist in the world at a 3D position and render itself. Note that RenderObjectExample handles its own rendering by submitting itself as an ObjectRenderInst (see renderInstance enderPassmanager.h) along with a delegate for its render() function. However, the preffered rendering method in the engine is to submit a MeshRenderInst along with a Material, vertex buffer, primitive buffer, and transform and allow the RenderMeshMgr handle the actual rendering. You can see this implemented in RenderMeshExample.

See the C++ code for implementation details.







          

      

      

    

  

    
      
          
            
  
RenderObjectMgr

A render bin which uses object callbacks for rendering.


	Inherit:

	RenderBinManager






Description

This render bin gathers object render instances and calls its delegate method to perform rendering. It is used infrequently for specialized scene objects which perform custom rendering.







          

      

      

    

  

    
      
          
            
  
RenderOcclusionMgr

A render bin which renders occlusion query requests.


	Inherit:

	RenderBinManager






Description

This render bin gathers occlusion query render instances and renders them. It is currently used by light flares and ShapeBase reflection cubemaps.

You can type ‘$RenderOcclusionMgr::debugRender = true’ in the console to see debug rendering of the occlusion geometry.







          

      

      

    

  

    
      
          
            
  
RenderParticleMgr

A render bin which renders particle geometry.


	Inherit:

	RenderTexTargetBinManager






Description

This render bin gathers particle render instances, sorts, and renders them. It is currently used by ParticleEmitter and LightFlareData.







          

      

      

    

  

    
      
          
            
  
RenderPassManager

A grouping of render bin managers which forms a render pass.


	Inherit:

	SimObject






Description

The render pass is used to order a set of RenderBinManager objects which are used when rendering a scene. This class does little work itself other than managing its list of render bins.

In ‘core/scripts/client/renderManager.cs’ you will find the DiffuseRenderPassManager which is used by the C++ engine to render the scene.




Methods


	
void RenderPassManager::addManager(RenderBinManager renderBin)


	Add as a render bin manager to the pass.






	
RenderBinManager RenderPassManager::getManager(int index)


	Returns the render bin manager at the index or null if the index is out of range.






	
int RenderPassManager::getManagerCount()


	Returns the total number of bin managers.






	
void RenderPassManager::removeManager(RenderBinManager renderBin)


	Removes a render bin manager.











          

      

      

    

  

    
      
          
            
  
RenderPassStateBin

A non-rendering render bin used to enable/disable a RenderPassStateToken.


	Inherit:

	RenderBinManager






Description

This is a utility RenderBinManager which does not render any render instances. Its only used to define a point in the render bin order at which a RenderPassStateToken is triggered.




Fields


	
RenderPassStateToken RenderPassStateBin::stateToken


	









          

      

      

    

  

    
      
          
            
  
RenderPassStateToken

Abstract base class for RenderFormatToken, used to manipulate what goes on in the render manager.


	Inherit:

	SimObject






Description

You cannot actually instantiate RenderPassToken, only its child: RenderFormatToken. RenderFormatToken is an implementation which changes the format of the back buffer and/or the depth buffer.

The RenderPassStateBin manager changes the rendering state associated with a token it is declared with. In stock Torque 3D, a single example exists in the way of AL_FormatToken (found in renderManager.cs). In that script file, all the render managers are intialized, and a single RenderFormatToken is used. This implementation basically exists to ensure Advanced Lighting works with MSAA.




Methods


	
void RenderPassStateToken::disable()


	Disables the token.






	
void RenderPassStateToken::enable()


	Enables the token.






	
void RenderPassStateToken::toggle()


	Toggles the token from enabled to disabled or vice versa.








Fields


	
bool RenderPassStateToken::enabled


	Enables or disables this token.











          

      

      

    

  

    
      
          
            
  
RenderPrePassMgr

The render bin which performs a z+normals prepass used in Advanced Lighting.


	Inherit:

	RenderTexTargetBinManager






Description

This render bin is used in Advanced Lighting to gather all opaque mesh render instances and render them to the g-buffer for use in lighting the scene and doing effects.

PostEffect and other shaders can access the output of this bin by using the prepass texture target name. See the edge anti-aliasing post effect for an example.







          

      

      

    

  

    
      
          
            
  
RenderShapeExample

An example scene object which renders a DTS.


	Inherit:

	SceneObject






Description

This class implements a basic SceneObject that can exist in the world at a 3D position and render itself. There are several valid ways to render an object in Torque. This class makes use of the ‘TS’ (three space) shape system. TS manages loading the various mesh formats supported by Torque as well was rendering those meshes (including LOD and animation…though this example doesn’t include any animation over time).

See the C++ code for implementation details.




Fields


	
filename RenderShapeExample::shapeFile


	The path to the DTS shape file.











          

      

      

    

  

    
      
          
            
  
RenderTerrainMgr

A render bin for terrain mesh rendering.


	Inherit:

	RenderBinManager






Description

This bin renders terrain render instances from a TerrainBlock. Normally a mesh would render via the RenderMeshMgr, but terrain uses a TerrainMaterial designed for multi-layered surfaces which this bin can processs.







          

      

      

    

  

    
      
          
            
  
RenderTexTargetBinManager

An abstract base class for render bin managers that render to a named textue target.


	Inherit:

	RenderBinManager






Description

This bin itself doesn’t do any rendering work. It offers functionality to manage a texture render target which derived render bin classes can render into.







          

      

      

    

  

    
      
          
            
  
RenderTranslucentMgr

A render bin for rendering translucent meshes.


	Inherit:

	RenderBinManager






Description

This bin is used to render translucent render mesh instances and render object instances. It is generally ordered late in the RenderPassManager after all opaque geometry bins.







          

      

      

    

  

    
      
          
            
  
RigidShape

Implements rigid-body physics for DTS objects in the world.


	Inherit:

	ShapeBase






Description

The RigidShape class implements rigid-body physics for DTS objects in the world.

“Rigid body physics” refers to a system whereby objects are assumed to have a finite size, equally distributed masses, and where deformations of the objects themselves are not accounted for. Uses the RigidShape class to control its physics.

Example:

datablock RigidShapeData( BouncingBoulder )
{
   category = "RigidShape";

   shapeFile = "~/data/shapes/boulder/boulder.dts";
   emap = true;

   // Rigid Body
   mass = 500;
   massCenter = "0 0 0";    // Center of mass for rigid body
   massBox = "0 0 0";         // Size of box used for moment of inertia,
                       // if zero it defaults to object bounding box
   drag = 0.2;                // Drag coefficient
   bodyFriction = 0.2;
   bodyRestitution = 0.1;
   minImpactSpeed = 5;        // Impacts over this invoke the script callback
   softImpactSpeed = 5;       // Play SoftImpact Sound
   hardImpactSpeed = 15;      // Play HardImpact Sound
   integration = 4;           // Physics integration: TickSec/Rate
   collisionTol = 0.1;        // Collision distance tolerance
   contactTol = 0.1;          // Contact velocity tolerance

   minRollSpeed = 10;

   maxDrag = 0.5;
   minDrag = 0.01;

   dustHeight = 10;

   dragForce = 0.05;
   vertFactor = 0.05;
};

     new RigidShape()
{
   dataBlock = "BouncingBoulder";
   parentGroup = EWCreatorWindow.objectGroup;
};








Methods


	
void RigidShape::forceClientTransform()


	Forces the client to jump to the RigidShape’s transform rather then warp to it.






	
void RigidShape::freezeSim(bool isFrozen)


	Enables or disables the physics simulation on the RigidShape object.


	Parameters

	isFrozen – Boolean frozen state to set the object.





Example:

// Define the frozen state.
%isFrozen = "true";

// Inform the object of the defined frozen state
%thisRigidShape.freezeSim(%isFrozen);










	
void RigidShape::onEnterLiquid(string objId, string waterCoverage, string liquidType)


	Called whenever this RigidShape object enters liquid.


	Parameters

	
	objId – The ID of the rigidShape object.


	waterCoverage – Amount of water coverage the RigidShape has.


	liquidType – Type of liquid that was entered.








Example:

// The RigidShape object falls in a body of liquid, causing the callback to occur.
RigidShape::onEnterLiquid(%this,%objId,%waterCoverage,%liquidType)
{
        // Code to run whenever this callback occurs.
}










	
void RigidShape::onLeaveLiquid(string objId, string liquidType)


	Called whenever the RigidShape object exits liquid.


	Parameters

	
	objId – The ID of the RigidShape object.


	liquidType – Type if liquid that was exited.








Example:

// The RigidShape object exits in a body of liquid, causing the callback to occur.
RigidShape::onLeaveLiquid(%this,%objId,%liquidType)
{
  // Code to run whenever this callback occurs.
}










	
void RigidShape::reset()


	Clears physic forces from the shape and sets it at rest.

Example:

// Inform the RigidShape object to reset.
%thisRigidShape.reset();















          

      

      

    

  

    
      
          
            
  
RigidShapeData

Physics object.


	Inherit:

	ShapeBaseData






Description

Defines the physics properties for an individual RigidShapeData physics object.

Example:

datablock RigidShapeData( BouncingBoulder )
{
   category = "RigidShape";

   shapeFile = "~/data/shapes/boulder/boulder.dts";
   emap = true;

   // Rigid Bodymass = 500;
   massCenter = "0 0 0";    // Center of mass for rigid bodymass
   Box = "0 0 0";         // Size of box used for moment of inertia,
                          // if zero it defaults to object bounding box
   drag = 0.2;                // Drag coefficientbodyFriction = 0.2;
   bodyRestitution = 0.1;
   minImpactSpeed = 5;        // Impacts over this invoke the script callback
   softImpactSpeed = 5;       // Play SoftImpact Sound
   hardImpactSpeed = 15;      // Play HardImpact Sound
   integration = 4;           // Physics integration: TickSec/Rate
   collisionTol = 0.1;        // Collision distance
   tolerancecontactTol = 0.1; // Contact velocity toleranceminRollSpeed = 10;

   maxDrag = 0.5;
   minDrag = 0.01;

   dustHeight = 10;

   dragForce = 0.05;
   vertFactor = 0.05;
};








Fields


	
float RigidShapeData::bodyFriction


	How much friction this object has. Lower values will cause the object to appear to be more slippery.






	
float RigidShapeData::bodyRestitution


	The percentage of kinetic energy kept by this object in a collision.






	
float RigidShapeData::cameraDecay


	Scalar rate at which the third person camera offset decays, per tick.






	
float RigidShapeData::cameraLag


	Scalar amount by which the third person camera lags the object, relative to the object’s linear velocity.






	
float RigidShapeData::cameraOffset


	The vertical offset of the object’s camera.






	
bool RigidShapeData::cameraRoll


	Specifies whether the camera’s rotation matrix, and the render eye transform are multiplied during camera updates.






	
float RigidShapeData::collisionTol


	Collision distance tolerance.






	
float RigidShapeData::contactTol


	Contact velocity tolerance.






	
float RigidShapeData::dragForce


	Used to simulate the constant drag acting on the object.






	
ParticleEmitterData RigidShapeData::dustEmitter


	Array of pointers to ParticleEmitterData datablocks which will be used to emit particles at object/terrain contact point.






	
float RigidShapeData::dustHeight


	Height of dust effects.






	
ParticleEmitterData RigidShapeData::dustTrailEmitter


	Particle emitter used to create a dust trail for the moving object.






	
SFXTrack RigidShapeData::exitingWater


	The AudioProfile will be used to produce sounds when emerging from water.






	
float RigidShapeData::exitSplashSoundVelocity


	The minimum velocity at which the exit splash sound will be played when emerging from water.






	
SFXTrack RigidShapeData::hardImpactSound


	Sound to play when body impacts with at least hardImpactSpeed.






	
float RigidShapeData::hardImpactSpeed


	Minimum speed at which the object must be travelling for the hard impact sound to be played.






	
float RigidShapeData::hardSplashSoundVelocity


	The minimum velocity at which the hard splash sound will be played when impacting water.






	
SFXTrack RigidShapeData::impactWaterEasy


	The AudioProfile will be used to produce sounds when a soft impact with water occurs.






	
SFXTrack RigidShapeData::impactWaterHard


	The AudioProfile will be used to produce sounds when a hard impact with water occurs.






	
SFXTrack RigidShapeData::impactWaterMedium


	The AudioProfile will be used to produce sounds when a medium impact with water occurs.






	
int RigidShapeData::integration


	Number of physics steps to process per tick.






	
Point3F RigidShapeData::massBox


	Size of inertial box.






	
Point3F RigidShapeData::massCenter


	Center of mass for rigid body.






	
float RigidShapeData::maxDrag


	Maximum drag available to this object.






	
float RigidShapeData::mediumSplashSoundVelocity


	The minimum velocity at which the medium splash sound will be played when impacting water.






	
float RigidShapeData::minDrag


	Minimum drag available to this object.






	
float RigidShapeData::minImpactSpeed


	Minimum collision speed to classify collision as impact (triggers onImpact on server object).






	
float RigidShapeData::minRollSpeed


	




	
SFXTrack RigidShapeData::softImpactSound


	Sound to play when body impacts with at least softImageSpeed but less than hardImpactSpeed.






	
float RigidShapeData::softImpactSpeed


	Minimum speed at which this object must be travelling for the soft impact sound to be played.






	
float RigidShapeData::softSplashSoundVelocity


	The minimum velocity at which the soft splash sound will be played when impacting water.






	
ParticleEmitterData RigidShapeData::splashEmitter[2]


	Array of pointers to ParticleEmitterData datablocks which will generate splash effects.






	
float RigidShapeData::splashFreqMod


	The simulated frequency modulation of a splash generated by this object. Multiplied along with speed and time elapsed when determining splash emition rate.






	
float RigidShapeData::splashVelEpsilon


	The threshold speed at which we consider the object’s movement to have stopped when updating splash effects.






	
float RigidShapeData::triggerDustHeight


	Maximum height from the ground at which the object will generate dust.






	
float RigidShapeData::vertFactor


	The scalar applied to the vertical portion of the velocity drag acting on a object.






	
SFXTrack RigidShapeData::waterWakeSound


	The AudioProfile will be used to produce sounds when a water wake is displayed.











          

      

      

    

  

    
      
          
            
  
River

A water volume defined by a 3D spline.


	Inherit:

	WaterObject






Description

A water volume defined by a 3D spline.

User may control width and depth per node and overall spline shape in three dimensions.

River supports dynamic planar reflections (fullReflect) like all WaterObject classes, but keep in mind it is not necessarily a planar surface. For best visual quality a River should be less reflective the more it twists and bends. This caution only applies to Rivers with fullReflect on.




Methods


	
void River::regenerate()


	Intended as a helper to developers and editor scripts. Force River to recreate its geometry.






	
void River::setBatchSize(float meters)


	Intended as a helper to developers and editor scripts. BatchSize is not currently used.






	
void River::setMaxDivisionSize(float meters)


	Intended as a helper to developers and editor scripts.






	
void River::setMetersPerSegment(float meters)


	Intended as a helper to developers and editor scripts.






	
void River::setNodeDepth(int idx, float meters)


	Intended as a helper to developers and editor scripts. Sets the depth in meters of a particular node.








Fields


	
bool River::EditorOpen[static]


	For editor use.






	
float River::FlowMagnitude


	Magnitude of the force vector applied to dynamic objects within the River .






	
float River::LowLODDistance


	Segments of the river at this distance in meters or greater will render as a single unsubdivided without undulation effects.






	
string River::Node


	For internal use, do not modify.






	
float River::SegmentLength


	Divide the River lengthwise into segments of this length in meters. These geometric volumes are used for spacial queries like determining containment.






	
bool River::showNodes[static]


	For editor use.






	
bool River::showRiver[static]


	For editor use.






	
bool River::showSpline[static]


	For editor use.






	
bool River::showWalls[static]


	For editor use.






	
bool River::showWireframe[static]


	For editor use.






	
float River::SubdivideLength


	For purposes of generating the renderable geometry River segments are further subdivided such that no quad is of greater width or length than this distance in meters.











          

      

      

    

  

    
      
          
            
  
SFXAmbience

A datablock that describes an ambient sound space.


	Inherit:

	SimDataBlock






Description

Each ambience datablock captures the properties of a unique ambient sound space. A sound space is comprised of:


	an ambient audio track that is played when the listener is inside the space,


	a reverb environment that is active inside the space, and


	a number of SFXStates that are activated when entering the space and deactivated when exiting it.




Each of these properties is optional.

An important characteristic of ambient audio spaces is that their unique nature is not determined by their location in space but rather by their SFXAmbience datablock. This means that the same SFXAmbience datablock assigned to multiple locations in a level represents the same unique audio space to the sound system.

This is an important distinction for the ambient sound mixer which will activate a given ambient audio space only once at any one time regardless of how many intersecting audio spaces with the same SFXAmbience datablock assigned the listener may currently be in.

All SFXAmbience instances are automatically added to the global SFXAmbienceSet.

At the moment, transitions between reverb environments are not blended and different reverb environments from multiple active SFXAmbiences will not be blended together. This will be added in a future version.

Example:

singleton SFXAmbience( Underwater )
{
   environment = AudioEnvUnderwater;
   soundTrack = ScubaSoundList;
   states[ 0 ] = AudioLocationUnderwater;
};








Fields


	
float SFXAmbience::dopplerFactor


	The factor to apply to the doppler affect in this space. Defaults to 0.5. Doppler Effect






	
SFXEnvironment SFXAmbience::environment


	Reverb environment active in the ambience zone. Audio Reverb






	
float SFXAmbience::rolloffFactor


	The rolloff factor to apply to distance-based volume attenuation in this space. Defaults to 1.0. Volume Attenuation






	
SFXTrack SFXAmbience::soundTrack


	Sound track to play in the ambience zone.






	
SFXState SFXAmbience::states[4]


	States to activate when the ambient zone is entered. When the ambient sound state is entered, all states associated with the state will be activated (given that they are not disabled) and deactivated when the space is exited again.











          

      

      

    

  

    
      
          
            
  
SFXController

A sound source that drives multi-source playback.


	Inherit:

	SFXSource






Description

This class acts as an interpreter for SFXPlayLists. It goes through the slots of the playlist it is attached to and performs the actions described by each of the slots in turn. As SFXControllers are created implicitly by the SFX system when instantiating a source for a play list it is in most cases not necessary to directly deal with the class. The following example demonstrates how a controller would commonly be created.

Example:

// Create a play list from two SFXProfiles.
%playList = newSFXPlayList()
{
   // Use a looped description so the list playback will loop.description = AudioMusicLoop2D;

   track[ 0 ] = Profile1;
   track[ 1 ] = Profile2;
};

// Play the list.  This will implicitly create a controller.sfxPlayOnce( %playList );








Methods


	
int SFXController::getCurrentSlot()


	Get the index of the playlist slot currently processed by the controller.


	Returns

	The slot index currently being played.










	
void SFXController::setCurrentSlot(int index)


	Set the index of the playlist slot to play by the controller. This can be used to seek in the playlist.


	Parameters

	index – Index of the playlist slot.












Fields


	
bool SFXController::trace


	If true, the controller logs its operation to the console. This is a non-networked field that will work locally only.











          

      

      

    

  

    
      
          
            
  
SFXDescription

A description for how a sound should be played.


	Inherit:

	SimDataBlock






Description

SFXDescriptions are used by the sound system to collect all parameters needed to set up a given sound for playback. This includes information like its volume level, its pitch shift, etc. as well as more complex information like its fade behavior, 3D properties, and per-sound reverb properties.

Any sound playback will require a valid SFXDescription.

As datablocks, SFXDescriptions can be set up as either networked datablocks or non-networked datablocks, though it generally makes sense to keep all descriptions non-networked since they will be used exclusively by clients.

Example:

// A description for a 3D sound with a reasonable default range setting.
// The description is set up to assign sounds to the AudioChannelEffects source group
// (defined in the core scripts).  An alternative means to achieve this is to use the
// AudioEffects description as a copy source (": AudioEffects").

singleton SFXDescription( Audio3DSound )
{
  sourceGroup       = AudioChannelEffects;
  is3D              = true;
  referenceDistance = 20.0;
  maxDistance       = 100.0;
};








Fields


	
int SFXDescription::coneInsideAngle


	Inner sound cone angle in degrees. This value determines the angle of the inner volume cone that protrudes out in the direction of a sound. Within this cone, the sound source retains full volume that is unaffected by sound cone settings (though still affected by distance attenuation.) Valid values are from 0 to 360. Must be less than coneOutsideAngle. Default is 360. Only for 3D sounds. Sound Cones






	
int SFXDescription::coneOutsideAngle


	Outer sound cone angle in degrees. This value determines the angle of the outer volume cone that protrudes out in the direction of a sound and surrounds the inner volume cone. Within this cone, volume will linearly interpolate from the outer cone hull inwards to the inner coner hull starting with the base volume scaled by coneOutsideVolume and ramping up/down to the full base volume. Valid values are from 0 to 360. Must be gt = coneInsideAngle. Default is 360. Only for 3D sounds. Sound Cones






	
float SFXDescription::coneOutsideVolume


	Determines the volume scale factor applied the a source’s base volume level outside of the outer cone. In the outer cone, starting from outside the inner cone, the scale factor smoothly interpolates from 1.0 (within the inner cone) to this value. At the moment, the allowed range is 0.0 (silence) to 1.0 (no attenuation) as amplification is only supported on XAudio2 but not on the other devices. Only for 3D sound. Sound Cones






	
EaseF SFXDescription::fadeInEase


	Easing curve for fade-in transition. Volume fade-ins will interpolate volume along this curve. Volume Fades






	
float SFXDescription::fadeInTime


	Number of seconds to gradually fade in volume from zero when playback starts. Must be gt = 0. Volume Fades






	
bool SFXDescription::fadeLoops


	Fade each cycle of a loop in and/or out; otherwise only fade-in first cycle. By default, volume fading is applied to the beginning and end of the playback range, i.e. a fade-in segment is placed at the beginning of the sound and a fade-out segment is paced at the end of a sound. However, when looping playback, this may be undesirable as each iteration of the sound will then have a fade-in and fade-out effect. To set up looping sounds such that a fade-in is applied only when the sound is first started (or playback resumed) and a fade-out is only applied when the sound is explicitly paused or stopped, set this field to true. Default is false. Volume Fades






	
EaseF SFXDescription::fadeOutEase


	Easing curve for fade-out transition. Volume fade-outs will interpolate volume along this curve. Volume Fades






	
float SFXDescription::fadeOutTime


	Number of seconds to gradually fade out volume down to zero when playback is stopped or paused. Must be gt =0. Volume Fades






	
bool SFXDescription::is3D


	If true, sounds played with this description will have a position and orientation in space. Unlike a non-positional sound, a 3D sound will have its volume attenuated depending on the distance to the listener in space. The farther the sound moves away from the listener, the less audible it will be. Non-positional sounds, in contrast, will remain at their original volume regardless of where the listener is. 3D Audio Volume Attenuation






	
bool SFXDescription::isLooping


	If true, the sound will be played in an endless loop. Default is false.






	
bool SFXDescription::isStreaming


	If true, incrementally stream sounds; otherwise sounds are loaded in full. Streaming vs. Buffered Audio






	
float SFXDescription::maxDistance


	The distance at which attenuation stops. In the linear distance model, the attenuated volume will be zero at this distance. In the logarithmic model, attenuation will simply stop at this distance and the sound will keep its attenuated volume from there on out. As such, it primarily functions as a cutoff factor to exponential distance attentuation to limit the number of voices relevant to updates. Only applies to 3D sounds. 3D Audio Volume Attenuation






	
string SFXDescription::parameters[8]


	Names of the parameters to which sources using this description will automatically be linked. Individual parameters are identified by their internalName . Interactive Audio






	
float SFXDescription::pitch


	Pitch shift to apply to playback. The pitch assigned to a sound determines the speed at which it is played back. A pitch shift of 1 plays the sound at its default speed. A greater shift factor speeds up playback and a smaller shift factor slows it down. Must be gt 0. Default is 1.






	
float SFXDescription::priority


	Priority level for virtualization of sounds (1 = base level). When there are more concurrently active sounds than supported by the audio mixer, some of the sounds need to be culled. Which sounds are culled first depends primarily on total audibility of individual sounds. However, the priority of invidual sounds may be decreased or decreased through this field. Sounds and Voices






	
float SFXDescription::referenceDistance


	Distance at which volume attenuation begins. Up to this distance, the sound retains its base volume. In the linear distance model, the volume will linearly from this distance onwards up to maxDistance where it reaches zero. In the logarithmic distance model, the reference distance determine how fast the sound volume decreases with distance. Each referenceDistance steps (scaled by the rolloff factor), the volume halves. A rule of thumb is that for sounds that require you to be close to hear them in the real world, set the reference distance to small values whereas for sounds that are widely audible set it to larger values. Only applies to 3D sounds. 3D Audio Volume Attenuation






	
const int SFXDescription::REVERB_DIRECTHFAUTO[static]


	Automatic setting of SFXDescription::reverbDirect due to distance to listener.






	
const int SFXDescription::REVERB_INSTANCE0[static]


	EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 0. Default target.






	
const int SFXDescription::REVERB_INSTANCE1[static]


	EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 1.






	
const int SFXDescription::REVERB_INSTANCE2[static]


	EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 2.






	
const int SFXDescription::REVERB_INSTANCE3[static]


	EAX4/SFX/GameCube/Wii: Specify channel to target reverb instance 3.






	
const int SFXDescription::REVERB_ROOMAUTO[static]


	Automatic setting of SFXDescription::reverbRoom due to distance to listener.






	
const int SFXDescription::REVERB_ROOMHFAUTO[static]


	Automatic setting of SFXDescription::reverbRoomHF due to distance to listener.






	
float SFXDescription::reverbAirAbsorptionFactor


	Multiplies SFXEnvironment::airAbsorptionHR.






	
int SFXDescription::reverbDirect


	Direct path level (at low and mid frequencies).






	
int SFXDescription::reverbDirectHF


	Relative direct path level at high frequencies.






	
float SFXDescription::reverbDopplerFactor


	Per-source doppler factor.






	
int SFXDescription::reverbExclusion


	Main exclusion control (attenuation at high frequencies).






	
float SFXDescription::reverbExclusionLFRatio


	Exclusion low-frequency level re. main control.






	
int SFXDescription::reverbFlags


	Bitfield combination of per-sound reverb flags.






	
int SFXDescription::reverbObstruction


	Main obstruction control (attenuation at high frequencies).






	
float SFXDescription::reverbObstructionLFRatio


	Obstruction low-frequency level re. main control.






	
int SFXDescription::reverbOcclusion


	Main occlusion control (attenuation at high frequencies).






	
float SFXDescription::reverbOcclusionDirectRatio


	Relative occlusion control for direct path.






	
float SFXDescription::reverbOcclusionLFRatio


	Occlusion low-frequency level re. main control.






	
float SFXDescription::reverbOcclusionRoomRatio


	Relative occlusion control for room effect.






	
int SFXDescription::reverbOutsideVolumeHF


	Outside sound cone level at high frequencies.






	
float SFXDescription::reverbReverbRolloffFactor


	Per-source logarithmic falloff factor.






	
int SFXDescription::reverbRoom


	Room effect level (at low and mid frequencies).






	
int SFXDescription::reverbRoomHF


	Relative room effect level at high frequencies.






	
float SFXDescription::reverbRoomRolloffFactor


	Room effect falloff factor.






	
float SFXDescription::rolloffFactor


	Scale factor to apply to logarithmic distance attenuation curve. If -1, the global rolloff setting is used.






	
Point3F SFXDescription::scatterDistance


	Bounds on random displacement of 3D sound positions. When a 3D sound is created and given its initial position in space, this field is used to determine the amount of randomization applied to the actual position given to the sound system. The randomization uses the following scheme:






	
SFXSource SFXDescription::sourceGroup


	Group that sources playing with this description should be put into. When a sound source is allocated, it will be made a child of the source group that is listed in its description. This group will then modulate several properties of the sound as it is played. For example, one use of groups is to segregate sounds so that volume levels of different sound groups such as interface audio and game audio can be controlled independently. Source Hierarchies






	
int SFXDescription::streamPacketSize


	Number of seconds of sample data per single streaming packet. This field allows to fine-tune streaming for individual sounds. The streaming system processes streamed sounds in batches called packets. Each packet will contain a set amount of sample data determined by this field. The greater its value, the more sample data each packet contains, the more work is done per packet. Streaming vs. Buffered Audio






	
int SFXDescription::streamReadAhead


	Number of sample packets to read and buffer in advance. This field determines the number of packets that the streaming system will try to keep buffered in advance. As such it determines the number of packets that can be consumed by the sound device before the playback queue is running dry. Greater values thus allow for more lag in the streaming pipeline. Streaming vs. Buffered Audio






	
bool SFXDescription::useCustomReverb


	If true, use the reverb properties defined here on sounds. By default, sounds will be assigned a generic reverb profile. By setting this flag to true, a custom reverb setup can be defined using the “Reverb” properties that will then be assigned to sounds playing with the description. Audio Reverb






	
bool SFXDescription::useHardware


	Whether the sound is allowed to be mixed in hardware. If true, the sound system will try to allocate the voice for the sound directly on the sound hardware for mixing by the hardware mixer. Be aware that a hardware mixer may not provide all features available to sounds mixed in software.






	
float SFXDescription::volume


	Base volume level for the sound. This will be the starting point for volume attenuation on the sound. The final effective volume of a sound will be dependent on a number of parameters. Must be between 0 (mute) and 1 (full volume). Default is 1. Volume Attenuation











          

      

      

    

  

    
      
          
            
  
SFXEmitter

An invisible 3D object that emits sound.


	Inherit:

	SceneObject






Description

Sound emitters are used to place sounds in the level. They are full 3D objects with their own position and orientation and when assigned 3D sounds, the transform and velocity of the sound emitter object will be applied to the 3D sound.

Sound emitters can be set up of in either of two ways:


	By assigning an existing SFXTrack to the emitter’s track property. In this case the general sound setup (3D, streaming, looping, etc.) will be taken from track. However, the emitter’s own properties will still override their corresponding properties in the track’s SFXDescription.


	By directly assigning a sound file to the emitter’s fileName property. In this case, the sound file will be set up for playback according to the properties defined on the emitter.




Using playOnAdd emitters can be configured to start playing immediately when they are added to the system (e.g. when the level objects are loaded from the mission file).


Note

A sound emitter need not necessarily emit a 3D sound. Instead, sound emitters may also be used to play non-positional sounds. For placing background audio to a level, however, it is usually easier to use LevelInfo::soundAmbience.




Sound Emitters and Networking

It is important to be aware of the fact that sounds will only play client-side whereas SFXEmitter objects are server-side entities. This means that a server-side object has no connection to the actual sound playing on the client. It is thus not possible for the server-object to perform queries about playback status and other source-related properties as these may in fact differ from client to client.






Methods


	
SFXSource SFXEmitter::getSource()


	Get the sound source object from the emitter.


	Returns

	The sound source used by the emitter or null.










	
void SFXEmitter::play()


	Manually start playback of the emitter’s sound. If this is called on the server-side object, the play command will be related to all client-side ghosts.






	
void SFXEmitter::stop()


	Manually stop playback of the emitter’s sound. If this is called on the server-side object, the stop command will be related to all client-side ghosts.








Fields


	
int SFXEmitter::coneInsideAngle


	Angle of inner volume cone of 3D sound in degrees.






	
int SFXEmitter::coneOutsideAngle


	Angle of outer volume cone of 3D sound in degrees.






	
float SFXEmitter::coneOutsideVolume


	Volume scale factor of outside of outer volume 3D sound cone.






	
float SFXEmitter::fadeInTime


	Number of seconds to gradually fade in volume from zero when playback starts.






	
float SFXEmitter::fadeOutTime


	Number of seconds to gradually fade out volume down to zero when playback is stopped or paused.






	
filename SFXEmitter::fileName


	The sound file to play. Use either this property or track . If both are assigned, track takes precendence. The primary purpose of this field is to avoid the need for the user to define SFXTrack datablocks for all sounds used in a level.






	
bool SFXEmitter::is3D


	Whether to play fileName as a positional (3D) sound or not. If a track is assigned, the value of this field is ignored.






	
bool SFXEmitter::isLooping


	Whether to play fileName in an infinite loop. If a track is assigned, the value of this field is ignored.






	
bool SFXEmitter::isStreaming


	Whether to use streamed playback for fileName . If a track is assigned, the value of this field is ignored. Streaming vs. Buffered Audio






	
float SFXEmitter::maxDistance


	Distance at which to stop volume attenuation of the 3D sound.






	
float SFXEmitter::pitch


	Pitch shift to apply to the sound. Default is 1 = play at normal speed.






	
bool SFXEmitter::playOnAdd


	Whether playback of the emitter’s sound should start as soon as the emitter object is added to the level. If this is true, the emitter will immediately start to play when the level is loaded.






	
float SFXEmitter::referenceDistance


	Distance at which to start volume attenuation of the 3D sound.






	
Point3F SFXEmitter::scatterDistance


	Bounds on random offset to apply to initial 3D sound position.






	
SFXSource SFXEmitter::sourceGroup


	The SFXSource to which to assign the sound of this emitter as a child.






	
SFXTrack SFXEmitter::track


	The track which the emitter should play.






	
bool SFXEmitter::useTrackDescriptionOnly


	If this is true, all fields except for playOnAdd and track are ignored on the emitter object. This is useful to prevent fields in the track ‘s description from being overridden by emitter fields.






	
float SFXEmitter::volume


	Volume level to apply to the sound.











          

      

      

    

  

    
      
          
            
  
SFXEnvironment

Description of a reverb environment.


	Inherit:

	SimDataBlock






Description

A reverb environment specifies how the audio mixer should render advanced environmental audio effects.

To use reverb environments in your level, set up one or more ambient audio spaces, assign reverb environments appropriately, and then attach the SFXAmbiences to your LevelInfo (taking effect globally) or Zone objects (taking effect locally).

To define your own custom reverb environments, it is usually easiest to adapt one of the pre-existing reverb definitions:

singleton SFXEnvironment( AudioEnvCustomUnderwater : AudioEnvUnderwater )
{
   // Override select properties from AudioEnvUnderwater here.
};





In the Datablock Editor, this can be done by selecting an existing environment to copy from when creating the SFXEnvironment datablock.

For a precise description of reverb audio and the properties of this class, please consult the EAX documentation.

All SFXEnvironment instances are automatically added to the global SFXEnvironmentSet.




Fields


	
float SFXEnvironment::airAbsorptionHF


	Change in level per meter at high frequencies.






	
float SFXEnvironment::decayHFRatio


	High-frequency to mid-frequency decay time ratio.






	
float SFXEnvironment::decayLFRatio


	Low-frequency to mid-frequency decay time ratio.






	
float SFXEnvironment::decayTime


	Reverberation decay time at mid frequencies.






	
float SFXEnvironment::density


	Value that controls the modal density in the late reverberation decay.






	
float SFXEnvironment::diffusion


	Value that controls the echo density in the late reverberation decay.






	
float SFXEnvironment::echoDepth


	Echo depth.






	
float SFXEnvironment::echoTime


	Echo time.






	
float SFXEnvironment::envDiffusion


	Environment diffusion.






	
float SFXEnvironment::envSize


	Environment size in meters.






	
int SFXEnvironment::flags


	A bitfield of reverb flags.






	
float SFXEnvironment::HFReference


	Reference high frequency in Hertz.






	
float SFXEnvironment::LFReference


	Reference low frequency in Hertz.






	
float SFXEnvironment::modulationDepth


	Modulation depth.






	
float SFXEnvironment::modulationTime


	Modulation time.






	
int SFXEnvironment::reflections


	Early reflections level relative to room effect.






	
float SFXEnvironment::reflectionsDelay


	Initial reflection delay time.






	
float SFXEnvironment::reflectionsPan[3]


	Early reflections panning vector.






	
int SFXEnvironment::reverb


	Late reverberation level relative to room effect.






	
const int SFXEnvironment::REVERB_CORE0[static]


	PS2 Only - Reverb is applied to CORE0 (hw voices 0-23).






	
const int SFXEnvironment::REVERB_CORE1[static]


	PS2 Only - Reverb is applied to CORE1 (hw voices 24-47).






	
const int SFXEnvironment::REVERB_DECAYHFLIMIT[static]


	SFXEnvironment::airAbsorptionHF affects SFXEnvironment::decayHFRatio .






	
const int SFXEnvironment::REVERB_DECAYTIMESCALE[static]


	SFXEnvironment::envSize affects reverberation decay time.






	
const int SFXEnvironment::REVERB_ECHOTIMESCALE[static]


	SFXEnvironment::envSize affects echo time.






	
const int SFXEnvironment::REVERB_HIGHQUALITYDPL2REVERB[static]


	GameCube/Wii Only - Use high-quality DPL2 reverb.






	
const int SFXEnvironment::REVERB_HIGHQUALITYREVERB[static]


	GameCube/Wii Only - Use high-quality reverb.






	
const int SFXEnvironment::REVERB_MODULATIONTIMESCALE[static]


	SFXEnvironment::envSize affects modulation time.






	
const int SFXEnvironment::REVERB_REFLECTIONSDELAYSCALE[static]


	SFXEnvironment::envSize affects initial reflection delay time.






	
const int SFXEnvironment::REVERB_REFLECTIONSSCALE[static]


	SFXEnvironment::envSize affects reflection level.






	
const int SFXEnvironment::REVERB_REVERBDELAYSCALE[static]


	SFXEnvironment::envSize affects late reverberation delay time.






	
const int SFXEnvironment::REVERB_REVERBSCALE[static]


	SFXEnvironment::envSize affects reflections level.






	
float SFXEnvironment::reverbDelay


	Late reverberation delay time relative to initial reflection.






	
float SFXEnvironment::reverbPan[3]


	Late reverberation panning vector.






	
int SFXEnvironment::room


	Room effect level at mid-frequencies.






	
int SFXEnvironment::roomHF


	Relative room effect level at high frequencies.






	
int SFXEnvironment::roomLF


	Relative room effect level at low frequencies.






	
float SFXEnvironment::roomRolloffFactor


	Logarithmic distance attenuation rolloff scale factor for reverb room size effect.











          

      

      

    

  

    
      
          
            
  
SFXFMODEvent

A playable sound event in an FMOD Designer audio project.


	Inherit:

	SFXTrack






Description

A playable sound event in an FMOD Designer audio project.




Fields


	
SFXFMODEventGroup SFXFMODEvent::fmodGroup


	DO NOT MODIFY!!






	
string SFXFMODEvent::fmodName


	DO NOT MODIFY!!






	
Point2F SFXFMODEvent::fmodParameterRanges[8]


	DO NOT MODIFY!!






	
float SFXFMODEvent::fmodParameterValues[8]


	DO NOT MODIFY!!











          

      

      

    

  

    
      
          
            
  
SFXFMODEventGroup

A group of events in an imported FMOD Designer project.


	Inherit:

	SimDataBlock






Description

A group of events in an imported FMOD Designer project.




Methods


	
void SFXFMODEventGroup::freeData()


	Release the resource data for this group and its subgroups.






	
bool SFXFMODEventGroup::isDataLoaded()


	Test whether the resource data for this group has been loaded.


	Returns

	True if the resource data for this group is currently loaded.










	
bool SFXFMODEventGroup::loadData(bool loadStreams, bool loadSamples)


	Load the resource data for this group, if it has not already been loaded (either directly or indirectly through a parent group). This method works recursively and thus data for direct and indirect child groups to this group will be loaded as well.


	Parameters

	
	loadStreams – Whether to open streams.


	loadSamples – Whether to load sample banks.






	Returns

	True if the data has been successfully loaded; false otherwise.












Fields


	
SFXFMODEventGroup SFXFMODEventGroup::fmodGroup


	DO NOT MODIFY!!






	
string SFXFMODEventGroup::fmodName


	DO NOT MODIFY!!






	
SFXFMODProject SFXFMODEventGroup::fmodProject


	DO NOT MODIFY!!











          

      

      

    

  

    
      
          
            
  
SFXFMODEventSource

A sound source controller playing an FMOD Designer event (SFXFMODEvent).


	Inherit:

	SFXSource






Description

A sound source controller playing an FMOD Designer event (SFXFMODEvent).

FMOD event sources are internally created by the sound system to play events from imported FMOD Designer projects.







          

      

      

    

  

    
      
          
            
  
SFXFMODProject

An FMOD Designer project loaded into Torque.


	Inherit:

	SimDataBlock






Description

An FMOD Designer project loaded into Torque.




Resource Loading




Fields


	
filename SFXFMODProject::fileName


	The compiled .fev file from FMOD Designer.






	
filename SFXFMODProject::mediaPath


	Path to the media files; if unset, defaults to project directory.











          

      

      

    

  

    
      
          
            
  
SFXParameter

A sound channel value that can be bound to multiple sound sources.


	Inherit:

	SimObject






Description

Parameters are special objects that isolate a specific property that sound sources can have and allows to bind this isolated instance to multiple sound sources such that when the value of the parameter changes, all sources bound to the parameter will have their respective property changed.

Parameters are identified and referenced by their internalName. This means that the SFXDescription::parameters and SFXTrack::parameters fields should contain the internalNames of the SFXParameter objects which should be attached to the SFXSources when they are created. No two SFXParameters should have the same internalName.

All SFXParameter instances are automatically made children of the SFXParameterGroup.


Parameter Updates

Parameters are periodically allowed to update their own values. This makes it possible to attach custom logic to a parameter and have individual parameters synchronize their values autonomously. Use the onUpdate() callback to attach script code to a parameter update.

Example:

newSFXParameter( EngineRPMLevel )
{
   // Set the name by which this parameter is identified.
   internalName = "EngineRPMLevel";

   // Let this parameter control the pitch of attached sources to simulate engine RPM ramping up and down.
   channel = "Pitch";

   // Start out with unmodified pitch.
   defaultValue = 1;

   // Add a texture description of what this parameter does.
   description = "Engine RPM Level";
};

// Create a description that automatically attaches the engine RPM parameter.
singleton SFXDescription( EngineRPMSound : AudioLoop2D )
{
   parameters[ 0 ] = "EngineRPMLevel";
};

// Create sound sources for the engine.
sfxCreateSource( EngineRPMSound, "art/sound/engine/enginePrimary" );
sfxCreateSource( EngineRPMSound, "art/sound/engine/engineSecondary" );

// Setting the parameter value will now affect the pitch level of both sound sources.
EngineRPMLevel.value = 0.5;
EngineRPMLevel.value = 1.5;










Methods


	
String SFXParameter::getParameterName()


	Get the name of the parameter.


	Returns

	The paramete name.










	
void SFXParameter::onUpdate()


	Called when the sound system triggers an update on the parameter. This occurs periodically during system operation.






	
void SFXParameter::reset()


	Reset the parameter’s value to its default.








Fields


	
SFXChannel SFXParameter::channel


	Channel that the parameter controls. This controls which property of the sources it is attached to the parameter controls.






	
float SFXParameter::defaultValue


	Value to which the parameter is initially set. When the parameter is first added to the system, value will be set to defaultValue .






	
string SFXParameter::description


	Textual description of the parameter. Primarily for use in the Audio Parameters dialog of the editor to allow for easier identification of parameters.






	
Point2F SFXParameter::range


	Permitted range for value . Minimum and maximum allowed value for the parameter. Both inclusive. For all but the User0-3 channels, this property is automatically set up by SFXParameter .






	
float SFXParameter::value


	Current value of the audio parameter. All attached sources are notified when this value changes.











          

      

      

    

  

    
      
          
            
  
SFXPlayList

A datablock describing a playback pattern of sounds.


	Inherit:

	SFXTrack






Description

Playlists allow to define intricate playback patterns of invidual tracks and thus allow the sound system to be easily used for playing multiple sounds in single operations.

As playlists are SFXTracks, they can thus be used anywhere in the engine where sound data can be assigned.

Each playlist can hold a maximum of 16 tracks. Longer playlists may be constructed by cascading lists, i.e. by creating a playlist that references other playlists.

Processing of a single playlist slot progresses in a fixed set of steps that are invariably iterated through for each slot (except the slot is assigned a state and its state is deactivated; in this case, the controller will exit out of the slot directly):


	delayIn: Waits a set amount of time before processing the slot. This is 0 by default and is determined by the delayTimeIn (seconds to wait) and delayTimeInVariance (bounds on randomization) properties.


	transitionIn: Decides what to do before playing the slot. Defaults to None which makes this stage a no-operation. Alternatively, the slot can be configured to wait for playback of other slots to finish (Wait and WaitAll) or to stop playback of other slots (Stop and StopAll). Note that Wait and Stop always refer to the source that was last started by the list.


	play: Finally, the track attached to the slot is played. However, this will only start playback of the track and then immediately move on to the next stage. It will not wait for the track to finish playing. Note also that depending on the replay setting for the slot, this stage may pick up a source that is already playing on the slot rather than starting a new one. Several slot properties (fade times, min/max distance, and volume/pitch scale) are used in this stage.


	delayOut: Waits a set amount of time before transitioning out of the slot. This works the same as delayIn and is set to 0 by default (i.e. no delay).


	transitionOut: Decides what to do after playing the slot. This works like transitionIn.




This is a key difference to playlists in normal music players where upon reaching a certain slot, the slot will immediately play and the player then wait for playback to finish before moving on to the next slot.


Note

Be aware that time limits set on slot delays are soft limits. The sound system updates sound sources in discrete (and equally system update frequency dependent) intervals which thus determines the granularity at which time-outs can be handled.




Value Randomization

For greater variety, many of the values for individual slots may be given a randomization limit that will trigger a dynamic variance of the specified base value.

Any given field xyz that may be randomized has a corresponding field xyzVariance which is a two-dimensional vector. The first number specifies the greatest value that may be subtracted from the given base value (i.e. the xyz field) whereas the second number specifies the greatest value that may be added to the base value. Between these two limits, a random number is generated.

The default variance settings of “0 0” will thus not allow to add or subtract anything from the base value and effectively disable randomization.

Randomization is re-evaluated on each cycle through a list.




Playlists and States

A unique aspect of playlists is that they allow their playback to be tied to the changing set of active sound states. This feature enables playlists to basically connect to an extensible state machine that can be leveraged by the game code to signal a multitude of different gameplay states with the audio system then automatically reacting to state transitions.

Playlists react to states in three ways:


	Before a controller starts processing a slot it checks whether the slot is assigned a state. If this is the case, the controller checks whether the particular state is active. If it is not, the entire slot is skipped. If it is, the controller goes on to process the slot.


	If a controller is in one of the delay stages for a slot that has a state assigned and the state is deactivated, the controller will stop the delay and skip any of the remaining processing stages for the slot.


	Once the play stage has been processed for a slot that has a state assigned, the slot’s stateMode will determine what happens with the playing sound source if the slot’s state is deactivated while the sound is still playing.




A simple example of how to make use of states in combination with playlists would be to set up a playlist for background music that reacts to the mood of the current gameplay situation. For example, during combat, tenser music could play than during normal exploration. To set this up, different SFXStates would represent different moods in the game and the background music playlist would have one slot set up for each such mood. By making use of volume fades and the PauseWhenDeactivatedstateMode, smooth transitions between the various audio tracks can be produced.

Example:

// Create a play list from two SFXProfiles.
%playList = newSFXPlayList()
{
   // Use a looped description so the list playback will loop.description = AudioMusicLoop2D;

   track[ 0 ] = Profile1;
   track[ 1 ] = Profile2;
};

// Play the list.sfxPlayOnce( %playList );










Fields


	
float SFXPlayList::delayTimeIn[16]


	Seconds to wait after moving into slot before transitionIn .






	
Point2F SFXPlayList::delayTimeInVariance[16]


	Bounds on randomization of delayTimeIn . Value Randomization






	
float SFXPlayList::delayTimeOut[16]


	Seconds to wait before moving out of slot after transitionOut .






	
Point2F SFXPlayList::delayTimeOutVariance[16]


	Bounds on randomization of delayTimeOut . Value Randomization






	
float SFXPlayList::fadeTimeIn[16]


	Seconds to fade sound in (-1 to use the track’s own fadeInTime.).






	
Point2F SFXPlayList::fadeTimeInVariance[16]


	Bounds on randomization of fadeInTime. Value Randomization






	
float SFXPlayList::fadeTimeOut[16]


	Seconds to fade sound out (-1 to use the track’s own fadeOutTime.).






	
Point2F SFXPlayList::fadeTimeOutVariance[16]


	Bounds on randomization of fadeOutTime. Value Randomization






	
SFXPlayListLoopMode SFXPlayList::loopMode


	Behavior when description has looping enabled. The loop mode determines whether the list will loop over a single slot or loop over all the entire list of slots being played.






	
float SFXPlayList::maxDistance[16]


	maxDistance to apply to 3D sounds in this slot ( lt 1 to use maxDistance of track’s own description).






	
Point2F SFXPlayList::maxDistanceVariance[16]


	Bounds on randomization of maxDistance . Value Randomization






	
int SFXPlayList::numSlotsToPlay


	Number of slots to play. Up to a maximum of 16, this field determines the number of slots that are taken from the list for playback. Only slots that have a valid track assigned will be considered for this.






	
float SFXPlayList::pitchScale[16]


	Scale factor to apply to pitch of sounds played on this list slot. This value will scale the actual pitch set on the track assigned to the slot, i.e. a value of 0.5 will cause the track to play at half its assigned speed.






	
Point2F SFXPlayList::pitchScaleVariance[16]


	Bounds on randomization of pitchScale . Value Randomization






	
SFXPlayListRandomMode SFXPlayList::random


	Slot playback order randomization pattern. By setting this field to something other than “NotRandom” to order in which slots of the playlist are processed can be changed from sequential to a random pattern. This allows to to create more varied playback patterns. Defaults to “NotRandom”.






	
float SFXPlayList::referenceDistance[16]


	referenceDistance to set for 3D sounds in this slot ( lt 1 to use referenceDistance of track’s own description).






	
Point2F SFXPlayList::referenceDistanceVariance[16]


	Bounds on randomization of referenceDistance . Value Randomization






	
int SFXPlayList::repeatCount[16]


	Number of times to loop this slot.






	
SFXPlayListReplayMode SFXPlayList::replay[16]


	Behavior when an already playing sound is encountered on this slot from a previous cycle. Each slot can have an arbitrary number of sounds playing on it from previous cycles. This field determines how SFXController will handle these sources.






	
SFXState SFXPlayList::state[16]


	State that must be active for this slot to play. Playlists and States






	
SFXPlayListStateMode SFXPlayList::stateMode[16]


	Behavior when assigned state is deactivated while slot is playing. Playlists and States






	
bool SFXPlayList::trace


	Enable/disable execution tracing for this playlist (local only). If this is true, SFXControllers attached to the list will automatically run in trace mode.






	
SFXTrack SFXPlayList::track[16]


	Track to play in this slot. This must be set for the slot to be considered for playback. Other settings for a slot will not take effect except this field is set.






	
SFXPlayListTransitionMode SFXPlayList::transitionIn[16]


	Behavior when moving into this slot. After the delayIn time has expired (if any), this slot determines what the controller will do before actually playing the slot.






	
SFXPlayListTransitionMode SFXPlayList::transitionOut[16]


	Behavior when moving out of this slot. After the detailTimeOut has expired (if any), this slot determines what the controller will do before moving on to the next slot.






	
float SFXPlayList::volumeScale[16]


	Scale factor to apply to volume of sounds played on this list slot. This value will scale the actual volume level set on the track assigned to the slot, i.e. a value of 0.5 will cause the track to play at half-volume.






	
Point2F SFXPlayList::volumeScaleVariance[16]


	Bounds on randomization of volumeScale . Value Randomization











          

      

      

    

  

    
      
          
            
  
SFXProfile

Encapsulates a single sound file for playback by the sound system.


	Inherit:

	SFXTrack






Description

SFXProfile combines a sound description (SFXDescription) with a sound file such that it can be played by the sound system. To be able to play a sound file, the sound system will always require a profile for it to be created. However, several of the SFX functions (sfxPlayOnce(), sfxCreateSource()) perform this creation internally for convenience using temporary profile objects.

Sound files can be in either OGG or WAV format. However, extended format support is available when using FMOD. See Supported Sound File Formats.


Profile Loading

By default, the sound data referenced by a profile will be loaded when the profile is first played and the data then kept until either the profile is deleted or until the sound device on which the sound data is held is deleted.

This initial loading my incur a small delay when the sound is first played. To avoid this, a profile may be expicitly set to load its sound data immediately when the profile is added to the system. This is done by setting the preload property to true.

Example:

datablock SFXProfile( Shore01Snd )
{
   fileName     = "art/sound/Lakeshore_mono_01";
   description  = Shore01Looping3d;
   preload      = true;
};










Methods


	
float SFXProfile::getSoundDuration()


	Return the length of the sound data in seconds.


	Returns

	The length of the sound data in seconds or 0 if the sound referenced by the profile could not be found.












Fields


	
filename SFXProfile::fileName


	Path to the sound file. If the extension is left out, it will be inferred by the sound system. This allows to easily switch the sound format without having to go through the profiles and change the filenames there, too.






	
bool SFXProfile::preload


	Whether to preload sound data when the profile is added to system. Profile Loading











          

      

      

    

  

    
      
          
            
  
SFXSound

A sound controller that directly plays a single sound file.


	Inherit:

	SFXSource






Description

When playing individual audio files, SFXSounds are implicitly created by the sound system.

Each sound source has an associated play cursor that can be queried and explicitly positioned by the user. The cursor is a floating-point value measured in seconds.

For streamed sources, playback may not be continuous in case the streaming queue is interrupted.


Sounds and Voices

To actually emit an audible signal, a sound must allocate a resource on the sound device through which the sound data is being played back. This resource is called ‘voice’.

As with other types of resources, the availability of these resources may be restricted, i.e. a given sound device will usually only support a fixed number of voices that are playing at the same time. Since, however, there may be arbitrary many SFXSounds instantiated and playing at the same time, this needs to be solved.






Methods


	
float SFXSound::getDuration()


	Get the total play time (in seconds) of the sound data attached to the sound.


	Returns

	Returns:










	
float SFXSound::getPosition()


	Get the current playback position in seconds.


	Returns

	The current play cursor offset.










	
bool SFXSound::isReady()


	Test whether the sound data associated with the sound has been fully loaded and is ready for playback. For streamed sounds, this will be false during playback when the stream queue for the sound is starved and waiting for data. For buffered sounds, only an initial loading phase will potentially cause isReady to return false.


	Returns

	True if the sound is ready for playback.










	
void SFXSound::setPosition(float position)


	Set the current playback position in seconds. If the source is currently playing, playback will jump to the new position. If playback is stopped or paused, playback will resume at the given position when play() is called.


	Parameters

	position – The new position of the play cursor (in seconds).















          

      

      

    

  

    
      
          
            
  
SFXSource

Playback controller for a sound source.


	Inherit:

	SimGroup






Description

All sound playback is driven by SFXSources. Each such source represents an independent playback controller that directly or indirectly affects sound output.

While this class itself is instantiable, such an instance will not by itself emit any sound. This is the responsibility of its subclasses. Note, however, that none of these subclasses must be instantiated directly but must instead be instantiated indirectly through the SFX interface.


Play-Once Sources

Often, a sound source need only exist for the duration of the sound it is playing. In this case so-called “play-once” sources simplify the bookkeeping involved by leaving the deletion of sources that have expired their playtime to the sound system.

Play-once sources can be created in either of two ways:


	sfxPlayOnce(): Directly create a play-once source from a SFXTrack or file.


	sfxDeleteWhenStopped(): Retroactively turn any source into a play-once source that will automatically be deleted when moving into stopped state.







Source Hierarchies

Source are arranged into playback hierarchies where a parent source will scale some of the properties of its children and also hand on any play(), pause(), and stop() commands to them. This allows to easily group sounds into logical units that can then be operated on as a whole.

An example of this is the segregation of sounds according to their use in the game. Volume levels of background music, in-game sound effects, and character voices will usually be controlled independently and putting their sounds into different hierarchies allows to achieve that easily.

The source properties that are scaled by parent values are:


	volume,


	pitch, and


	priority




This means that if a parent has a volume of 0.5, the child will play at half the effective volume it would otherwise have.

Additionally, parents affect the playback state of their children:


	A parent that is in stopped state will force all its direct and indirect children into stopped state.


	A parent that is in paused state will force all its direct and indirect children that are playing into paused state. However, children that are in stopped state will not be affected.


	A parent that is in playing state will not affect the playback state of its children.




Each source maintains a state that is wants to be in which may differ from the state that is enforced on it by its parent. If a parent changes its states in a way that allows a child to move into its desired state, the child will do so.

For logically grouping sources, instantiate the SFXSource class directly and make other sources children to it. A source thus instantiated will not effect any real sound output on its own but will influence the sound output of its direct and indirect children.


Note

Be aware that the property values used to scale child property values are the effective values. For example, the value used to scale the volume of a child is the effective volume of the parent, i.e. the volume after fades, distance attenuation, etc. has been applied.






Volume Attenuation

During its lifetime, the volume of a source will be continually updated. This update process always progresses in a fixed set of steps to compute the final effective volume of the source based on the base volume level that was either assigned from the SFXDescription associated with the source (SFXDescription::volume) or manually set by the user. The process of finding a source’s final effective volume is called “volume attenuation”. The steps involved in attenuating a source’s volume are (in order):


	Fading

	If the source currently has a fade-effect applied, the volume is interpolated along the currently active fade curve.



	Modulation

	If the source is part of a hierarchy, it’s volume is scaled according to the effective volume of its parent.



	Distance Attenuation

	If the source is a 3D sound source, then the volume is interpolated according to the distance model in effect and current listener position and orientation (see 3D Audio).








Volume Fades

To ease-in and ease-out playback of a sound, fade effects may be applied to sources. A fade will either go from zero volume to full effective volume (fade-in) or from full effective volume to zero volume (fade-out).

Fading is coupled to the play(), pause(), and stop() methods as well as to loop iterations when SFXDescription::fadeLoops is true for the source. play() and the start of a loop iteration will trigger a fade-in whereas pause(), stop() and the end of loop iterations will trigger fade-outs.

For looping sources, if SFXDescription::fadeLoops is false, only the initial play() will trigger a fade-in and no further fading will be applied to loop iterations.

By default, the fade durations will be governed by the SFXDescription::fadeInTime and SFXDescription::fadeOutTime properties of the SFXDescription attached to the source. However, these may be overridden on a per-source basis by setting fade times explicitly with setFadeTimes(). Additionally, the set values may be overridden for individual play(), pause(), and stop() calls by supplying appropriate fadeInTime/fadeOutTime parameters.

By default, volume will interpolate linearly during fades. However, custom interpolation curves can be assigned through the SFXDescription::fadeInEase and SFXDescription::fadeOutTime properties.




Sound Cones




Doppler Effect




Playback Markers

Playback markers allow to attach notification triggers to specific playback positions. Once the play cursor crosses a position for which a marker is defined, the onMarkerPassed callback will be triggered on the SFXSource thus allowing to couple script logic to .

Be aware that the precision with which marker callbacks are triggered are bound by global source update frequency. Thus there may be a delay between the play cursor actually passing a marker position and the callback being triggered.






Methods


	
void SFXSource::addMarker(String name, float pos)


	Add a notification marker called name at pos seconds of playback.


	Parameters

	
	name – Symbolic name for the marker that will be passed to the onMarkerPassed() callback.


	pos – Playback position in seconds when the notification should trigger. Note that this is a soft limit and there may be a delay between the play cursor actually passing the position and the callback being triggered.








Example:

// Create a new source.
$source = sfxCreateSource( AudioMusicLoop2D, "art/sound/backgroundMusic" );

// Assign a class to the source.
$source.class = "BackgroundMusic";

// Add a playback marker at one minute into playback.
$source.addMarker( "first", 60 );

// Define the callback function.  This function will be called when the playback position passes the one minute mark.
function BackgroundMusic::onMarkerPassed( %this, %markerName )
{
   if( %markerName $= "first" )
      echo( "Playback has passed the 60 seconds mark." );
}

// Play the sound.
$source.play();










	
void SFXSource::addParameter(SFXParameter parameter)


	Attach parameter to the source,. Once attached, the source will react to value changes of the given parameter . Attaching a parameter will also trigger an initial read-out of the parameter’s current value.


	Parameters

	parameter – The parameter to attach to the source.










	
float SFXSource::getAttenuatedVolume()


	Get the final effective volume level of the source. This method returns the volume level as it is after source group volume modulation, fades, and distance-based volume attenuation have been applied to the base volume level. Volume Attenuation


	Returns

	The effective volume of the source.










	
float SFXSource::getFadeInTime()


	Get the fade-in time set on the source. This will initially be SFXDescription::fadeInTime . Volume Fades


	Returns

	The fade-in time set on the source in seconds.










	
float SFXSource::getFadeOutTime()


	Get the fade-out time set on the source. This will initially be SFXDescription::fadeOutTime . Volume Fades


	Returns

	The fade-out time set on the source in seconds.










	
SFXParameter SFXSource::getParameter(int index)


	Get the parameter at the given index.


	Parameters

	index – Index of the parameter to fetch. Must be 0<=index<=getParameterCount().



	Returns

	is out of range.





Example:

// Print the name ofo each parameter attached to %source.
%numParams = %source.getParameterCount();
for( %i = 0; %i < %numParams; %i ++ )
   echo( %source.getParameter( %i ).getParameterName() );










	
int SFXSource::getParameterCount()


	Get the number of SFXParameters that are attached to the source.


	Returns

	The number of parameters attached to the source.





Example:

// Print the name ofo each parameter attached to %source.
%numParams = %source.getParameterCount();
for( %i = 0; %i < %numParams; %i ++ )
   echo( %source.getParameter( %i ).getParameterName() );










	
float SFXSource::getPitch()


	Get the pitch scale of the source. Pitch determines the playback speed of the source (default: 1).


	Returns

	The current pitch scale factor of the source.










	
SFXStatus SFXSource::getStatus()


	Get the current playback status.


	Returns

	Te current playback status










	
float SFXSource::getVolume()


	Get the current base volume level of the source. This is not the final effective volume that the source is playing at but rather the starting volume level before source group modulation, fades, or distance-based volume attenuation are applied. Volume Attenuation


	Returns

	The current base volume level.










	
bool SFXSource::isPaused()


	Test whether the source is currently paused.


	Returns

	True if the source is in paused state, false otherwise.










	
bool SFXSource::isPlaying()


	Test whether the source is currently playing.


	Returns

	True if the source is in playing state, false otherwise.










	
bool SFXSource::isStopped()


	Test whether the source is currently stopped.


	Returns

	True if the source is in stopped state, false otherwise.










	
void SFXSource::onParameterValueChange(SFXParameter parameter)


	Called when a parameter attached to the source changes value. This callback will be triggered before the value change has actually been applied to the source.


	Parameters

	parameter – The parameter that has changed value.










	
void SFXSource::onStatusChange(SFXStatus newStatus)


	Called when the playback status of the source changes.


	Parameters

	newStatus – The new playback status.










	
void SFXSource::pause(float fadeOutTime)


	Pause playback of the source.


	Parameters

	fadeOutTime – Seconds for the sound to fade down to zero volume. If -1, the SFXDescription::fadeOutTime set in the source’s associated description is used. Pass 0 to disable a fade-out effect that may be configured on the description. Be aware that if a fade-out effect is used, the source will not immediately to paused state but will rather remain in playing state until the fade-out time has expired..










	
void SFXSource::removeParameter(SFXParameter parameter)


	Detach parameter from the source. Once detached, the source will no longer react to value changes of the given parameter . If the parameter is not attached to the source, the method will do nothing.


	Parameters

	parameter – The parameter to detach from the source.










	
void SFXSource::setCone(float innerAngle, float outerAngle, float outsideVolume)


	Set up the 3D volume cone for the source.


	Parameters

	
	innerAngle – Angle of the inner sound cone in degrees (SFXDescription::coneInsideAngle). Must be 0<=innerAngle<=360.


	outerAngle – Angle of the outer sound cone in degrees (SFXDescription::coneOutsideAngle). Must be 0<=outerAngle<=360.


	outsideVolume – Volume scale factor outside of outer cone (SFXDescription::coneOutsideVolume). Must be 0<=outsideVolume<=1.













	
void SFXSource::setFadeTimes(float fadeInTime, float fadeOutTime)


	Set the fade time parameters of the source. Volume Fades


	Parameters

	
	fadeInTime – The new fade-in time in seconds.


	fadeOutTime – The new fade-out time in seconds.













	
void SFXSource::setPitch(float pitch)


	Set the pitch scale of the source. Pitch determines the playback speed of the source (default: 1).


	Parameters

	pitch – The new pitch scale factor.










	
void SFXSource::setTransform(Point3F position, Point3F direction)


	Start playback of the source. Set the position and orientation of the source’s 3D sound. Set the position of the source’s 3D sound. If the sound data for the source has not yet been fully loaded, there will be a delay after calling play and playback will start after the data has become available.


	Parameters

	
	position – The new position in world space.


	direction – The forward vector.


	position – The new position in world space.


	fadeInTime – Seconds for the sound to reach full volume. If -1, the SFXDescription::fadeInTime set in the source’s associated description is used. Pass 0 to disable a fade-in effect that may be configured on the description.













	
void SFXSource::setVolume(float volume)


	Set the base volume level for the source. This volume will be the starting point for source group volume modulation, fades, and distance-based volume attenuation. Volume Attenuation


	Parameters

	volume – The new base volume level for the source. Must be 0>=volume<=1.










	
void SFXSource::stop(float fadeOutTime)


	Stop playback of the source.


	Parameters

	fadeOutTime – Seconds for the sound to fade down to zero volume. If -1, the SFXDescription::fadeOutTime set in the source’s associated description is used. Pass 0 to disable a fade-out effect that may be configured on the description. Be aware that if a fade-out effect is used, the source will not immediately transtion to stopped state but will rather remain in playing state until the fade-out time has expired.












Fields


	
SFXDescription SFXSource::description


	The playback configuration that determines the initial sound properties and setup. Any SFXSource must have an associated SFXDescription .






	
string SFXSource::statusCallback


	Name of function to call when the status of the source changes. The source that had its status changed is passed as the first argument to the function and the new status of the source is passed as the second argument.











          

      

      

    

  

    
      
          
            
  
SFXSpace

A volume in space that defines an ambient sound zone.


	Inherit:

	SceneObject






Description

A volume in space that defines an ambient sound zone.




Fields


	
string SFXSpace::edge


	For internal use only.






	
string SFXSpace::plane


	For internal use only.






	
string SFXSpace::point


	For internal use only.






	
SFXAmbience SFXSpace::soundAmbience


	Ambient sound environment for the space.











          

      

      

    

  

    
      
          
            
  
SFXState

A boolean switch used to modify playlist behavior.


	Inherit:

	SimDataBlock






Description

Sound system states are used to allow playlist controllers to make decisions based on global state. This is useful, for example, to couple audio playback to gameplay state. Certain states may, for example, represent different locations that the listener can be in, like underwater, in open space, or indoors. Other states could represent moods of the current gameplay situation, like, for example, an aggressive mood during combat.

By activating and deactivating sound states according to gameplay state, a set of concurrently running playlists may react and adapt to changes in the game.


Activation and Deactivation

At any time, a given state can be either active or inactive. Calling activate() on a state increases an internal counter and calling deactivate() decreases the counter. Only when the count reaches zero will the state be deactivated.

In addition to the activation count, states also maintain a disabling count. Calling disable() increases this count and calling enable() decreases it. As long as this count is greater than zero, a given state will not be activated even if its activation count is non-zero. Calling disable() on an active state will not only increase the disabling count but also deactivate the state. Calling enable() on a state with a positive activation count will re-activate the state when the disabling count reaches zero.




State Dependencies

By listing other states in in its includedStates and excludedStates fields, a state may automatically trigger the activation or disabling of other states in the sytem when it is activated. This allows to form dependency chains between individual states.

Example:

// State indicating that the listener is submerged.
singleton SFXState( AudioLocationUnderwater )
{
   parentGroup = AudioLocation;
   // AudioStateExclusive is a class defined in the core scripts that will automatically// ensure for a state to deactivate all the sibling SFXStates in its parentGroup when it// is activated.className = "AudioStateExclusive";
};

// State suitable e.g. for combat.
singleton SFXState( AudioMoodAggressive )
{
   parentGroup = AudioMood;
   className = "AudioStateExclusive";
};










Methods


	
void SFXState::activate()


	Increase the activation count on the state. If the state isn’t already active and it is not disabled, the state will be activated.






	
void SFXState::deactivate()


	Decrease the activation count on the state. If the count reaches zero and the state was not disabled, the state will be deactivated.






	
void SFXState::disable()


	Increase the disabling count of the state. If the state is currently active, it will be deactivated.






	
void SFXState::enable()


	Decrease the disabling count of the state. If the disabling count reaches zero while the activation count is still non-zero, the state will be reactivated again.






	
bool SFXState::isActive()


	Test whether the state is currently active. This is true when the activation count is gt 0 and the disabling count is =0.


	Returns

	True if the state is currently active.










	
bool SFXState::isDisabled()


	Test whether the state is currently disabled. This is true when the disabling count of the state is non-zero.


	Returns

	True if the state is disabled.










	
void SFXState::onActivate()


	Called when the state goes from inactive to active.






	
void SFXState::onDeactivate()


	called when the state goes from active to deactive.








Fields


	
SFXState SFXState::excludedStates[4]


	States that will automatically be disabled when this state is activated. Activation and Deactivation






	
SFXState SFXState::includedStates[4]


	States that will automatically be activated when this state is activated. Activation and Deactivation











          

      

      

    

  

    
      
          
            
  
SFXTrack

Abstract base class for sound data that can be played back by the sound system.


	Inherit:

	SimDataBlock






Description

The term “track” is used in the sound system to refer to any entity that can be played back as a sound source. These can be individual files (SFXProfile), patterns of other tracks (SFXPlayList), or special sound data defined by a device layer (SFXFMODEvent).

Any track must be paired with a SFXDescription that tells the sound system how to set up playback for the track.

All objects that are of type SFXTrack will automatically be added to SFXTrackSet.




Fields


	
SFXDescription SFXTrack::description


	Playback setup description for this track. If unassigned, the description named “AudioEffects” will automatically be assigned to the track. If this description is not defined, track creation will fail.






	
string SFXTrack::parameters[8]


	Parameters to automatically attach to SFXSources created from this track. Individual parameters are identified by their internalName .











          

      

      

    

  

    
      
          
            
  
SaveFileDialog

Derived from FileDialog, this class is responsible for opening a file browser with the intention of saving a file.


	Inherit:

	FileDialog






Description

The core usage of this dialog is to locate a file in the OS and return the path and name. This does not handle the actual file writing or data manipulation. That functionality is left up to the FileObject class.

Example:

// Create a dialog dedicated to opening file
 %saveFileDlg = newSaveFileDialog()
 {
    // Only allow for saving of COLLADA files
    Filters        = "COLLADA Files (*.dae)|*.dae|";

    // Default save path to where the WorldEditor last saved
    DefaultPath    = $pref::WorldEditor::LastPath;

    // No default file specified
    DefaultFile    = "";

    // Do not allow the user to change to a new directory
    ChangePath     = false;

    // Prompt the user if they are going to overwrite an existing file
    OverwritePrompt   = true;
 };

 // Launch the save file dialog
 %saveFileDlg.Execute();

 if ( %result )
 {
    %seletedFile = %openFileDlg.file;
 }
 else
 {
    %selectedFile = "";
 }

 // Cleanup
 %saveFileDlg.delete();








Fields


	
bool SaveFileDialog::OverwritePrompt


	True/False whether the dialog should prompt before accepting an existing file name.











          

      

      

    

  

    
      
          
            
  
ScatterSky

Represents both the sun and sky for scenes with a dynamic time of day.


	Inherit:

	SceneObject






Description

Represents both the sun and sky for scenes with a dynamic time of day.

ScatterSky renders as a dome shaped mesh which is camera relative and always overhead. It is intended to be part of the background of your scene and renders before all other objects types.

ScatterSky is designed for outdoor scenes which need to transition fluidly between radically different times of day. It will respond to time changes originating from a TimeOfDay object or the elevation field can be directly adjusted.

During day, ScatterSky uses atmosphereic sunlight scattering aproximations to generate a sky gradient and sun corona. It also calculates the fog color, ambient color, and sun color, which are used for scene lighting. This is user controlled by fields within the ScatterSky group.

During night, ScatterSky supports can transition to a night sky cubemap and moon sprite. The user can control this and night time colors used for scene lighting with fields within the Night group.

A scene with a ScatterSky should not have any other sky or sun objects as it already fulfills both roles.

ScatterSky is intended to be used with CloudLayer and TimeOfDay as part of a scene with dynamic lighting. Having a ScatterSky without a changing time of day would unnecessarily give up artistic control compared and fillrate compared to a SkyBox + Sun setup.




Methods


	
void ScatterSky::applyChanges()


	Apply a full network update of all fields to all clients.








Fields


	
ColorF ScatterSky::ambientScale


	Modulates the ambient color of sunlight.






	
Point3F ScatterSky::attenuationRatio


	The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.






	
float ScatterSky::azimuth


	The horizontal angle of the sun measured clockwise from the positive Y world axis. This field is networked.






	
float ScatterSky::brightness


	The brightness of the ScatterSky’s light object.






	
bool ScatterSky::castShadows


	Enables/disables shadows cast by objects due to ScatterSky light.






	
ColorF ScatterSky::colorize


	Tints the sky the color specified, the alpha controls the brigthness. The brightness is multipled by the value of colorizeAmt.






	
float ScatterSky::colorizeAmount


	Controls how much the the alpha component of colorize brigthens the sky. Setting to 0 returns default behavior.






	
filename ScatterSky::cookie


	A custom pattern texture which is projected from the light.






	
float ScatterSky::elevation


	The elevation angle of the sun above or below the horizon. This field is networked.






	
float ScatterSky::exposure


	Controls the contrast of the sky and sun during daytime.






	
float ScatterSky::fadeStartDistance


	Start fading shadows out at this distance. 0 = auto calculate this distance.






	
float ScatterSky::flareScale


	Changes the size and intensity of the flare.






	
LightFlareData ScatterSky::flareType


	Datablock for the flare produced by the ScatterSky .






	
ColorF ScatterSky::fogScale


	Modulates the fog color. Note that this overrides the LevelInfo.fogColor property, so you should not use LevelInfo.fogColor if the level contains a ScatterSky object.






	
bool ScatterSky::includeLightmappedGeometryInShadow


	This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedInLightmap’ is false).






	
bool ScatterSky::lastSplitTerrainOnly


	This toggles only terrain being rendered to the last split of a PSSM shadow map.






	
float ScatterSky::logWeight


	The logrithmic PSSM split distance factor.






	
float ScatterSky::moonAzimuth


	The horizontal angle of the moon measured clockwise from the positive Y world axis. This is not animated by time or networked.






	
float ScatterSky::moonElevation


	The elevation angle of the moon above or below the horizon. This is not animated by time or networked.






	
bool ScatterSky::moonEnabled


	Enable or disable rendering of the moon sprite during night.






	
ColorF ScatterSky::moonLightColor


	Color of light cast by the directional light during night.






	
string ScatterSky::moonMat


	Material for the moon sprite.






	
float ScatterSky::moonScale


	Controls size the moon sprite renders, specified as a fractional amount of the screen height.






	
ColorF ScatterSky::nightColor


	The ambient color during night. Also used for the sky color if useNightCubemap is false.






	
string ScatterSky::nightCubemap


	Cubemap visible during night.






	
ColorF ScatterSky::nightFogColor


	The fog color during night.






	
int ScatterSky::numSplits


	The logrithmic PSSM split distance factor.






	
Point4F ScatterSky::overDarkFactor


	The ESM shadow darkening factor.






	
float ScatterSky::rayleighScattering


	Controls how blue the atmosphere is during the day.






	
bool ScatterSky::representedInLightmap


	This light is represented in lightmaps (static light, default: false).






	
ColorF ScatterSky::shadowDarkenColor


	The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘representedInLightmap’ is false).






	
float ScatterSky::shadowDistance


	The distance from the camera to extend the PSSM shadow.






	
float ScatterSky::shadowSoftness


	




	
ShadowType ScatterSky::shadowType


	The type of shadow to use on this light.






	
float ScatterSky::skyBrightness


	Global brightness and intensity applied to the sky and objects in the level.






	
ColorF ScatterSky::sunScale


	Modulates the directional color of sunlight.






	
float ScatterSky::sunSize


	Affects the size of the sun’s disk.






	
int ScatterSky::texSize


	The texture size of the shadow map.






	
bool ScatterSky::useNightCubemap


	Transition to the nightCubemap during night. If false we use nightColor.











          

      

      

    

  

    
      
          
            
  
SceneObject

A networkable object that exists in the 3D world.


	Inherit:

	NetObject






Description

A networkable object that exists in the 3D world.

The SceneObject class provides the foundation for 3D objects in the Engine. It exposes the functionality for:

You do not typically work with SceneObjects themselves. The SceneObject provides a reference within the game world (the scene), but does not render to the client on its own. The same is true of collision detection beyond that of the bounding box. Instead you use one of the many classes that derrive from SceneObject, such as TSStatic.




Difference Between setHidden() and isRenderEnabled

When it comes time to decide if a SceneObject should render or not, there are two methods that can stop the SceneObject from rendering at all. You need to be aware of the differences between these two methods as they impact how the SceneObject is networked from the server to the client.

The first method of manually controlling if a SceneObject is rendered is through its SceneObject::isRenderEnabled property. When set to false the SceneObject is considered invisible but still present within the scene. This means it still takes part in collisions and continues to be networked.

The second method is using the setHidden() method. This will actually remove a SceneObject from the scene and it will no longer be networked from the server to the cleint. Any client-side ghost of the object will be deleted as the server no longer considers the object to be in scope.




Methods


	
Point3F SceneObject::getEulerRotation()


	Get Euler rotation of this object.


	Returns

	the orientation of the object in the form of rotations around the X, Y and Z axes in degrees.










	
VectorF SceneObject::getForwardVector()


	Get the direction this object is facing.


	Returns

	a vector indicating the direction this object is facing.










	
TransformF SceneObject::getInverseTransform()


	Get the object’s inverse transform.


	Returns

	the inverse transform of the object










	
int SceneObject::getMountedObject(int slot)


	Get the object mounted at a particular slot.


	Parameters

	slot – mount slot index to query



	Returns

	ID of the object mounted in the slot, or 0 if no object.










	
int SceneObject::getMountedObjectCount()


	Get the number of objects mounted to us.


	Returns

	the number of mounted objects.










	
int SceneObject::getMountedObjectNode(int slot)


	Get the mount node index of the object mounted at our given slot.


	Parameters

	slot – mount slot index to query



	Returns

	index of the mount node used by the object mounted in this slot.










	
int SceneObject::getMountNodeObject(int node)


	Get the object mounted at our given node index.


	Parameters

	node – mount node index to query



	Returns

	ID of the first object mounted at the node, or 0 if none found.










	
Box3F SceneObject::getObjectBox()


	Get the object’s bounding box (relative to the object’s origin).


	Returns

	six fields, two Point3Fs, containing the min and max points of the objectbox.










	
int SceneObject::getObjectMount()


	Get the object we are mounted to.


	Returns

	the SimObjectID of the object we’re mounted to, or 0 if not mounted.










	
Point3F SceneObject::getPosition()


	Get the object’s world position. Reimplemented in Camera .


	Returns

	the current world position of the object










	
VectorF SceneObject::getRightVector()


	Get the right vector of the object.


	Returns

	a vector indicating the right direction of this object.










	
Point3F SceneObject::getScale()


	Get the object’s scale.


	Returns

	object scale as a Point3F










	
TransformF SceneObject::getTransform()


	Get the object’s transform.


	Returns

	the current transform of the object










	
int SceneObject::getType()


	Return the type mask for this object.


	Returns

	The numeric type mask for the object.










	
VectorF SceneObject::getUpVector()


	Get the up vector of the object.


	Returns

	a vector indicating the up direction of this object.










	
Box3F SceneObject::getWorldBox()


	Get the object’s world bounding box.


	Returns

	six fields, two Point3Fs, containing the min and max points of the worldbox.










	
Point3F SceneObject::getWorldBoxCenter()


	Get the center of the object’s world bounding box.


	Returns

	the center of the world bounding box for this object.










	
bool SceneObject::isGlobalBounds()


	Check if this object has a global bounds set. If global bounds are set to be true, then the object is assumed to have an infinitely large bounding box for collision and rendering purposes.


	Returns

	true if the object has a global bounds.










	
bool SceneObject::isMounted()


	Check if we are mounted to another object.


	Returns

	true if mounted to another object, false if not mounted.










	
bool SceneObject::mountObject(SceneObject objB, int slot, TransformF txfm)


	Mount objB to this object at the desired slot with optional transform.


	Parameters

	
	objB – Object to mount onto us


	slot – Mount slot ID


	txfm – (optional) mount offset transform






	Returns

	true if successful, false if failed (objB is not valid)










	
void SceneObject::setScale(Point3F scale)


	Set the object’s scale.


	Parameters

	scale – object scale to set










	
void SceneObject::setTransform(TransformF txfm)


	Set the object’s transform (orientation and position).


	Parameters

	txfm – object transform to set










	
void SceneObject::unmount()


	Unmount us from the currently mounted object if any.






	
bool SceneObject::unmountObject(SceneObject target)


	Unmount an object from ourselves.


	Parameters

	target – object to unmount



	Returns

	true if successful, false if failed












Fields


	
bool SceneObject::isRenderEnabled


	Controls client-side rendering of the object.






	
bool SceneObject::isSelectionEnabled


	Determines if the object may be selected from wihin the Tools.






	
int SceneObject::mountNode


	Node we are mounted to.






	
pid SceneObject::mountPID


	PersistentID of object we are mounted to. Unlike the SimObjectID that is determined at run time, the PersistentID of an object is saved with the level/mission and may be used to form a link between objects.






	
MatrixPosition SceneObject::mountPos


	Position we are mounted at ( object space of our mount object ).






	
MatrixRotation SceneObject::mountRot


	Rotation we are mounted at ( object space of our mount object ).






	
MatrixPosition SceneObject::position


	Object world position.






	
MatrixRotation SceneObject::rotation


	Object world orientation.






	
Point3F SceneObject::scale


	Object world scale.











          

      

      

    

  

    
      
          
            
  
ScriptGroup

Essentially a SimGroup, but with onAdd and onRemove script callbacks.


	Inherit:

	SimGroup






Description

Essentially a SimGroup, but with onAdd and onRemove script callbacks.

Example:

// First container, SimGroup containing a ScriptGroupnewSimGroup(Scenes)
{
   // Subcontainer, ScriptGroup containing variables
   // related to a cut scene and a starting
   WayPointnewScriptGroup(WelcomeScene)
   {
      class = "Scene";
      pathName = "Pathx";
      description = "A small orc village set in the Hardesty mountains. This town and its surroundings will be used to illustrate some the Torque Game Engines features.";
      pathTime = "0";
      title = "Welcome to Orc Town";

      newWayPoint(start)
      {
         position = "163.873 -103.82 208.354";
         rotation = "0.136165 -0.0544916 0.989186 44.0527";
         scale = "1 1 1";
         dataBlock = "WayPointMarker";
         team = "0";
      };
   };
};








Methods


	
void ScriptGroup::onAdd(SimObjectId ID)


	Called when this ScriptGroup is added to the system.


	Parameters

	ID – Unique object ID assigned when created (this in script).










	
void ScriptGroup::onRemove(SimObjectId ID)


	Called when this ScriptObject is removed from the system.


	Parameters

	ID – Unique object ID assigned when created (this in script).















          

      

      

    

  

    
      
          
            
  
ScriptMsgListener

Script accessible version of Dispatcher::IMessageListener. Often used in conjunction with EventManager.


	Inherit:

	SimObject






Description

The main use of ScriptMsgListener is to allow script to listen formessages. You can subclass ScriptMsgListener in script to receivethe Dispatcher::IMessageListener callbacks.

Alternatively, you can derive from it in C++ instead of SimObject toget an object that implements Dispatcher::IMessageListener with scriptcallbacks. If you need to derive from something other then SimObject,then you will need to implement the Dispatcher::IMessageListenerinterface yourself.

Example:

// Create the EventManager.
$MyEventManager = newEventManager() { queue = "MyEventManager"; };

// Create an event.
$MyEventManager.registerEvent( "SomeCoolEvent" );

// Create a listener and subscribe.
$MyListener = newScriptMsgListener() { class = MyListener; };
$MyEventManager.subscribe( $MyListener, "SomeCoolEvent" );

function MyListener::onSomeCoolEvent( %this, %data )
{
   echo( "onSomeCoolEvent Triggered" );
}

// Trigger the event.
$MyEventManager.postEvent( "SomeCoolEvent", "Data" );








Methods


	
void ScriptMsgListener::onAdd()


	Script callback when a listener is first created and registered.

Example:

function ScriptMsgListener::onAdd(%this)
{
   // Perform on add code here
}










	
void ScriptMsgListener::onAddToQueue(string queue)


	Callback for when the listener is added to a queue. The default implementation of onAddToQueue() and onRemoveFromQueue() provide tracking of the queues this listener is added to through the mQueues member. Overrides of onAddToQueue() or onRemoveFromQueue() should ensure they call the parent implementation in any overrides.


	Parameters

	queue – The name of the queue that the listener added to










	
bool ScriptMsgListener::onMessageObjectReceived(string queue, Message msg)


	Called when a message object (not just the message data) is passed to a listener.


	Parameters

	
	queue – The name of the queue the message was dispatched to


	msg – The message object






	Returns

	false to prevent other listeners receiving this message, true otherwise










	
bool ScriptMsgListener::onMessageReceived(string queue, string event, string data)


	Called when the listener has received a message.


	Parameters

	
	queue – The name of the queue the message was dispatched to


	event – The name of the event (function) that was triggered


	data – The data (parameters) for the message






	Returns

	false to prevent other listeners receiving this message, true otherwise










	
void ScriptMsgListener::onRemove()


	Script callback when a listener is deleted.

Example:

function ScriptMsgListener::onRemove(%this)
{
   // Perform on remove code here
}










	
void ScriptMsgListener::onRemoveFromQueue(string queue)


	Callback for when the listener is removed from a queue. The default implementation of onAddToQueue() and onRemoveFromQueue() provide tracking of the queues this listener is added to through the mQueues member. Overrides of onAddToQueue() or onRemoveFromQueue() should ensure they call the parent implementation in any overrides.


	Parameters

	queue – The name of the queue that the listener was removed from















          

      

      

    

  

    
      
          
            
  
ScriptObject

A script-level OOP object which allows binding of a class, superClass and arguments along with declaration of methods.


	Inherit:

	SimObject






Description

ScriptObjects are extrodinarily powerful objects that allow defining of any type of data required. They can optionally have a class and a superclass defined for added control of multiple ScriptObjects through a simple class definition.

Example:

newScriptObject(Game)
{
   class = "DeathMatchGame";
   superClass = GameCore;
   genre = "Action FPS"; // Note the new, non-Torque variable
};








Methods


	
void ScriptObject::onAdd(SimObjectId ID)


	Called when this ScriptObject is added to the system.


	Parameters

	ID – Unique object ID assigned when created (this in script).










	
void ScriptObject::onRemove(SimObjectId ID)


	Called when this ScriptObject is removed from the system.


	Parameters

	ID – Unique object ID assigned when created (this in script).















          

      

      

    

  

    
      
          
            
  
ScriptTickObject

A ScriptObject that responds to tick and frame events.


	Inherit:

	ScriptObject






Description

ScriptTickObject is a ScriptObject that adds callbacks for tick and frame events. Use setProcessTicks() to enable or disable the onInterpolateTick() and onProcessTick() callbacks. The callOnAdvanceTime property determines if the onAdvanceTime() callback is called.




Methods


	
bool ScriptTickObject::isProcessingTicks()


	Is this object wanting to receive tick notifications. If this object is set to receive tick notifications then its onInterpolateTick() and onProcessTick() callbacks are called.


	Returns

	True if object wants tick notifications










	
void ScriptTickObject::onAdvanceTime(float timeDelta)


	This is called every frame regardless if the object is set to process ticks, but only if the callOnAdvanceTime property is set to true.


	Parameters

	timeDelta – The time delta for this frame.










	
void ScriptTickObject::onInterpolateTick(float delta)


	This is called every frame, but only if the object is set to process ticks.


	Parameters

	delta – The time delta for this frame.










	
void ScriptTickObject::onProcessTick()


	Called once every 32ms if this object is set to process ticks.






	
void ScriptTickObject::setProcessTicks(bool tick)


	Sets this object as either tick processing or not.


	Parameters

	tick – This object’s onInterpolateTick() and onProcessTick() callbacks are called if set to true.












Fields


	
bool ScriptTickObject::callOnAdvanceTime


	Call the onAdvaceTime() callback.











          

      

      

    

  

    
      
          
            
  
ShaderData

Special type of data block that stores information about a handwritten shader.


	Inherit:

	SimObject






Description

To use hand written shaders, a ShaderData datablock must be used. This datablock refers only to the vertex and pixel shader filenames and a hardware target level. Shaders are API specific, so DirectX and OpenGL shaders must be explicitly identified.

Example:

// Used for the procedural clould system
singleton ShaderData( CloudLayerShader )
{
   DXVertexShaderFile   = "shaders/common/cloudLayerV.hlsl";
   DXPixelShaderFile    = "shaders/common/cloudLayerP.hlsl";
   OGLVertexShaderFile = "shaders/common/gl/cloudLayerV.glsl";
   OGLPixelShaderFile = "shaders/common/gl/cloudLayerP.glsl";
   pixVersion = 2.0;
};








Methods


	
void ShaderData::reload()


	Rebuilds all the vertex and pixel shader instances created from this ShaderData .

Example:

// Rebuild the shader instances from ShaderData CloudLayerShader
CloudLayerShader.reload();












Fields


	
string ShaderData::defines


	String of case-sensitive defines passed to the shader compiler. The string should be delimited by a semicolon, tab, or newline character.

Example:

singleton ShaderData( FlashShader )
{
DXVertexShaderFile   = "shaders/common/postFx/flashV.hlsl";
DXPixelShaderFile    = "shaders/common/postFx/flashP.hlsl";

 //Define setting the color of WHITE_COLOR.defines = "WHITE_COLOR=float4(1.0,1.0,1.0,0.0)";

pixVersion = 2.0
}










	
filename ShaderData::DXPixelShaderFile


	Path to the DirectX pixel shader file to use for this ShaderData . It must contain only one program and no vertex shader, just the pixel shader. It can be either an HLSL or assembly level shader. HLSL’s must have a filename extension of .hlsl, otherwise its assumed to be an assembly file.






	
filename ShaderData::DXVertexShaderFile


	Path to the DirectX vertex shader file to use for this ShaderData . It must contain only one program and no pixel shader, just the vertex shader.It can be either an HLSL or assembly level shader. HLSL’s must have a filename extension of .hlsl, otherwise its assumed to be an assembly file.






	
filename ShaderData::OGLPixelShaderFile


	Path to an OpenGL pixel shader file to use for this ShaderData . It must contain only one program and no vertex shader, just the pixel shader.






	
filename ShaderData::OGLVertexShaderFile


	Path to an OpenGL vertex shader file to use for this ShaderData . It must contain only one program and no pixel shader, just the vertex shader.






	
float ShaderData::pixVersion


	Indicates target level the shader should be compiled. Valid numbers at the time of this writing are 1.1, 1.4, 2.0, and 3.0. The shader will not run properly if the hardware does not support the level of shader compiled.






	
bool ShaderData::useDevicePixVersion


	If true, the maximum pixel shader version offered by the graphics card will be used. Otherwise, the script-defined pixel shader version will be used.











          

      

      

    

  

    
      
          
            
  
ShapeBase

A scriptable, renderable shape.


	Inherit:

	GameBase






Description

A scriptable, renderable shape.

ShapeBase is the renderable shape from which most of the scriptable, game objects are derived, including the Player, Vehicle and Item classes. ShapeBase provides collision detection, audio channels, and animation as well as damage (and damage states), energy, and the ability to mount Images and objects.

ShapeBase objects are not normally instantiated in the scene; derived classes such as Player, WheeledVehicle, and, StaticShape are used instead. But ShapeBase (and the associated datablock, ShapeBaseData) may be used to provide functionality common to all derived objects.

A ShapeBase object consists of a DTS or DAE shape file. This file has the following requirements:

Nodes

Sequences Indicating Condition

Detail Levels




Control Object

Generally in a Torque game, each client is in control of a single game object (such as a Player in an FPS game, or a WheeledVehicle in a racing game). In a game where the client has control over multiple objects (such as units in an RTS), the control object may be the Camera that determines the client’s view of the world (although in general, the client’s camera object does not need to be the same as the control object).

The object controlled by the client is important for several reasons:




Energy/Damage

ShapeBase includes basic enery and damage systems that may be used by derived classes as required. For example, the Player class uses energy to determine whether the character is capabable of running and jumping, which can be used to mimic the character getting tired and having to rest before continuing. The Player class also uses the damage system PlayerData::onDestroyed callback to trigger a death animation. The Vehicle classes use the current damage level to trigger particle emitters, so a vehicle could progressively generate more smoke as it becomes more damaged.

ShapeBase also includes parameters to ‘blow up’ the object when it is Destroyed (damage level above ShapeBaseData::destroyedLevel). Blowing up an object can generate an explosion and debris, as well as exclude the object from rendering.

Parameters to control the object’s energy and damage functionality can be found in the ShapeBaseData datablock.




Methods


	
void ShapeBase::applyDamage(float amount)


	Increment the current damage level by the specified amount.


	Parameters

	amount – value to add to current damage level










	
bool ShapeBase::applyImpulse(Point3F pos, Point3F vec)


	Apply an impulse to the object.


	Parameters

	
	pos – world position of the impulse


	vec – impulse momentum (velocity * mass)






	Returns

	true










	
void ShapeBase::applyRepair(float amount)


	Repair damage by the specified amount. Note that the damage level is only reduced by repairRate per tick, so it may take several ticks for the total repair to complete.


	Parameters

	amount – total repair value (subtracted from damage level over time)










	
void ShapeBase::blowUp()


	Explodes an object into pieces.






	
bool ShapeBase::canCloak()


	Check if this object can cloak.


	Returns

	true










	
void ShapeBase::changeMaterial(string mapTo, Material oldMat, Material newMat)


	Change one of the materials on the shape. This method changes materials per mapTo with others. The material that is being replaced is mapped to unmapped_mat as a part of this transition.


	Parameters

	
	mapTo – the name of the material target to remap (from getTargetName)


	oldMat – the old Material that was mapped


	newMat – the new Material to map








Example:

// remap the first material in the shape
%mapTo = %obj.getTargetName( 0 );
%obj.changeMaterial( %mapTo, 0, MyMaterial );










	
bool ShapeBase::destroyThread(int slot)


	Destroy an animation thread, which prevents it from playing.


	Parameters

	slot – thread slot to destroy



	Returns

	true if successful, false if failed










	
void ShapeBase::dumpMeshVisibility()


	Print a list of visible and hidden meshes in the shape to the console for debugging purposes.






	
Point3F ShapeBase::getAIRepairPoint()


	Get the position at which the AI should stand to repair things. If the shape defines a node called “AIRepairNode”, this method will return the current world position of that node, otherwise “0 0 0”.


	Returns

	the AI repair position










	
float ShapeBase::getCameraFov()


	Returns the vertical field of view in degrees for this object if used as a camera.


	Returns

	ShapeBaseData::cameraDefaultFov










	
int ShapeBase::getControllingClient()


	Get the client (if any) that controls this object. The controlling client is the one that will send moves to us to act on.


	Returns

	, or 0 if this object is not controlled by any client.










	
int ShapeBase::getControllingObject()


	Get the object (if any) that controls this object.


	Returns

	object, or 0 if this object is not controlled by another object.










	
float ShapeBase::getDamageFlash()


	Get the damage flash level.


	Returns

	flash level










	
float ShapeBase::getDamageLevel()


	Get the object’s current damage level.


	Returns

	damage level










	
float ShapeBase::getDamagePercent()


	Get the object’s current damage level as a percentage of maxDamage.


	Returns

	damageLevel / datablock.maxDamage










	
string ShapeBase::getDamageState()


	Get the object’s damage state.


	Returns

	the damage state; one of “Enabled”, “Disabled”, “Destroyed”










	
float ShapeBase::getDefaultCameraFov()


	Returns the default vertical field of view in degrees for this object if used as a camera.


	Returns

	Default FOV










	
float ShapeBase::getEnergyLevel()


	Get the object’s current energy level.


	Returns

	energy level










	
float ShapeBase::getEnergyPercent()


	Get the object’s current energy level as a percentage of maxEnergy.


	Returns

	energyLevel / datablock.maxEnergy










	
Point3F ShapeBase::getEyePoint()


	Get the position of the ‘eye’ for this object. If the object model has a node called ‘eye’, this method will return that node’s current world position, otherwise it will return the object’s current world position.


	Returns

	the eye position for this object










	
TransformF ShapeBase::getEyeTransform()


	Get the ‘eye’ transform for this object. If the object model has a node called ‘eye’, this method will return that node’s current transform, otherwise it will return the object’s current transform.


	Returns

	the eye transform for this object










	
VectorF ShapeBase::getEyeVector()


	Get the forward direction of the ‘eye’ for this object. If the object model has a node called ‘eye’, this method will return that node’s current forward direction vector, otherwise it will return the object’s current forward direction vector.


	Returns

	the eye vector for this object










	
bool ShapeBase::getImageAltTrigger(int slot)


	Get the alt trigger state of the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	the Image’s current alt trigger state










	
bool ShapeBase::getImageAmmo(int slot)


	Get the ammo state of the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	the Image’s current ammo state










	
bool ShapeBase::getImageGenericTrigger(int slot, int trigger)


	Get the generic trigger state of the Image mounted in the specified slot.


	Parameters

	
	slot – Image slot to query


	trigger – Generic trigger number






	Returns

	the Image’s current generic trigger state










	
bool ShapeBase::getImageLoaded(int slot)


	Get the loaded state of the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	the Image’s current loaded state










	
string ShapeBase::getImageScriptAnimPrefix(int slot)


	Get the script animation prefix of the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	the Image’s current script animation prefix










	
int ShapeBase::getImageSkinTag(int slot)


	Get the skin tag ID for the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	the skinTag value passed to mountImage when the image was mounted










	
string ShapeBase::getImageState(int slot)


	Get the name of the current state of the Image in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	name of the current Image state, or “Error” if slot is invalid










	
bool ShapeBase::getImageTarget(int slot)


	Get the target state of the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	the Image’s current target state










	
bool ShapeBase::getImageTrigger(int slot)


	Get the trigger state of the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	the Image’s current trigger state










	
string ShapeBase::getLookAtPoint(float distance, int typeMask)


	Get the world position this object is looking at. Casts a ray from the eye and returns information about what the ray hits.


	Parameters

	
	distance – maximum distance of the raycast


	typeMask – typeMask of objects to include for raycast collision testing






	Returns

	look-at information as “Object HitX HitY HitZ [Material]” or empty string for no hit





Example:

%lookat = %obj.getLookAtPoint();
echo( "Looking at: " @ getWords( %lookat, 1, 3 ) );










	
float ShapeBase::getMaxDamage()


	Get the object’s maxDamage level.


	Returns

	datablock.maxDamage










	
string ShapeBase::getModelFile()


	Get the model filename used by this shape.


	Returns

	the shape filename










	
int ShapeBase::getMountedImage(int slot)


	Get the Image mounted in the specified slot.


	Parameters

	slot – Image slot to query



	Returns

	datablock mounted in the slot, or 0 if no Image is mounted there.










	
int ShapeBase::getMountSlot(ShapeBaseImageData image)


	Get the first slot the given datablock is mounted to on this object.


	Parameters

	image – ShapeBaseImageData datablock to query



	Returns

	index of the first slot the Image is mounted in, or -1 if the Image is not mounted in any slot on this object.










	
Point3F ShapeBase::getMuzzlePoint(int slot)


	Get the muzzle position of the Image mounted in the specified slot. If the Image shape contains a node called ‘muzzlePoint’, then the muzzle position is the position of that node in world space. If no such node is specified, the slot’s mount node is used instead.


	Parameters

	slot – Image slot to query



	Returns

	the muzzle position, or “0 0 0” if the slot is invalid










	
VectorF ShapeBase::getMuzzleVector(int slot)


	Get the muzzle vector of the Image mounted in the specified slot. If the Image shape contains a node called ‘muzzlePoint’, then the muzzle vector is the forward direction vector of that node’s transform in world space. If no such node is specified, the slot’s mount node is used instead. If the correctMuzzleVector flag (correctMuzzleVectorTP in 3rd person) is set in the Image, the muzzle vector is computed to point at whatever object is right in front of the object’s ‘eye’ node.


	Parameters

	slot – Image slot to query



	Returns

	the muzzle vector, or “0 1 0” if the slot is invalid










	
int ShapeBase::getPendingImage(int slot)


	Get the Image that will be mounted next in the specified slot. Calling mountImage when an Image is already mounted does one of two things: This command retrieves the ID of the pending Image (2nd case above).


	Parameters

	slot – Image slot to query



	Returns

	datablock, or 0 if none.










	
float ShapeBase::getRechargeRate()


	Get the current recharge rate.


	Returns

	the recharge rate (per tick)










	
float ShapeBase::getRepairRate()


	Get the per-tick repair amount.


	Returns

	the current value to be subtracted from damage level each tick










	
string ShapeBase::getShapeName()


	Get the name of the shape.


	Returns

	the name of the shape










	
string ShapeBase::getSkinName()


	Get the name of the skin applied to this shape.


	Returns

	the name of the skin










	
TransformF ShapeBase::getSlotTransform(int slot)


	Get the world transform of the specified mount slot.


	Parameters

	slot – Image slot to query



	Returns

	the mount transform










	
int ShapeBase::getTargetCount()


	Get the number of materials in the shape.


	Returns

	the number of materials in the shape.










	
string ShapeBase::getTargetName(int index)


	Get the name of the indexed shape material.


	Parameters

	index – index of the material to get (valid range is 0 - getTargetCount()-1).



	Returns

	the name of the indexed material.










	
VectorF ShapeBase::getVelocity()


	Get the object’s current velocity. Reimplemented in Camera .


	Returns

	the current velocity










	
float ShapeBase::getWhiteOut()


	Get the white-out level.


	Returns

	white-out level










	
bool ShapeBase::hasImageState(int slot, string state)


	Check if the given state exists on the mounted Image.


	Parameters

	
	slot – Image slot to query


	state – Image state to check for






	Returns

	true if the Image has the requested state defined.










	
bool ShapeBase::isCloaked()


	Check if this object is cloaked.


	Returns

	true if cloaked, false if not










	
bool ShapeBase::isDestroyed()


	Check if the object is in the Destroyed damage state.


	Returns

	true if damage state is “Destroyed”, false if not










	
bool ShapeBase::isDisabled()


	Check if the object is in the Disabled or Destroyed damage state.


	Returns

	true if damage state is not “Enabled”, false if it is










	
bool ShapeBase::isEnabled()


	Check if the object is in the Enabled damage state.


	Returns

	true if damage state is “Enabled”, false if not










	
bool ShapeBase::isHidden()


	Check if the object is hidden.


	Returns

	true if the object is hidden, false if visible.










	
bool ShapeBase::isImageFiring(int slot)


	Check if the current Image state is firing.


	Parameters

	slot – Image slot to query



	Returns

	true if the current Image state in this slot has the ‘stateFire’ flag set.










	
bool ShapeBase::isImageMounted(ShapeBaseImageData image)


	Check if the given datablock is mounted to any slot on this object.


	Parameters

	image – ShapeBaseImageData datablock to query



	Returns

	true if the Image is mounted to any slot, false otherwise.










	
bool ShapeBase::mountImage(ShapeBaseImageData image, int slot, bool loaded, string skinTag)


	Mount a new Image.


	Parameters

	
	image – the Image to mount


	slot – Image slot to mount into (valid range is 0 - 3)


	loaded – initial loaded state for the Image


	skinTag – tagged string to reskin the mounted Image






	Returns

	true if successful, false if failed





Example:

%player.mountImage( PistolImage, 1 );
%player.mountImage( CrossbowImage, 0, false );
%player.mountImage( RocketLauncherImage, 0, true, blue );










	
bool ShapeBase::pauseThread(int slot)


	Pause an animation thread. If restarted using playThread, the animation will resume from the paused position.


	Parameters

	slot – thread slot to stop



	Returns

	true if successful, false if failed










	
bool ShapeBase::playAudio(int slot, SFXTrack track)


	Attach a sound to this shape and start playing it.


	Parameters

	
	slot – Audio slot index for the sound (valid range is 0 - 3)


	track – SFXTrack to play






	Returns

	true if the sound was attached successfully, false if failed










	
bool ShapeBase::playThread(int slot, string name)


	Start a new animation thread, or restart one that has been paused or stopped.


	Parameters

	
	slot – thread slot to play. Valid range is 0 - 3)


	name – name of the animation sequence to play in this slot. If not specified, the paused or stopped thread in this slot will be resumed.






	Returns

	true if successful, false if failed





Example:

%obj.playThread( 0, "ambient" );      // Play the ambient sequence in slot 0
%obj.setThreadTimeScale( 0, 0.5 );    // Play at half-speed
%obj.pauseThread( 0 );                // Pause the sequence
%obj.playThread( 0 );                 // Resume playback
%obj.playThread( 0, "spin" );         // Replace the sequence in slot 0










	
void ShapeBase::setAllMeshesHidden(bool hide)


	Set the hidden state on all the shape meshes. This allows you to hide all meshes in the shape, for example, and then only enable a few.


	Parameters

	hide – new hidden state for all meshes










	
void ShapeBase::setCameraFov(float fov)


	Set the vertical field of view in degrees for this object if used as a camera.


	Parameters

	fov – new FOV value










	
void ShapeBase::setCloaked(bool cloak)


	Set the cloaked state of this object. When an object is cloaked it is not rendered.


	Parameters

	cloak – true to cloak the object, false to uncloak










	
void ShapeBase::setDamageFlash(float level)


	Set the damage flash level. Damage flash may be used as a postfx effect to flash the screen when the client is damaged.


	Parameters

	level – flash level (0-1)










	
void ShapeBase::setDamageLevel(float level)


	Set the object’s current damage level.


	Parameters

	level – new damage level










	
bool ShapeBase::setDamageState(string state)


	Set the object’s damage state.


	Parameters

	state – should be one of “Enabled”, “Disabled”, “Destroyed”



	Returns

	true if successful, false if failed










	
void ShapeBase::setDamageVector(Point3F vec)


	Set the damage direction vector. Currently this is only used to initialise the explosion if this object is blown up.


	Parameters

	vec – damage direction vector





Example:

%obj.setDamageVector( "0 0 1" );










	
void ShapeBase::setEnergyLevel(float level)


	Set this object’s current energy level.


	Parameters

	level – new energy level










	
void ShapeBase::setHidden(bool show)


	Add or remove this object from the scene. When removed from the scene, the object will not be processed or rendered. Reimplemented from SimObject .


	Parameters

	show – False to hide the object, true to re-show it










	
bool ShapeBase::setImageAltTrigger(int slot, bool state)


	Set the alt trigger state of the Image mounted in the specified slot.


	Parameters

	
	slot – Image slot to modify


	state – new alt trigger state for the Image






	Returns

	the Image’s new alt trigger state










	
bool ShapeBase::setImageAmmo(int slot, bool state)


	Set the ammo state of the Image mounted in the specified slot.


	Parameters

	
	slot – Image slot to modify


	state – new ammo state for the Image






	Returns

	the Image’s new ammo state










	
int ShapeBase::setImageGenericTrigger(int slot, int trigger, bool state)


	Set the generic trigger state of the Image mounted in the specified slot.


	Parameters

	
	slot – Image slot to modify


	trigger – Generic trigger number


	state – new generic trigger state for the Image






	Returns

	the Image’s new generic trigger state or -1 if there was a problem.










	
bool ShapeBase::setImageLoaded(int slot, bool state)


	Set the loaded state of the Image mounted in the specified slot.


	Parameters

	
	slot – Image slot to modify


	state – new loaded state for the Image






	Returns

	the Image’s new loaded state










	
void ShapeBase::setImageScriptAnimPrefix(int slot, string prefix)


	Set the script animation prefix for the Image mounted in the specified slot. This is used to further modify the prefix used when deciding which animation sequence to play while this image is mounted.


	Parameters

	
	slot – Image slot to modify


	prefix – The prefix applied to the image













	
bool ShapeBase::setImageTarget(int slot, bool state)


	Set the target state of the Image mounted in the specified slot.


	Parameters

	
	slot – Image slot to modify


	state – new target state for the Image






	Returns

	the Image’s new target state










	
bool ShapeBase::setImageTrigger(int slot, bool state)


	Set the trigger state of the Image mounted in the specified slot.


	Parameters

	
	slot – Image slot to modify


	state – new trigger state for the Image






	Returns

	the Image’s new trigger state










	
void ShapeBase::setInvincibleMode(float time, float speed)


	Setup the invincible effect. This effect is used for HUD feedback to the user that they are invincible.


	Parameters

	
	time – duration in seconds for the invincible effect


	speed – speed at which the invincible effect progresses













	
void ShapeBase::setMeshHidden(string name, bool hide)


	Set the hidden state on the named shape mesh.


	Parameters

	
	name – name of the mesh to hide/show


	hide – new hidden state for the mesh













	
void ShapeBase::setRechargeRate(float rate)


	Set the recharge rate. The recharge rate is added to the object’s current energy level each tick, up to the maxEnergy level set in the ShapeBaseData datablock.


	Parameters

	rate – the recharge rate (per tick)










	
void ShapeBase::setRepairRate(float rate)


	Set amount to repair damage by each tick. Note that this value is separate to the repairRate field in ShapeBaseData . This value will be subtracted from the damage level each tick, whereas the ShapeBaseData field limits how much of the applyRepair value is subtracted each tick. Both repair types can be active at the same time.


	Parameters

	rate – value to subtract from damage level each tick (must be > 0)










	
void ShapeBase::setShapeName(string name)


	Set the name of this shape.


	Parameters

	name – new name for the shape










	
void ShapeBase::setSkinName(string name)


	Apply a new skin to this shape. ‘Skinning’ the shape effectively renames the material targets, allowing different materials to be used on different instances of the same model.


	Parameters

	name – name of the skin to apply










	
bool ShapeBase::setThreadDir(int slot, bool fwd)


	Set the playback direction of an animation thread.


	Parameters

	
	slot – thread slot to modify


	fwd – true to play the animation forwards, false to play backwards






	Returns

	true if successful, false if failed










	
bool ShapeBase::setThreadPosition(int slot, float pos)


	Set the position within an animation thread.


	Parameters

	
	slot – thread slot to modify


	pos – position within thread






	Returns

	true if successful, false if failed










	
bool ShapeBase::setThreadTimeScale(int slot, float scale)


	Set the playback time scale of an animation thread.


	Parameters

	
	slot – thread slot to modify


	scale – new thread time scale (1=normal speed, 0.5=half speed etc)






	Returns

	true if successful, false if failed










	
bool ShapeBase::setVelocity(Point3F vel)


	Set the object’s velocity.


	Parameters

	vel – new velocity for the object



	Returns

	true










	
void ShapeBase::setWhiteOut(float level)


	Set the white-out level. White-out may be used as a postfx effect to brighten the screen in response to a game event.


	Parameters

	level – flash level (0-1)










	
void ShapeBase::startFade(int time, int delay, bool fadeOut)


	Fade the object in or out without removing it from the scene. A faded out object is still in the scene and can still be collided with, so if you want to disable collisions for this shape after it fades out use setHidden to temporarily remove this shape from the scene.


	Parameters

	
	time – duration of the fade effect in ms


	delay – delay in ms before the fade effect begins


	fadeOut – true to fade-out to invisible, false to fade-in to full visibility













	
bool ShapeBase::stopAudio(int slot)


	Stop a sound started with playAudio.


	Parameters

	slot – audio slot index (started with playAudio)



	Returns

	true if the sound was stopped successfully, false if failed










	
bool ShapeBase::stopThread(int slot)


	Stop an animation thread. If restarted using playThread, the animation will start from the beginning again.


	Parameters

	slot – thread slot to stop



	Returns

	true if successful, false if failed










	
bool ShapeBase::unmountImage(int slot)


	Unmount the mounted Image in the specified slot.


	Parameters

	slot – Image slot to unmount



	Returns

	true if successful, false if failed










	
float ShapeBase::validateCameraFov(float fov)


	Called on the server when the client has requested a FOV change. When the client requests that its field of view should be changed (because they want to use a sniper scope, for example) this new FOV needs to be validated by the server. This method is called if it exists (it is optional) to validate the requested FOV, and modify it if necessary. This could be as simple as checking that the FOV falls within a correct range, to making sure that the FOV matches the capabilities of the current weapon. Following this method, ShapeBase ensures that the given FOV still falls within the datablock’s cameraMinFov and cameraMaxFov. If that is good enough for your purposes, then you do not need to define the validateCameraFov() callback for your ShapeBase .


	Parameters

	fov – The FOV that has been requested by the client.



	Returns

	The FOV as validated by the server.












Fields


	
bool ShapeBase::isAIControlled


	Is this object AI controlled. If True then this object is considered AI controlled and not player controlled.






	
string ShapeBase::skin


	The skin applied to the shape. ‘Skinning’ the shape effectively renames the material targets, allowing different materials to be used on different instances of the same model. Using getSkinName() and setSkinName() is equivalent to reading and writing the skin field directly. Any material targets that start with the old skin name have that part of the name replaced with the new skin name. The initial old skin name is “base”. For example, if a new skin of “blue” was applied to a model that had material targets base_body and face , the new targets would be blue_body and face . Note that face was not renamed since it did not start with the old skin name of “base”. To support models that do not use the default “base” naming convention, you can also specify the part of the name to replace in the skin field itself. For example, if a model had a material target called shapemat , we could apply a new skin “shape=blue”, and the material target would be renamed to bluemat (note “shape” has been replaced with “blue”). Multiple skin updates can also be applied at the same time by separating them with a semicolon. For example: “base=blue;face=happy_face”. Material targets are only renamed if an existing Material maps to that name, or if there is a diffuse texture in the model folder with the same name as the new target.











          

      

      

    

  

    
      
          
            
  
ShapeBaseData

object.


	Inherit:

	GameBaseData






Description

Defines properties for a ShapeBase object.




Methods


	
bool ShapeBaseData::checkDeployPos(TransformF txfm)


	Check if there is the space at the given transform is free to spawn into. The shape’s bounding box volume is used to check for collisions at the given world transform. Only interior and static objects are checked for collision.


	Parameters

	txfm – Deploy transform to check



	Returns

	True if the space is free, false if there is already something in the way.










	
TransformF ShapeBaseData::getDeployTransform(Point3F pos, Point3F normal)


	Helper method to get a transform from a position and vector (suitable for use with setTransform).


	Parameters

	
	pos – Desired transform position


	normal – Vector of desired direction






	Returns

	The deploy transform










	
void ShapeBaseData::onCollision(ShapeBase obj, SceneObject collObj, VectorF vec, float len)


	Called when we collide with another object.


	Parameters

	
	obj – The ShapeBase object


	collObj – The object we collided with


	vec – Collision impact vector


	len – Length of the impact vector













	
void ShapeBaseData::onDamage(ShapeBase obj, float delta)


	Called when the object is damaged.


	Parameters

	
	obj – The ShapeBase object


	obj – The ShapeBase object


	delta – The amount of damage received.













	
void ShapeBaseData::onDestroyed(ShapeBase obj, string lastState)


	Called when the object damage state changes to Destroyed.


	Parameters

	
	obj – The ShapeBase object


	lastState – The previous damage state













	
void ShapeBaseData::onDisabled(ShapeBase obj, string lastState)


	Called when the object damage state changes to Disabled.


	Parameters

	
	obj – The ShapeBase object


	lastState – The previous damage state













	
void ShapeBaseData::onEnabled(ShapeBase obj, string lastState)


	Called when the object damage state changes to Enabled.


	Parameters

	
	obj – The ShapeBase object


	lastState – The previous damage state













	
void ShapeBaseData::onEndSequence(ShapeBase obj, int slot)


	Called when a thread playing a non-cyclic sequence reaches the end of the sequence.


	Parameters

	
	obj – The ShapeBase object


	slot – Thread slot that finished playing













	
void ShapeBaseData::onForceUncloak(ShapeBase obj, string reason)


	Called when the object is forced to uncloak.


	Parameters

	
	obj – The ShapeBase object


	reason – String describing why the object was uncloaked













	
void ShapeBaseData::onImpact(ShapeBase obj, SceneObject collObj, VectorF vec, float len)


	Called when we collide with another object beyond some impact speed. The Player class makes use of this callback when a collision speed is more than PlayerData::minImpactSpeed .


	Parameters

	
	obj – The ShapeBase object


	collObj – The object we collided with


	vec – Collision impact vector


	len – Length of the impact vector













	
void ShapeBaseData::onTrigger(ShapeBase obj, int index, bool state)


	Called when a move trigger input changes state.


	Parameters

	
	obj – The ShapeBase object


	index – Index of the trigger that changed


	state – New state of the trigger















Fields


	
bool ShapeBaseData::cameraCanBank


	If the derrived class supports it, allow the camera to bank.






	
float ShapeBaseData::cameraDefaultFov


	The default camera vertical FOV in degrees.






	
float ShapeBaseData::cameraMaxDist


	The maximum distance from the camera to the object. Used when computing a custom camera transform for this object.






	
float ShapeBaseData::cameraMaxFov


	The maximum camera vertical FOV allowed in degrees.






	
float ShapeBaseData::cameraMinDist


	The minimum distance from the camera to the object. Used when computing a custom camera transform for this object.






	
float ShapeBaseData::cameraMinFov


	The minimum camera vertical FOV allowed in degrees.






	
bool ShapeBaseData::computeCRC


	If true, verify that the CRC of the client’s shape model matches the server’s CRC for the shape model when loaded by the client.






	
string ShapeBaseData::cubeReflectorDesc


	References a ReflectorDesc datablock that defines performance and quality properties for dynamic reflections.






	
DebrisData ShapeBaseData::Debris


	Debris to generate when this shape is blown up.






	
filename ShapeBaseData::debrisShapeName


	The DTS or DAE model to use for auto-generated breakups.






	
float ShapeBaseData::density


	Shape density. Used when computing buoyancy when in water.






	
float ShapeBaseData::destroyedLevel


	Damage level above which the object is destroyed. When the damage level increases above this value, the object damage state is set to “Destroyed”.






	
float ShapeBaseData::disabledLevel


	Damage level above which the object is disabled. Currently unused.






	
float ShapeBaseData::drag


	Drag factor. Reduces velocity of moving objects.






	
ExplosionData ShapeBaseData::Explosion


	Explosion to generate when this shape is blown up.






	
bool ShapeBaseData::firstPersonOnly


	Flag controlling whether the view from this object is first person only.






	
bool ShapeBaseData::inheritEnergyFromMount


	Flag controlling whether to manage our own energy level, or to use the energy level of the object we are mounted to.






	
bool ShapeBaseData::isInvincible


	Invincible flag; when invincible, the object cannot be damaged or repaired.






	
float ShapeBaseData::mass


	Shape mass. Used in simulation of moving objects.






	
float ShapeBaseData::maxDamage


	Maximum damage level for this object.






	
float ShapeBaseData::maxEnergy


	Maximum energy level for this object.






	
bool ShapeBaseData::mountedImagesBank


	Do mounted images bank along with the camera?






	
bool ShapeBaseData::observeThroughObject


	Observe this object through its camera transform and default fov. If true, when this object is the camera it can provide a custom camera transform and FOV (instead of the default eye transform).






	
bool ShapeBaseData::renderWhenDestroyed


	Whether to render the shape when it is in the “Destroyed” damage state.






	
float ShapeBaseData::repairRate


	Rate at which damage is repaired in damage units/tick. This value is subtracted from the damage level until it reaches 0.






	
bool ShapeBaseData::shadowEnable


	Enable shadows for this shape (currently unused, shadows are always enabled).






	
float ShapeBaseData::shadowMaxVisibleDistance


	Maximum distance at which shadow is visible (currently unused).






	
float ShapeBaseData::shadowProjectionDistance


	Maximum height above ground to project shadow. If the object is higher than this no shadow will be rendered.






	
int ShapeBaseData::shadowSize


	Size of the projected shadow texture (must be power of 2).






	
float ShapeBaseData::shadowSphereAdjust


	Scalar applied to the radius of spot shadows (initial radius is based on the shape bounds but can be adjusted with this field).






	
filename ShapeBaseData::shapeFile


	The DTS or DAE model to use for this object.






	
ExplosionData ShapeBaseData::underwaterExplosion


	Explosion to generate when this shape is blown up underwater.






	
bool ShapeBaseData::useEyePoint


	Flag controlling whether the client uses this object’s eye point to view from.











          

      

      

    

  

    
      
          
            
  
ShapeBaseImageData

object.


	Inherit:

	GameBaseData






Description

Represents geometry to be mounted to a ShapeBase object.

Unlike other datablocks, ShapeBaseImageData does not have a base class associated with it. Instead, this datablock is an abstraction of geometry that can only be mounted to a ShapeBase object and is only used by a ShapBase object.

The most common use for ShapeBaseImageData objects (referred to as Images hereafter) is for weapons carried by a Player or Vehicle object, and much of the functionality provided by the Image is aimed at that use-case. Images include a powerful state machine to control animations, sounds, script callbacks, and state transitions. This state system is downloaded to the client so that clients can predict state changes and animate accordingly.

The following example - a grenade launcher weapon - demonstates the flexibility of the system. The weapon includes states and transitions to handle the normal ready->fire->reload->ready loop as well as noammo->dryfire for firing when the weapon is out of ammo.

Example:

datablock ShapeBaseImageData( GrenadeLauncherImage )
{
   // Basic properties
   shapefile = "art/shapes/weapons/ramrifle/base.dts";

   // Specify mount point & offset for 3rd person, and eye offset// for first person rendering.mountPoint = 0;
   offset = "0.0 0.0 0.1";
   eyeOffset = "0.25 0.4 -0.4";

   // Add the WeaponImage namespace as a parent, WeaponImage namespace// provides some hooks into the inventory system.className = "WeaponImage";

   // Projectile and Ammo.
   item = GrenadeLauncher;
   ammo = GrenadeLauncherAmmo;
   projectile = GrenadeLauncherProjectile;
   wetProjectile = GrenadeWetProjectile;
   projectileType = Projectile;

   // Shell casingscasing = GrenadeLauncherShellCasing;
   shellExitDir = "1.0 0.3 1.0";
   shellExitOffset = "0.15 -0.56 -0.1";
   shellExitVariance = 15.0;
   shellVelocity = 3.0;

   // Let there be light - NoLight, ConstantLight, PulsingLight, WeaponFireLight.lightType = "WeaponFireLight";
   lightColor = "1.0 1.0 0.9";
   lightDuration = 200;
   lightRadius = 20;


   // Initial start up statestateName[0] = "Preactivate";
   stateTransitionOnLoaded[0] = "Activate";
   stateTransitionOnNoAmmo[0] = "NoAmmo";

   // Activating the gun.// Called when the weapon is first mounted and there is ammo.stateName[1] = "Activate";
   stateTransitionOnTimeout[1] = "Ready";
   stateTimeoutValue[1] = 0.6;
   stateSequence[1] = "Activate";

   // Ready to fire, just waiting for the triggerstateName[2] = "Ready";
   stateTransitionOnNoAmmo[2] = "NoAmmo";
   stateTransitionOnTriggerDown[2] = "CheckWet";
   stateSequence[2] = "Ready";

   // Fire the weapon. Calls the fire script which does the actual work.stateName[3] = "Fire";
   stateTransitionOnTimeout[3] = "PostFire";
   stateTimeoutValue[3] = 0.4;
   stateFire[3] = true;
   stateAllowImageChange[3] = false;
   stateSequence[3] = "Fire";
   stateScript[3] = "onFire";
   stateSound[3] = GrenadeLauncherFireSound;

   // Check ammostateName[4] = "PostFire";
   stateTransitionOnAmmo[4] = "Reload";
   stateTransitionOnNoAmmo[4] = "NoAmmo";

   // Play the reload animation, and transition back into Ready statestateName[5] = "Reload";
   stateTransitionOnTimeout[5] = "Ready";
   stateTimeoutValue[5] = 0.2;
   stateAllowImageChange[5] = false;
   stateSequence[5] = "Reload";
   stateEjectShell[5] = false; // set to true to enable shell casing ejectstateSound[5] = GrenadeLauncherReloadSound;

   // No ammo in the weapon, just idle until something shows up.// Play the dry fire sound if the trigger iS pulled.stateName[6] = "NoAmmo";
   stateTransitionOnAmmo[6] = "Reload";
   stateSequence[6] = "NoAmmo";
   stateTransitionOnTriggerDown[6] = "DryFire";

   // No ammo dry firestateName[7] = "DryFire";
   stateTimeoutValue[7] = 1.0;
   stateTransitionOnTimeout[7] = "NoAmmo";
   stateSound[7] = GrenadeLauncherFireEmptySound;

   // Check if wetstateName[8] = "CheckWet";
   stateTransitionOnWet[8] = "WetFire";
   stateTransitionOnNotWet[8] = "Fire";

   // Wet firestateName[9] = "WetFire";
   stateTransitionOnTimeout[9] = "PostFire";
   stateTimeoutValue[9] = 0.4;
   stateFire[9] = true;
   stateAllowImageChange[9] = false;
   stateSequence[9] = "Fire";
   stateScript[9] = "onWetFire";
   stateSound[9] = GrenadeLauncherFireSound;
};





Images are mounted into a slot on the target ShapeBase derrived object as shown below.

Example:

$WeaponSlot = 0;

...

// Use a weapon by mounting it onto the given ShapeBase derrived object.// %data is the weapon whose .image member points to its ShapeBaseImageData datablock// %obj is the object to mount the weapon on
function Weapon::onUse( %data, %obj )
{
   // Default behavior for all weapons is to mount it into the objects weapon// slot, as defined by $WeaponSlot here, and is usually slot 0. We begin by// checking if the requested weapon is already mounted.if ( %obj.getMountedImage($WeaponSlot) != %data.image.getId() )
   {
      // The requested weapon is not mounted on $WeaponSlot so mount it now.
      %obj.mountImage( %data.image, $WeaponSlot );
   }
}








Weapon Shape Nodes

The DTS or DAE model used for the Image has the following requirements:




Weapon Muzzle Flash

When the Image is used as a weapon, a sequence can be added to display a muzzle flash when the weapon is fired (if stateSequenceRandomFlash is set to true for the firing state). The name of the muzzle flash sequence is the same as the state sequence (eg. fire), but with ‘_vis’ appended (eg. fire_vis).

In the example below, the muzzle flash is made up of three quads; one facing the player, and two crossed quads pointing out of the weapon so viewers perpendicular to the player will also see the flash.

The visibility of the muzzle flash mesh is animated on for 1 frame then off for 1 frame as shown below, but any Torque supported animation method could be used as well. For example, the node the quads are attached to could be rotated or scaled, or the mesh Material could be animated (UV or frame) to provide further variation.




First Person Shape [Optional]

The ShapeBaseImageData supports an optional shape that is displayed when the player is in a first person view. This shape is defined using the shapeFileFP property. You also must set an eyeOffset or make use of an eye mount node for this shape to be used in a first person view.

Having this second shape defined provides for more flexibility between 3rd person (and what other players see) and 1st person views. In a typical first person shooter the 3rd person weapon is not as detailed and supports a limited number of animation sequences. Just enough for the other players in the game to get a sense of what the player is doing. Then the 1st person weapon has a lot more detail, such as moving parts, etc. It may also have some arms and hands incldued that are animated when reloading the weapon and other actions. Only the player holding the weapon sees all of this.

There are a number of things to keep in mind if you make use of shapeFileFP:




Animation Sequence Transitions

Starting with T3D 1.2 control is now given over transitioning from one image state’s sequence to another state’s sequence. The new state “stateSequenceTransitionIn” and “stateSequenceTransitionOut” flags dictate if the current state’s sequence should be transitioned into when changing to the current state, or transitioned out of when switching to a new state. However, there are times when you don’t want to do an animation sequence transition regardless of which state you are coming from. An example of this is the traditional “Fire” state. A Fire state should play immediately and not be transitioned into. In these cases a state may set the “stateSequenceNeverTransition” flag. With that set a state’s sequence will begin to play immediately.




Animation Sequence Selection

When it comes to choosing what sequence to play on the mounted image there are now some new rules. Under 1.1 when an image state requested a named sequence that is found on the mounted image and played – its action sequence. This still occurs under 1.2. However, it is now possible to modify the name of the sequence to play based on some prefixes. PlayerData now has two additional, optional fields: imageAnimPrefix and imageAnimPrefixFP. Just like how these same fields on ShapeBaseImageData can modify when sequences are played on the player based on what is mounted (see Player class documentation), these two PlayerData fields can modify what sequence is played on the mounted image based on the mounting player. This becomes especially useful when combined with 1st person arms – although here we’re just talking about weapons/mounted images.

Let’s suppose we have two types of player: Soldier and Alien. We may want each type of player to use the same weapon slightly differently (or even radically differently, such as the Alien holding the weapon upside down). We use the “Soldier” anim prefix in the soldier’s datablock and the “Alien” prefix in the alien’s datablock. Now when looking up the sequence for a weapon’s fire state – usually called “fire” by convention – the appropriate prefix is added first. And if that prefixed sequence is not found, then we fall back to the standard sequence name. So the soldier’s sequence name search looks like this:

and the alien’s sequence name search looks like this:

This gives the artist greater control over how the weapons look. And because there are separate prefixes possible on PlayerData for 1st person and 3rd person you can mix and match as appropriate. So you could set a prefix for 1st person, but leave it blank for 3rd person (don’t do anything special in 3rd person).

Another way that an image state’s sequence name could be modified is through the new ShapeBase::setImageScriptAnimPrefix() method. This allows you to insert an additional prefix into the name look up. The current scripts pass along the player’s current pose name, but anything could be passed in based on game play. This can be even more useful with the 1st person arms. You could then have a weapon idle state when swimming that moves the weapon (and 1st person arms) in a gentle swim motion. When you combine the PlayerData prefix with the script anim prefix and finally with the image state sequence name, you end up with the following sequence name search pattern (the first found is used):

Whenever ShapeBase::setImageScriptAnimPrefix() is called there is a transition from the currently playing state sequence into the new script prefixed animation sequence. In our example, this allows for a transition from walking to swimming for the weapon. The new ShapeBaseImageData scriptAnimationTransitionTime controls how long to take for this transition.




eyeMount Node [Optional]

As with 1.1 the placement of the 1st person image may be set with the eyeOffset parameter. Now with 1.2 the 1st person image may be placed based on a node in the 1st person DTS/DAE shape, the “eyeMount” node. When the ShapeBaseImageData’s useEyeNode parameter is made true, the image is effectively mounted to the 3rd person player’s “eye” node, locking it into place. This allows the artist in their 3D application to precisely place the 1st person weapon in view when their 3D app’s camera is placed on the eyeMount node and has the same field of view as Torque. This is very handy when animating the 1st person weapon, especially with 1st person arms.

Also with 1.2 an image that is placed with the eyeMount node may have an “eye” node defined. When found the player’s camera is mounted to the image’s “eye” node rather than the 3rd person player’s “eye” node. This allows for animating the camera such as during a fire sequence.

Allowing for this much control does have a potential down side. In order for a weapon to fire correctly on the server it needs to have its muzzle point at the correct location. If a weapon’s root pose (without animation) doesn’t have its muzzle point at roughly the same location as when the weapon is fired, then the new ShapeBaseImageData “animateOnServer” flag should be set. When set the server will perform all state machine animation to ensure the muzzle point is at the correct location when required. This puts an extra strain on the server. If care is taken when building the weapons such that the root pose is close enough to the fire pose, then you can safely leave the “animateOnServer” flag off and not have to worry about the extra server load.




Special State Triggers

Starting with 1.2 there are now a number of new triggers that may be set for a ShapeBaseImageData’s state machine to react to. These provide greater game play control over an image’s state flow. The first are the “stateTransitionOnMotion” and “stateTransitionOnNoMotion” triggers. This trigger occurs whenever the mounting ShapeBase (usually a Player) has x, y or z motion applied through the Move structure. From a Player perspective this means whenever the user moves their player forwards, backwards or strafes. That has been used to provide weapons a slight bobbing appearance (using an animation sequence) when the weapon is idle. Fire and Reload states don’t usually make use of these triggers to keep those actions solid.

There has always been a target trigger for ShapeBaseImageData but under 1.1 it was not possible to set it, nor was it used. Starting with 1.2 you can now set the target trigger in script using ShapeBase::setImageTargetState() and use stateTransitionOnTarget and stateTransitionOnNoTarget for whatever game play reasons are required.

Finally, there are four new generic triggers that may be set from script and used for whatever purpose the game play imposes. These are “stateTransitionGeneric0In”, “stateTransitionGeneric1In”, etc. and “stateTransitionGeneric0Out”, “stateTransition1Out” etc. The FPS Tutorial weapons use the first generic trigger to indicate that the player is sprinting and switch to a Sprint state to prevent firing of the weapon. Other possible uses are for iron sights.




Special States

The client and server move through a ShapeBaseImageData’s state machine independantly according to various triggers, timeouts, etc. The client is not normally told to move to a specific state when the server does. However, there are three instances where the client is told by the server to immediately jump to a given state. This ensures that the client’s experience matches the server at key moments. As such, only one of each of these states may exist in a single ShapeBaseImageData state machine at a time.

The fire state is the first such state. It is indicated by setting the state’s “stateFire” flag to true. This is the state immediately jumped to when the weapon begins to fire.

The alternate fire state is the second forced jump point (new in 1.2). It is indicated by setting the state’s “stateAlternateFire” flag to true. Not all weapons have an alternate fire state. In fact most games treat a weapon’s alternate fire as a separate weapon altogether.

The reload state is the last special state (new in 1.2). It is indicated by setting the state’s “stateReload” flag to true. This state is triggered if the weapon makes use of the new 1.2 ammo clip system and the weapon is reloading a clip, either automatically or manually triggered by the client.




Methods


	
void ShapeBaseImageData::onMount(ShapeBase obj, int slot, float dt)


	Called when the Image is first mounted to the object.


	Parameters

	
	obj – object that this Image has been mounted to


	slot – Image mount slot on the object


	dt – time remaining in this Image update













	
void ShapeBaseImageData::onUnmount(ShapeBase obj, int slot, float dt)


	Called when the Image is unmounted from the object.


	Parameters

	
	obj – object that this Image has been unmounted from


	slot – Image mount slot on the object


	dt – time remaining in this Image update















Fields


	
bool ShapeBaseImageData::accuFire


	Flag to control whether the Image’s aim is automatically converged with the crosshair. Currently unused.






	
bool ShapeBaseImageData::animateAllShapes


	Indicates that all shapes should be animated in sync. When multiple shapes are defined for this image datablock, each of them are automatically animated in step with each other. This allows for easy switching between between shapes when some other condition changes, such as going from first person to third person, and keeping their look consistent. If you know that you’ll never switch between shapes on the fly, such as players only being allowed in a first person view, then you could set this to false to save some calculations. There are other circumstances internal to the engine that determine that only the current shape should be animated rather than all defined shapes. In those cases, this property is ignored.






	
bool ShapeBaseImageData::animateOnServer


	Indicates that the image should be animated on the server. In most cases you’ll want this set if you’re using useEyeNode. You may also want to set this if the muzzlePoint is animated while it shoots. You can set this to false even if these previous cases are true if the image’s shape is set up in the correct position and orientation in the ‘root’ pose and none of the nodes are animated at key times, such as the muzzlePoint essentially remaining at the same position at the start of the fire state (it could animate just fine after the projectile is away as the muzzle vector is only calculated at the start of the state). You’ll also want to set this to true if you’re animating the camera using the image’s ‘eye’ node – unless the movement is very subtle and doesn’t need to be reflected on the server.






	
Point3F ShapeBaseImageData::camShakeAmp


	Amplitude of the camera shaking effect.






	
Point3F ShapeBaseImageData::camShakeFreq


	Frequency of the camera shaking effect.






	
DebrisData ShapeBaseImageData::casing


	DebrisData datablock to use for ejected casings.






	
bool ShapeBaseImageData::cloakable


	Whether this Image can be cloaked. Currently unused.






	
bool ShapeBaseImageData::computeCRC


	If true, verify that the CRC of the client’s Image matches the server’s CRC for the Image when loaded by the client.






	
bool ShapeBaseImageData::correctMuzzleVector


	Flag to adjust the aiming vector to the eye’s LOS point when in 1st person view.






	
bool ShapeBaseImageData::correctMuzzleVectorTP


	Flag to adjust the aiming vector to the camera’s LOS point when in 3rd person view.






	
bool ShapeBaseImageData::emap


	Whether to enable environment mapping on this Image.






	
MatrixPosition ShapeBaseImageData::eyeOffset


	“X Y Z” translation offset from the ShapeBase model’s eye node. When in first person view, this is the offset from the eye node to place the gun. This gives the gun a fixed point in space, typical of a lot of FPS games.






	
MatrixRotation ShapeBaseImageData::eyeRotation


	“X Y Z ANGLE” rotation offset from the ShapeBase model’s eye node. When in first person view, this is the rotation from the eye node to place the gun.






	
bool ShapeBaseImageData::firstPerson


	Set to true to render the image in first person.






	
caseString ShapeBaseImageData::imageAnimPrefix


	Passed along to the mounting shape to modify animation sequences played in third person. [optional].






	
caseString ShapeBaseImageData::imageAnimPrefixFP


	Passed along to the mounting shape to modify animation sequences played in first person. [optional].






	
float ShapeBaseImageData::lightBrightness


	Brightness of the light this Image emits. Only valid for WeaponFireLight.






	
ColorF ShapeBaseImageData::lightColor


	The color of light this Image emits.






	
int ShapeBaseImageData::lightDuration


	Duration in SimTime of Pulsing and WeaponFire type lights.






	
float ShapeBaseImageData::lightRadius


	Radius of the light this Image emits.






	
ShapeBaseImageLightType ShapeBaseImageData::lightType


	The type of light this Image emits.






	
float ShapeBaseImageData::mass


	Mass of this Image. This is added to the total mass of the ShapeBase object.






	
int ShapeBaseImageData::maxConcurrentSounds


	Maximum number of sounds this Image can play at a time. Any value lt = 0 indicates that it can play an infinite number of sounds.






	
float ShapeBaseImageData::minEnergy


	Minimum Image energy for it to be operable.






	
int ShapeBaseImageData::mountPoint


	Mount node # to mount this Image to. This should correspond to a mount# node on the ShapeBase derived object we are mounting to.






	
MatrixPosition ShapeBaseImageData::offset


	“X Y Z” translation offset from this Image’s mountPoint node to attach to. Defaults to “0 0 0”. ie. attach this Image’s mountPoint node to the ShapeBase model’s mount# node without any offset.






	
ProjectileData ShapeBaseImageData::Projectile


	The projectile fired by this Image.






	
MatrixRotation ShapeBaseImageData::rotation


	“X Y Z ANGLE” rotation offset from this Image’s mountPoint node to attach to. Defaults to “0 0 0”. ie. attach this Image’s mountPoint node to the ShapeBase model’s mount# node without any additional rotation.






	
float ShapeBaseImageData::scriptAnimTransitionTime


	The amount of time to transition between the previous sequence and new sequence when the script prefix has changed. When setImageScriptAnimPrefix() is used on a ShapeBase that has this image mounted, the image will attempt to switch to the new animation sequence based on the given script prefix. This is the amount of time it takes to transition from the previously playing animation sequence tothe new script prefix-based animation sequence.






	
bool ShapeBaseImageData::shakeCamera


	Flag indicating whether the camera should shake when this Image fires.






	
filename ShapeBaseImageData::shapeFile


	The DTS or DAE model to use for this Image.






	
filename ShapeBaseImageData::shapeFileFP


	The DTS or DAE model to use for this Image when in first person. This is an optional parameter that also requires either eyeOffset or useEyeNode to be set. If none of these conditions is met then shapeFile will be used for all cases. Typically you set a first person image for a weapon that includes the player’s arms attached to it for animating while firing, reloading, etc. This is typical of many FPS games.






	
Point3F ShapeBaseImageData::shellExitDir


	Vector direction to eject shell casings.






	
float ShapeBaseImageData::shellExitVariance


	Variance (in degrees) from the shellExitDir vector to eject casings.






	
float ShapeBaseImageData::shellVelocity


	Speed at which to eject casings.






	
bool ShapeBaseImageData::stateAllowImageChange[31]


	If false, other Images will temporarily be blocked from mounting while the state machine is executing the tasks in this state. For instance, if we have a rocket launcher, the player shouldn’t be able to switch out while firing. So, you’d set stateAllowImageChange to false in firing states, and true the rest of the time.






	
bool ShapeBaseImageData::stateAlternateFire[31]


	The first state with this set to true is the state entered by the client when it receives the ‘altFire’ event.






	
bool ShapeBaseImageData::stateDirection[31]


	Direction of the animation to play in this state. True is forward, false is backward.






	
bool ShapeBaseImageData::stateEjectShell[31]


	If true, a shell casing will be ejected in this state.






	
ParticleEmitterData ShapeBaseImageData::stateEmitter[31]


	Emitter to generate particles in this state (from muzzle point or specified node).






	
string ShapeBaseImageData::stateEmitterNode[31]


	Name of the node to emit particles from.






	
float ShapeBaseImageData::stateEmitterTime[31]


	How long (in seconds) to emit particles on entry to this state.






	
float ShapeBaseImageData::stateEnergyDrain[31]


	Amount of energy to subtract from the Image in this state. Energy is drained at stateEnergyDrain units/tick as long as we are in this state.






	
bool ShapeBaseImageData::stateFire[31]


	The first state with this set to true is the state entered by the client when it receives the ‘fire’ event.






	
bool ShapeBaseImageData::stateIgnoreLoadedForReady[31]


	If set to true, and both ready and loaded transitions are true, the ready transition will be taken instead of the loaded transition. A state is ‘ready’ if pressing the fire trigger in that state would transition to the fire state.






	
ShapeBaseImageLoadedState ShapeBaseImageData::stateLoadedFlag[31]


	Set the loaded state of the Image.


	IgnoreLoaded: Don’t change Image loaded state.


	Loaded: Set Image loaded state to true.


	NotLoaded: Set Image loaded state to false.









	
caseString ShapeBaseImageData::stateName[31]


	Name of this state.






	
ShapeBaseImageRecoilState ShapeBaseImageData::stateRecoil[31]


	Type of recoil sequence to play on the ShapeBase object on entry to this state.


	NoRecoil: Do not play a recoil sequence.


	LightRecoil: Play the light_recoil sequence.


	MediumRecoil: Play the medium_recoil sequence.


	HeavyRecoil: Play the heavy_recoil sequence.









	
bool ShapeBaseImageData::stateReload[31]


	The first state with this set to true is the state entered by the client when it receives the ‘reload’ event.






	
bool ShapeBaseImageData::stateScaleAnimation[31]


	If true, the timeScale of the stateSequence animation will be adjusted such that the sequence plays for stateTimeoutValue seconds.






	
bool ShapeBaseImageData::stateScaleAnimationFP[31]


	If true, the timeScale of the first person stateSequence animation will be adjusted such that the sequence plays for stateTimeoutValue seconds.






	
bool ShapeBaseImageData::stateScaleShapeSequence[31]


	Indicates if the sequence to be played on the mounting shape should be scaled to the length of the state.






	
caseString ShapeBaseImageData::stateScript[31]


	Method to execute on entering this state. Scoped to this image class name, then ShapeBaseImageData . The script callback function takes the same arguments as the onMount callback.






	
string ShapeBaseImageData::stateSequence[31]


	Name of the sequence to play on entry to this state.






	
bool ShapeBaseImageData::stateSequenceNeverTransition[31]


	Never allow a transition to this sequence. Often used for a fire sequence.






	
bool ShapeBaseImageData::stateSequenceRandomFlash[31]


	If true, the muzzle flash sequence will be played while in this state. The name of the muzzle flash sequence is the same as stateSequence, with “_vis” at the end.






	
bool ShapeBaseImageData::stateSequenceTransitionIn[31]


	Do we transition to the state’s sequence when we enter the state?






	
bool ShapeBaseImageData::stateSequenceTransitionOut[31]


	Do we transition to the new state’s sequence when we leave the state?






	
float ShapeBaseImageData::stateSequenceTransitionTime[31]


	The time to transition in or out of a sequence.






	
string ShapeBaseImageData::stateShapeSequence[31]


	Name of the sequence that is played on the mounting shape.






	
SFXTrack ShapeBaseImageData::stateSound[31]


	Sound to play on entry to this state.






	
ShapeBaseImageSpinState ShapeBaseImageData::stateSpinThread[31]


	Controls how fast the ‘spin’ animation sequence will be played in this state.


	Ignore: No change to the spin sequence.


	Stop: Stops the spin sequence at its current position.


	SpinUp: Increase spin sequence timeScale from 0 (on state entry) to 1 (after stateTimeoutValue seconds).


	SpinDown: Decrease spin sequence timeScale from 1 (on state entry) to 0 (after stateTimeoutValue seconds).


	FullSpeed: Resume the spin sequence playback at its current position with timeScale=1.









	
float ShapeBaseImageData::stateTimeoutValue[31]


	Time in seconds to wait before transitioning to stateTransitionOnTimeout.






	
string ShapeBaseImageData::stateTransitionGeneric0In[31]


	Name of the state to transition to when the generic trigger 0 state changes to true.






	
string ShapeBaseImageData::stateTransitionGeneric0Out[31]


	Name of the state to transition to when the generic trigger 0 state changes to false.






	
string ShapeBaseImageData::stateTransitionGeneric1In[31]


	Name of the state to transition to when the generic trigger 1 state changes to true.






	
string ShapeBaseImageData::stateTransitionGeneric1Out[31]


	Name of the state to transition to when the generic trigger 1 state changes to false.






	
string ShapeBaseImageData::stateTransitionGeneric2In[31]


	Name of the state to transition to when the generic trigger 2 state changes to true.






	
string ShapeBaseImageData::stateTransitionGeneric2Out[31]


	Name of the state to transition to when the generic trigger 2 state changes to false.






	
string ShapeBaseImageData::stateTransitionGeneric3In[31]


	Name of the state to transition to when the generic trigger 3 state changes to true.






	
string ShapeBaseImageData::stateTransitionGeneric3Out[31]


	Name of the state to transition to when the generic trigger 3 state changes to false.






	
string ShapeBaseImageData::stateTransitionOnAltTriggerDown[31]


	Name of the state to transition to when the alt trigger state of the Image changes to false (alt fire button up).






	
string ShapeBaseImageData::stateTransitionOnAltTriggerUp[31]


	Name of the state to transition to when the alt trigger state of the Image changes to true (alt fire button down).






	
string ShapeBaseImageData::stateTransitionOnAmmo[31]


	Name of the state to transition to when the ammo state of the Image changes to true.






	
string ShapeBaseImageData::stateTransitionOnLoaded[31]


	Name of the state to transition to when the loaded state of the Image changes to ‘Loaded’.






	
string ShapeBaseImageData::stateTransitionOnMotion[31]


	Name of the state to transition to when the Player moves.






	
string ShapeBaseImageData::stateTransitionOnNoAmmo[31]


	Name of the state to transition to when the ammo state of the Image changes to false.






	
string ShapeBaseImageData::stateTransitionOnNoMotion[31]


	Name of the state to transition to when the Player stops moving.






	
string ShapeBaseImageData::stateTransitionOnNoTarget[31]


	Name of the state to transition to when the Image loses a target.






	
string ShapeBaseImageData::stateTransitionOnNotLoaded[31]


	Name of the state to transition to when the loaded state of the Image changes to ‘Empty’.






	
string ShapeBaseImageData::stateTransitionOnNotWet[31]


	Name of the state to transition to when the Image exits the water.






	
string ShapeBaseImageData::stateTransitionOnTarget[31]


	Name of the state to transition to when the Image gains a target.






	
string ShapeBaseImageData::stateTransitionOnTimeout[31]


	Name of the state to transition to when we have been in this state for stateTimeoutValue seconds.






	
string ShapeBaseImageData::stateTransitionOnTriggerDown[31]


	Name of the state to transition to when the trigger state of the Image changes to false (fire button released).






	
string ShapeBaseImageData::stateTransitionOnTriggerUp[31]


	Name of the state to transition to when the trigger state of the Image changes to true (fire button down).






	
string ShapeBaseImageData::stateTransitionOnWet[31]


	Name of the state to transition to when the Image enters the water.






	
bool ShapeBaseImageData::stateWaitForTimeout[31]


	If false, this state ignores stateTimeoutValue and transitions immediately if other transition conditions are met.






	
bool ShapeBaseImageData::useEyeNode


	Mount image using image’s eyeMount node and place the camera at the image’s eye node (or at the eyeMount node if the eye node is missing). When in first person view, if an ‘eyeMount’ node is present in the image’s shape, this indicates that the image should mount eyeMount node to Player eye node for image placement. The Player’s camera should also mount to the image’s eye node to inherit any animation (or the eyeMount node if the image doesn’t have an eye node).






	
bool ShapeBaseImageData::useRemainderDT


	If true, allow multiple timeout transitions to occur within a single tick (useful if states have a very small timeout).






	
bool ShapeBaseImageData::usesEnergy


	Flag indicating whether this Image uses energy instead of ammo. The energy level comes from the ShapeBase object we’re mounted to.











          

      

      

    

  

    
      
          
            
  
SimDataBlock


	Inherit:

	SimObject






Description


Datablocks and Networking




Client-Side Datablocks






Methods


	
void SimDataBlock::reloadOnLocalClient()


	Reload the datablock. This can only be used with a local client configuration.











          

      

      

    

  

    
      
          
            
  
SimGroup

A collection of SimObjects that are owned by the group.


	Inherit:

	SimSet






Description

A SimGroup is a stricter form of SimSet. SimObjects may only be a member of a single SimGroup at a time. The SimGroup will automatically enforce the single-group-membership rule (ie. adding an object to a SimGroup will cause it to be removed from its current SimGroup, if any).

Deleting a SimGroup will also delete all SimObjects in the SimGroup.

Example:

// Create a SimGroup for particle emittersnewSimGroup(Emitters)
{
   canSaveDynamicFields = "1";

   newParticleEmitterNode(CrystalEmmiter) {
      active = "1";
      emitter = "dustEmitter";
      velocity = "1";
      dataBlock = "GenericSmokeEmitterNode";
      position = "-61.6276 2.1142 4.45027";
      rotation = "1 0 0 0";
      scale = "1 1 1";
      canSaveDynamicFields = "1";
   };

   newParticleEmitterNode(Steam1) {
      active = "1";
      emitter = "SlowSteamEmitter";
      velocity = "1";
      dataBlock = "GenericSmokeEmitterNode";
      position = "-25.0458 1.55289 2.51308";
      rotation = "1 0 0 0";
      scale = "1 1 1";
      canSaveDynamicFields = "1";
   };
};











          

      

      

    

  

    
      
          
            
  
SimObject

Base class for almost all objects involved in the simulation.


Description

SimObject is a base class for most of the classes you’ll encounter working in Torque. It provides fundamental services allowing “smart” object referencing, creation, destruction, organization, and location. Along with SimEvent, it gives you a flexible event-scheduling system, as well as laying the foundation for the in-game editors, GUI system, and other vital subsystems.


Subclassing

You will spend a lot of your time in Torque subclassing, or working with subclasses of, SimObject. SimObject is designed to be easy to subclass.

You should not need to override anything in a subclass except:


	the constructor/destructor


	processArguments()


	onAdd()/onRemove()


	onGroupAdd()/onGroupRemove()


	onNameChange()


	onStaticModified()


	onDeleteNotify()


	onEditorEnable()/onEditorDisable()


	inspectPreApply()/inspectPostApply()


	things from ConsoleObject (see ConsoleObject docs for specifics)




Of course, if you know what you’re doing, go nuts! But in most cases, you shouldn’t need to touch things not on that list.

When you subclass, you should define a typedef in the class, called Parent, that references the class you’re inheriting from:

class mySubClass : public SimObject {
    typedef SimObject Parent;
    ...





Then, when you override a method, put in:

bool mySubClass::onAdd()
{
    if(!Parent::onAdd())
        return false;

    // ... do other things ...
}





Of course, you want to replace onAdd with the appropriate method call.




A SimObject’s Life Cycle

SimObjects do not live apart. One of the primary benefits of using a SimObject is that you can uniquely identify it and easily find it (using its ID). Torque does this by keeping a global hierarchy of SimGroups - a tree - containing every registered SimObject. You can then query for a given object using Sim::findObject() (or SimSet::findObject() if you want to search only a specific set):

// Three examples of registering an object.

// Method 1:
AIClient *aiPlayer = new AIClient();
aiPlayer->registerObject();

// Method 2:
ActionMap* globalMap = new ActionMap;
globalMap->registerObject("GlobalActionMap");

// Method 3:
bool reg = mObj->registerObject(id);





Registering a SimObject performs these tasks:


	Marks the object as not cleared and not removed.


	Assigns the object a unique SimObjectID if it does not have one already.


	Adds the object to the global name and ID dictionaries so it can be found again.


	Calls the object’s onAdd() method. Note: SimObject::onAdd() performs some important initialization steps. See here for details” on how to properly subclass SimObject.


	If onAdd() fails (returns false), it calls unregisterObject().


	Checks to make sure that the SimObject was properly initialized (and asserts if not).




Calling registerObject() and passing an ID or a name will cause the object to be assigned that name and/or ID before it is registered.

Congratulations, you have now registered your object! What now?

Well, hopefully, the SimObject will have a long, useful life. But eventually, it must die.

There are a two ways a SimObject can die.


	First, the game can be shut down. This causes the root SimGroup to be unregistered and deleted. When a SimGroup is unregistered, it unregisters all of its member SimObjects; this results in everything that has been registered with Sim being unregistered, as everything registered with Sim is in the root group.


	Second, you can manually kill it off, either by calling unregisterObject() or by calling deleteObject().




When you unregister a SimObject, the following tasks are performed:


	The object is flagged as removed.


	Notifications are cleaned up.


	If the object is in a group, then it removes itself from the group.


	Delete notifications are sent out.


	Finally, the object removes itself from the Sim globals, and tells Sim to get rid of any pending events for it.




If you call deleteObject(), all of the above tasks are performed, in addition to some sanity checking to make sure the object was previously added properly, and isn’t in the process of being deleted. After the object is unregistered, it deallocates itself.




Torque Editors

SimObjects are one of the building blocks for the in-game editors. They provide a basic interface for the editor to be able to list the fields of the object, update them safely and reliably, and inform the object things have changed.

This interface is implemented in the following areas:


	onNameChange() is called when the object is renamed.


	onStaticModified() is called whenever a static field is modified.


	inspectPreApply() is called before the object’s fields are updated, when changes are being applied.


	inspectPostApply() is called after the object’s fields are updated.


	onEditorEnable() is called whenever an editor is enabled (for instance, when you hit F11 to bring up the world editor).


	onEditorDisable() is called whenever the editor is disabled (for instance, when you hit F11 again to close the world editor).




(Note: you can check the variable gEditingMission to see if the mission editor is running; if so, you may want to render special indicators. For instance, the fxFoliageReplicator renders inner and outer radii when the mission editor is runnning.)




The Console

SimObject extends ConsoleObject by allowing you to to set arbitrary dynamic fields on the object, as well as statically defined fields. This is done through two methods, setDataField and getDataField, which deal with the complexities of allowing access to two different types of object fields.

Static fields take priority over dynamic fields. This is to be expected, as the role of dynamic fields is to allow data to be stored in addition to the predefined fields.

The fields in a SimObject are like properties (or fields) in a class.

Some fields may be arrays, which is what the array parameter is for; if it’s non-null, then it is parsed with dAtoI and used as an index into the array. If you access something as an array which isn’t, then you get an empty string.

You don’t need to read any further than this. Right now, set/getDataField are called a total of 6 times through the entire Torque codebase. Therefore, you probably don’t need to be familiar with the details of accessing them. You may want to look at Con::setData instead. Most of the time you will probably be accessing fields directly, or using the scripting language, which in either case means you don’t need to do anything special.

The functions to get/set these fields are very straightforward:

setDataField(StringTable->insert("locked", false), NULL, b ? "true" : "false" );
curObject->setDataField(curField, curFieldArray, STR.getStringValue());
setDataField(slotName, array, value);





For advanced users: There are two flags which control the behavior of these functions. The first is ModStaticFields, which controls whether or not the DataField functions look through the static fields (defined with addField; see ConsoleObject for details) of the class. The second is ModDynamicFields, which controls dynamically defined fields. They are set automatically by the console constructor code.






Methods


	
void SimObject::assignFieldsFrom(SimObject fromObject)


	Copy fields from another object onto this one. The objects must be of same type. Everything from the object will overwrite what’s in this object; extra fields in this object will remain. This includes dynamic fields.


	Parameters

	fromObject – The object from which to copy fields.










	
void SimObject::assignPersistentId()


	Assign a persistent ID to the object if it does not already have one.






	
string SimObject::call(string method, string args, ...)


	Dynamically call a method on an object.


	Parameters

	
	method – Name of method to call.


	args – Zero or more arguments for the method.






	Returns

	The result of the method call.










	
SimObject SimObject::clone()


	Create a copy of this object.


	Returns

	An exact duplicate of this object.










	
SimObject SimObject::deepClone()


	Create a copy of this object and all its subobjects.


	Returns

	An exact duplicate of this object and all objects it references.










	
void SimObject::delete()

	Delete and remove the object.






	
void SimObject::dump(bool detailed)


	Dump a description of all fields and methods defined on this object to the console.


	Parameters

	detailed – Whether to print detailed information about members.










	
void SimObject::dumpClassHierarchy()


	Dump the native C++ class hierarchy of this object’s C++ class to the console.






	
void SimObject::dumpGroupHierarchy()


	Dump the hierarchy of this object up to RootGroup to the console.






	
ArrayObject SimObject::dumpMethods()


	List the methods defined on this object. Each description is a newline-separated vector with the following elements:


	Minimum number of arguments.


	Maximum number of arguments.


	Prototype string.


	Full script file path (if script method).


	Line number of method definition in script (if script method).


	Documentation string (not including prototype). This takes up the remainder of the vector.





	Returns

	populated with (name,description) pairs of all methods defined on the object.










	
bool SimObject::getCanSave()


	Get whether the object will be included in saves.


	Returns

	True if the object will be saved; false otherwise.










	
string SimObject::getClassName()


	Get the name of the C++ class which the object is an instance of.


	Returns

	The name of the C++ class of the object.










	
string SimObject::getClassNamespace()


	Get the name of the class namespace assigned to this object.


	Returns

	The name of the ‘class’ namespace.










	
ArrayObject SimObject::getDebugInfo()


	Return some behind-the-scenes information on the object.


	Returns

	filled with internal information about the object.










	
int SimObject::getDeclarationLine()


	Get the line number at which the object is defined in its file.


	Returns

	The line number of the object’s definition in script.










	
string SimObject::getDynamicField(int index)


	Get a value of a dynamic field by index.


	Parameters

	index – The index of the dynamic field.



	Returns

	The value of the dynamic field at the given index or “”.










	
int SimObject::getDynamicFieldCount()


	Get the number of dynamic fields defined on the object.


	Returns

	The number of dynamic fields defined on the object.










	
string SimObject::getField(int index)


	Retrieve the value of a static field by index.


	Parameters

	index – The index of the static field.



	Returns

	The value of the static field with the given index or “”.










	
int SimObject::getFieldCount()


	Get the number of static fields on the object.


	Returns

	The number of static fields defined on the object.










	
string SimObject::getFieldType(string fieldName)


	Get the console type code of the given field.


	Returns

	The numeric type code for the underlying console type of the given field.










	
string SimObject::getFieldValue(string fieldName, int index)


	Return the value of the given field on this object.


	Parameters

	
	fieldName – The name of the field. If it includes a field index, the index is parsed out.


	index – Optional parameter to specify the index of an array field separately.






	Returns

	The value of the given field or “” if undefined.










	
string SimObject::getFilename()


	Returns the filename the object is attached to. Reimplemented in CubemapData .


	Returns

	The name of the file the object is associated with; usually the file the object was loaded from.










	
SimGroup SimObject::getGroup()


	Get the group that this object is contained in.


	Returns

	object to which the object belongs.










	
int SimObject::getId()


	Get the underlying unique numeric ID of the object.


	Returns

	The unique numeric ID of the object.










	
string SimObject::getInternalName()


	Get the internal name of the object.


	Returns

	The internal name of the object.










	
string SimObject::getName()


	Get the global name of the object.


	Returns

	The global name assigned to the object.










	
string SimObject::getSuperClassNamespace()


	Get the name of the superclass namespace assigned to this object.


	Returns

	The name of the ‘superClass’ namespace.










	
bool SimObject::isChildOfGroup(SimGroup group)


	Test whether the object belongs directly or indirectly to the given group.


	Parameters

	group – The SimGroup object.



	Returns

	True if the object is a child of the given group or a child of a group that the given group is directly or indirectly a child to.










	
bool SimObject::isEditorOnly()


	Return true if the object is only used by the editor.


	Returns

	True if this object exists only for the sake of editing.










	
bool SimObject::isExpanded()


	Get whether the object has been marked as expanded. (in editor). Reimplemented in GuiRolloutCtrl .


	Returns

	True if the object is marked expanded.










	
bool SimObject::isField(string fieldName)


	Test whether the given field is defined on this object.


	Parameters

	fieldName – The name of the field.



	Returns

	True if the object implements the given field.










	
bool SimObject::isInNamespaceHierarchy(string name)


	Test whether the namespace of this object is a direct or indirect child to the given namespace.


	Parameters

	name – The name of a namespace.



	Returns

	True if the given namespace name is within the namespace hierarchy of this object.










	
bool SimObject::isMemberOfClass(string className)


	Test whether this object is a member of the specified class.


	Parameters

	className – Name of a native C++ class.



	Returns

	True if this object is an instance of the given C++ class or any of its super classes.










	
bool SimObject::isMethod(string methodName)


	Test whether the given method is defined on this object.


	Parameters

	The – name of the method.



	Returns

	True if the object implements the given method.










	
bool SimObject::isNameChangeAllowed()


	Get whether this object may be renamed.


	Returns

	True if this object can be renamed; false otherwise.










	
bool SimObject::isSelected()


	Get whether the object has been marked as selected. (in editor).


	Returns

	True if the object is currently selected.










	
bool SimObject::save(string fileName, bool selectedOnly, string preAppendString)


	Save out the object to the given file.


	Parameters

	
	fileName – The name of the file to save to.


	selectedOnly – If true, only objects marked as selected will be saved out.


	preAppendString – Text which will be preprended directly to the object serialization.


	True – on success, false on failure.













	
int SimObject::schedule(float time, string method, string args, ...)


	Delay an invocation of a method.


	Parameters

	
	time – The number of milliseconds after which to invoke the method. This is a soft limit.


	method – The method to call.


	args – The arguments with which to call the method.






	Returns

	The numeric ID of the created schedule. Can be used to cancel the call.










	
void SimObject::setCanSave(bool value)


	Set whether the object will be included in saves.


	Parameters

	value – If true, the object will be included in saves; if false, it will be excluded.










	
void SimObject::setClassNamespace(string name)


	Assign a class namespace to this object.


	Parameters

	name – The name of the ‘class’ namespace for this object.










	
void SimObject::setEditorOnly(bool value)


	Set/clear the editor-only flag on this object.


	Parameters

	value – If true, the object is marked as existing only for the editor.










	
void SimObject::setFieldType(string fieldName, string type)


	Set the console type code for the given field.


	Parameters

	
	fieldName – The name of the dynamic field to change to type for.


	type – The name of the console type.













	
bool SimObject::setFieldValue(string fieldName, string value, int index)


	Set the value of the given field on this object.


	Parameters

	
	fieldName – The name of the field to assign to. If it includes an array index, the index will be parsed out.


	value – The new value to assign to the field.


	index – Optional argument to specify an index for an array field.






	Returns

	True.










	
void SimObject::setFilename(string fileName)


	Sets the object’s file name and path.


	Parameters

	fileName – The name of the file to associate this object with.










	
void SimObject::setHidden(bool value)


	Hide/unhide the object. Reimplemented in ShapeBase .


	Parameters

	value – If true, the object will be hidden; if false, the object will be unhidden.










	
void SimObject::setInternalName(string newInternalName)


	Set the internal name of the object.


	Parameters

	newInternalName – The new internal name for the object.










	
void SimObject::setIsExpanded(bool state)


	Set whether the object has been marked as expanded. (in editor).


	Parameters

	state – True if the object is to be marked expanded; false if not.










	
void SimObject::setIsSelected(bool state)


	Set whether the object has been marked as selected. (in editor).


	Parameters

	state – True if object is to be marked selected; false if not.










	
void SimObject::setLocked(bool value)


	Lock/unlock the object in the editor.


	Parameters

	value – If true, the object will be locked; if false, the object will be unlocked.










	
void SimObject::setName(string newName)


	Set the global name of the object.


	Parameters

	newName – The new global name to assign to the object.










	
void SimObject::setNameChangeAllowed(bool value)


	Set whether this object can be renamed from its first name.


	Parameters

	value – If true, renaming is allowed for this object; if false, trying to change the name of the object will generate a console error.










	
void SimObject::setSuperClassNamespace(string name)


	Assign a superclass namespace to this object.


	Parameters

	name – The name of the ‘superClass’ namespace for this object.












Fields


	
bool SimObject::canSave


	Whether the object can be saved out. If false, the object is purely transient in nature.






	
bool SimObject::canSaveDynamicFields


	True if dynamic fields (added at runtime) should be saved. Defaults to true.






	
string  SimObject::class

	Script class of object.






	
string SimObject::className


	Script class of object.






	
bool SimObject::hidden


	Whether the object is visible.






	
string SimObject::internalName


	Optional name that may be used to lookup this object within a SimSet .






	
bool SimObject::locked


	Whether the object can be edited.






	
string SimObject::name


	Optional global name of this object.






	
SimObject SimObject::parentGroup


	Group hierarchy parent of the object.






	
pid SimObject::persistentId


	The universally unique identifier for the object.






	
string SimObject::superClass


	Script super-class of object.











          

      

      

    

  

    
      
          
            
  
SimSet

A collection of SimObjects.


	Inherit:

	SimObject






Description

It is often necessary to keep track of an arbitrary set of SimObjects. For instance, Torque’s networking code needs to not only keep track of the set of objects which need to be ghosted, but also the set of objects which must always be ghosted. It does this by working with two sets. The first of these is the RootGroup (which is actually a SimGroup) and the second is the GhostAlwaysSet, which contains objects which must always be ghosted to the client.

Some general notes on SimSets:


	Membership is not exclusive. A SimObject may be a member of multiple SimSets.


	A SimSet does not destroy subobjects when it is destroyed.


	A SimSet may hold an arbitrary number of objects.







Methods


	
bool SimSet::acceptsAsChild(SimObject obj)


	Test whether the given object may be added to the set.


	Parameters

	obj – The object to test for potential membership.



	Returns

	True if the object may be added to the set, false otherwise.










	
void SimSet::add(SimObject objects, ...)


	Add the given objects to the set.


	Parameters

	objects – The objects to add to the set.










	
void SimSet::bringToFront(SimObject obj)


	Make the given object the first object in the set.


	Parameters

	obj – The object to bring to the frontmost position. Must be contained in the set.










	
void SimSet::callOnChildren(string method, string args, ...)


	Call a method on all objects contained in the set.


	Parameters

	
	method – The name of the method to call.


	args – The arguments to the method.













	
void SimSet::callOnChildrenNoRecurse(string method, string args, ...)


	Call a method on all objects contained in the set.


	Parameters

	
	method – The name of the method to call.


	args – The arguments to the method.













	
void SimSet::clear()


	Remove all objects from the set. Reimplemented in GuiPopUpMenuCtrlEx .






	
void SimSet::deleteAllObjects()


	Delete all objects in the set.






	
SimObject SimSet::findObjectByInternalName(string internalName, bool searchChildren)


	Find an object in the set by its internal name.


	Parameters

	
	internalName – The internal name of the object to look for.


	searchChildren – If true, SimSets contained in the set will be recursively searched for the object.






	Returns

	The object with the given internal name or 0 if no match was found.










	
int SimSet::getCount()


	Get the number of objects contained in the set.


	Returns

	The number of objects contained in the set.










	
int SimSet::getFullCount()


	Get the number of direct and indirect child objects contained in the set.


	Returns

	The number of objects contained in the set as well as in other sets contained directly or indirectly in the set.










	
SimObject SimSet::getObject(int index)


	Get the object at the given index.


	Parameters

	index – The object index.



	Returns

	The object at the given index or -1 if index is out of range.










	
int SimSet::getObjectIndex(SimObject obj)


	Return the index of the given object in this set.


	Parameters

	obj – The object for which to return the index. Must be contained in the set.



	Returns

	The index of the object or -1 if the object is not contained in the set.










	
SimObject SimSet::getRandom()


	Return a random object from the set.


	Returns

	A randomly selected object from the set or -1 if the set is empty.










	
bool SimSet::isMember(SimObject obj)


	Test whether the given object belongs to the set.


	Parameters

	obj – The object.



	Returns

	True if the object is contained in the set; false otherwise.










	
void SimSet::listObjects()


	Dump a list of all objects contained in the set to the console.






	
void SimSet::onObjectAdded(SimObject object)


	Called when an object is added to the set.


	Parameters

	object – The object that was added.










	
void SimSet::onObjectRemoved(SimObject object)


	Called when an object is removed from the set.


	Parameters

	object – The object that was removed.










	
void SimSet::pushToBack(SimObject obj)


	Make the given object the last object in the set.


	Parameters

	obj – The object to bring to the last position. Must be contained in the set.










	
void SimSet::remove(SimObject objects, ...)


	Remove the given objects from the set.


	Parameters

	objects – The objects to remove from the set.










	
void SimSet::reorderChild(SimObject child1, SimObject child2)


	Make sure child1 is ordered right before child2 in the set.


	Parameters

	
	child1 – The first child. The object must already be contained in the set.


	child2 – The second child. The object must already be contained in the set.













	
void SimSet::sort(string callbackFunction)


	Sort the objects in the set using the given comparison function.


	Parameters

	callbackFunction – Name of a function that takes two object arguments A and B and returns -1 if A is less, 1 if B is less, and 0 if both are equal.















          

      

      

    

  

    
      
          
            
  
SimXMLDocument

File I/O object used for creating, reading, and writing XML documents.


	Inherit:

	SimObject






Description

A SimXMLDocument is a container of various XML nodes. The Document level may contain a header (sometimes called a declaration), comments and child Elements. Elements may contain attributes, data (or text) and child Elements.

You build new Elements using addNewElement(). This makes the new Element the current one you’re working with. You then use setAttribute() to add attributes to the Element. You use addData() or addText() to write to the text area of an Element.

Example:

// Thanks to Rex Hiebert for this example
// Given the following XML
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <DataTables>
//   <table tableName="2DShapes">
//      <rec id="1">Triangle</rec>
//      <rec id="2">Square</rec><rec id="3">Circle</rec>
//    </table>
//   <table tableName="3DShapes">
//      <rec id="1">Pyramid</rec>
//      <rec id="2">Cube</rec>
//      <rec id="3">Sphere</rec>
//   </table>
// </DataTables>

// Using SimXMLDocument by itself
function readXmlExample(%filename)
{
   %xml = newSimXMLDocument() {};
   %xml.loadFile(%filename);

   %xml.pushChildElement("DataTables");
   %xml.pushFirstChildElement("table");
   while(true)
   {
     echo("TABLE:" SPC %xml.attribute("tableName"));
     %xml.pushFirstChildElement("rec");
     while (true)
     {
       %id = %xml.attribute("id");
       %desc = %xml.getData();
       echo("  Shape" SPC %id SPC %desc);
       if (!%xml.nextSiblingElement("rec")) break;
     }
     %xml.popElement();
     if (!%xml.nextSiblingElement("table")) break;
   }
}

// Thanks to Scott Peal for this example
// Using FileObject in conjunction with SimXMLDocument
// This example uses an XML file with a format of:
// <Models>
//    <Model category="" name="" path="" />
// </Models>
function getModelsInCatagory()
{
   %file = "./Catalog.xml";
   %fo = newFileObject();
   %text = "";

   if(%fo.openForRead(%file))
   {
     while(!%fo.isEOF())
     {
       %text = %text @ %fo.readLine();
       if (!%fo.isEOF()) %text = %text @ "\n";
     }
   }
   else
   {
     echo("Unable to locate the file: " @ %file);
   }

   %fo.delete();

   %xml = newSimXMLDocument() {};
   %xml.parse(%text);
   // "Get" inside of the root element, "Models".
   %xml.pushChildElement(0);

   // "Get" into the first child element
   if (%xml.pushFirstChildElement("Model"))
   {
     while (true)
     {
       // Here, i read the elements attributes.
       // You might want to save these values in an array or call the %xml.getElementValue()
       // if you have a different XML structure.

       %catagory = %xml.attribute("catagory");
       %name = %xml.attribute("name");
       %path = %xml.attribute("path");

       // now, read the next "Model"
       if (!%xml.nextSiblingElement("Model")) break;
     }
   }
}








Methods


	
void SimXMLDocument::addComment(string comment)


	Add the given comment as a child of the document.


	Parameters

	comment – String containing the comment.





Example:

// Create a new XML document with a header, a comment and single element.
%x = newSimXMLDocument();
%x.addHeader();
%x.addComment("This is a test comment");
%x.addNewElement("NewElement");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <!--This is a test comment-->
// <NewElement />










	
void SimXMLDocument::addData(string text)


	Add the given text as a child of current Element. Use getData() to retrieve any text from the current Element. addData() and addText() may be used interchangeably. As there is no difference between data and text, you may also use removeText() to clear any data from the current Element.


	Parameters

	text – String containing the text.





Example:

// Create a new XML document with a header and single element// with some added data.
%x = newSimXMLDocument();
%x.addHeader();
%x.addNewElement("NewElement");
%x.addData("Some text");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>










	
void SimXMLDocument::addHeader()


	Add a XML header to a document. Sometimes called a declaration, you typically add a standard header to the document before adding any elements. SimXMLDocument always produces the following header: lt ?xml version=”1.0” encoding=”utf-8” standalone=”yes” ? gt

Example:

// Create a new XML document with just a header and single element.
%x = newSimXMLDocument();
%x.addHeader();
%x.addNewElement("NewElement");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement />










	
void SimXMLDocument::addNewElement(string name)


	Create a new element with the given name as child of current Element’s parent and push it onto the Element stack making it the current one.


	Parameters

	name – XML tag for the new Element.










	
void SimXMLDocument::addText(string text)


	Add the given text as a child of current Element. Use getText() to retrieve any text from the current Element and removeText() to clear any text. addText() and addData() may be used interchangeably.


	Parameters

	text – String containing the text.





Example:

// Create a new XML document with a header and single element// with some added text.
%x = newSimXMLDocument();
%x.addHeader();
%x.addNewElement("NewElement");
%x.addText("Some text");
%x.saveFile("test.xml");

// Produces the following file:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>










	
string SimXMLDocument::attribute(string attributeName)


	Get a string attribute from the current Element on the stack.


	Parameters

	attributeName – Name of attribute to retrieve.



	Returns

	The attribute string if found. Otherwise returns an empty string.










	
bool SimXMLDocument::attributeExists(string attributeName)


	Tests if the requested attribute exists.


	Parameters

	attributeName – Name of attribute being queried for.



	Returns

	True if the attribute exists.










	
float SimXMLDocument::attributeF32(string attributeName)


	Get float attribute from the current Element on the stack.


	Parameters

	attributeName – Name of attribute to retrieve.



	Returns

	The value of the given attribute in the form of a float.










	
int SimXMLDocument::attributeS32(string attributeName)


	Get int attribute from the current Element on the stack.


	Parameters

	attributeName – Name of attribute to retrieve.



	Returns

	The value of the given attribute in the form of an integer.










	
void SimXMLDocument::clear()


	Set this document to its default state. Clears all Elements from the documents. Equivalent to using reset()






	
void SimXMLDocument::clearError()


	Clear the last error description.






	
string SimXMLDocument::elementValue()


	Get the Element’s value if it exists. Usually returns the text from the Element.


	Returns

	The value from the Element, or an empty string if none is found.










	
string SimXMLDocument::firstAttribute()


	Obtain the name of the current Element’s first attribute.


	Returns

	String containing the first attribute’s name, or an empty string if none is found.










	
string SimXMLDocument::getData()


	Gets the text from the current Element. Use addData() to add text to the current Element. getData() and getText() may be used interchangeably. As there is no difference between data and text, you may also use removeText() to clear any data from the current Element.


	Returns

	String containing the text in the current Element.





Example:

// Using the following test.xml file as an example:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some data</NewElement>
// Load in the file
%x = newSimXMLDocument();
%x.loadFile("test.xml");

// Make the first Element the current one
%x.pushFirstChildElement("NewElement");

// Store the current Elements data (Some data in this example)
// into result
%result = %x.getData();
echo( %result );










	
string SimXMLDocument::getErrorDesc()


	Get last error description.


	Returns

	A string of the last error message.










	
string SimXMLDocument::getText()


	Gets the text from the current Element. Use addText() to add text to the current Element and removeText() to clear any text. getText() and getData() may be used interchangeably.


	Returns

	String containing the text in the current Element.





Example:

// Using the following test.xml file as an example:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>
// Load in the file
%x = newSimXMLDocument();
%x.loadFile("test.xml");

// Make the first Element the current one
%x.pushFirstChildElement("NewElement");

// Store the current Elements text (Some text in this example)
// into result
%result = %x.getText();
echo( %result );










	
string SimXMLDocument::lastAttribute()


	Obtain the name of the current Element’s last attribute.


	Returns

	String containing the last attribute’s name, or an empty string if none is found.










	
bool SimXMLDocument::loadFile(string fileName)


	Load in given filename and prepare it for use.


	Parameters

	fileName – Name and path of XML document



	Returns

	True if the file was loaded successfully.










	
string SimXMLDocument::nextAttribute()


	Get the name of the next attribute for the current Element after a call to firstAttribute() .


	Returns

	String containing the next attribute’s name, or an empty string if none is found.










	
bool SimXMLDocument::nextSiblingElement(string name)


	Put the next sibling Element with the given name on the stack, making it the current one.


	Parameters

	name – String containing name of the next sibling.



	Returns

	True if the Element was found and made the current one.










	
void SimXMLDocument::parse(string xmlString)


	Create a document from a XML string.


	Parameters

	xmlString – Valid XML to parse and store as a document.










	
void SimXMLDocument::popElement()


	Pop the last Element off the stack.






	
string SimXMLDocument::prevAttribute()


	Get the name of the previous attribute for the current Element after a call to lastAttribute() .


	Returns

	String containing the previous attribute’s name, or an empty string if none is found.










	
bool SimXMLDocument::pushChildElement(int index)


	Push the child Element at the given index onto the stack, making it the current one.


	Parameters

	index – Numerical index of Element being pushed.



	Returns

	True if the Element was found and made the current one.










	
bool SimXMLDocument::pushFirstChildElement(string name)


	Push the first child Element with the given name onto the stack, making it the current Element.


	Parameters

	name – String containing name of the child Element.



	Returns

	True if the Element was found and made the current one.





Example:

// Using the following test.xml file as an example:
// <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
// <NewElement>Some text</NewElement>
// Load in the file
%x = newSimXMLDocument();
%x.loadFile("test.xml");

// Make the first Element the current one
%x.pushFirstChildElement("NewElement");

// Store the current Elements text (Some text in this example)
// into result
%result = %x.getText();
echo( %result );










	
void SimXMLDocument::pushNewElement(string name)


	Create a new element with the given name as child of current Element and push it onto the Element stack making it the current one.


	Parameters

	name – XML tag for the new Element.










	
string SimXMLDocument::readComment(int index)


	Gives the comment at the specified index, if any. Unlike addComment() that only works at the document level, readComment() may read comments from the document or any child Element. The current Element (or document if no Elements have been pushed to the stack) is the parent for any comments, and the provided index is the number of comments in to read back.


	Parameters

	index – Comment index number to query from the current Element stack



	Returns

	String containing the comment, or an empty string if no comment is found.










	
void SimXMLDocument::removeText()


	Remove any text on the current Element. Use getText() to retrieve any text from the current Element and addText() to add text to the current Element. As getData() and addData() are equivalent to getText() and addText() , removeText() will also remove any data from the current Element.






	
void SimXMLDocument::reset()


	Set this document to its default state. Clears all Elements from the documents. Equivalent to using clear()






	
bool SimXMLDocument::saveFile(string fileName)


	Save document to the given file name.


	Parameters

	fileName – Path and name of XML file to save to.



	Returns

	True if the file was successfully saved.










	
void SimXMLDocument::setAttribute(string attributeName, string value)


	Set the attribute of the current Element on the stack to the given value.


	Parameters

	
	attributeName – Name of attribute being changed


	value – New value to assign to the attribute













	
void SimXMLDocument::setObjectAttributes(string objectID)


	Add the given SimObject’s fields as attributes of the current Element on the stack.


	Parameters

	objectID – ID of SimObject being copied.















          

      

      

    

  

    
      
          
            
  
SimpleMessageEvent

A very simple example of a network event.


Description

This object exists purely for instructional purposes. It is primarily geared toward developers that wish to understand the inner-working of Torque 3D’s networking system. This is not intended for actual game development.




Methods


	
static void SimpleMessageEvent::msg(NetConnection con, string message)


	Send a SimpleMessageEvent message to the specified connection. The far end that receives the message will print the message out to the console.


	Parameters

	
	con – The unique ID of the connection to transmit to


	message – The string containing the message to transmit








Example:

// Send a message to the other end of the given
NetConnectionSimpleMessageEvent::msg( %conn, "A message from me!");

// The far end will see the following in the console
// (Note: The number may be something other than 1796 as it is the SimObjectID
// of the received event)
//
// RMSG 1796  A message from me!















          

      

      

    

  

    
      
          
            
  
SimpleNetObject

A very simple example of a class derived from NetObject.


	Inherit:

	NetObject






Description

This object exists purely for instructional purposes. It is primarily geared toward developers that wish to understand the inner-working of Torque 3D’s networking system. This is not intended for actual game development.

Example:

// On the server, create a new SimpleNetObject.  This is a ghost always
// object so it will be immediately ghosted to all connected clients.
$s = newSimpleNetObject();

// All connected clients will see the following in their console:
//
// Got message: Hello World!








Methods


	
void SimpleNetObject::setMessage(string msg)


	Sets the internal message variable. SimpleNetObject is set up to automatically transmit this new message to all connected clients. It will appear in the clients’ console.


	Parameters

	msg – The new message to send





Example:

// On the server, create a new SimpleNetObject.  This is a ghost always
// object so it will be immediately ghosted to all connected clients.
$s = newSimpleNetObject();

// All connected clients will see the following in their console:
//
// Got message: Hello World!
// Now again on the server, change the message.  This will cause it to
// be sent to all connected clients.
$s.setMessage("A new message from me!");

// All connected clients will now see in their console:
//
// Go message: A new message from me!















          

      

      

    

  

    
      
          
            
  
SkyBox

Represents the sky with an artist-created cubemap.


	Inherit:

	SceneObject






Description

Represents the sky with an artist-created cubemap.

SkyBox is not a directional light and should be used in conjunction with a Sun object.




Fields


	
bool SkyBox::drawBottom


	If false the bottom of the skybox is not rendered.






	
float SkyBox::fogBandHeight


	The height (0-1) of the fog band from the horizon to the top of the SkyBox .






	
string SkyBox::Material


	The name of a cubemap material for the sky box.






	
void SkyBox::postApply


	









          

      

      

    

  

    
      
          
            
  
SpawnSphere

This class is used for creating any type of game object, assigning it a class, datablock, and other properties when it is spawned.


	Inherit:

	MissionMarker






Description

Torque 3D uses a simple spawn system, which can be easily modified to spawn any kind of object (of any class). Each new level already contains at least one SpawnSphere, which is represented by a green octahedron in stock Torque 3D. The spawnClass field determines the object type, such as Player, AIPlayer, etc. The spawnDataBlock field applies the pre-defined datablock to each spawned object instance. The really powerful feature of this class is provided by the spawnScript field which allows you to define a simple script (multiple lines) that will be executed once the object has been spawned.

Example:

// Define an SpawnSphere that essentially performs the following each time an object is spawned
//$SpawnObject = new Player()
//{
//   dataBlock = "DefaultPlayerData";
//   name = "Bob";
//   lifeTotal = 3;
//};
//echo("Spawned a Player: " @ $SpawnObject);
newSpawnSphere(DefaultSpawnSphere)
{
   spawnClass = "Player";
   spawnDatablock = "DefaultPlayerData";
   spawnScript = "echo(\"Spawned a Player: \" @ $SpawnObject);"; // embedded quotes must be escaped with \ spawnProperties = "name = \"Bob\";lifeTotal = 3;"; // embedded quotes must be escaped with \ autoSpawn = "1";
   dataBlock = "SpawnSphereMarker";
   position = "-0.77266 -19.882 17.8153";
   rotation = "1 0 0 0";
   scale = "1 1 1";
   canSave = "1";
   canSaveDynamicFields = "1";
};

// Because autoSpawn is set to true in the above example, the following lines
// of code will execute AFTER the Player object has been spawned.
echo("Object Spawned");
echo("Hello World");








Methods


	
void SpawnSphere::onAdd(int objectId)


	Called when the SpawnSphere is being created.


	Parameters

	objectId – The unique SimObjectId generated when SpawnSphere is created (%this in script)










	
bool SpawnSphere::spawnObject(string additionalProps)


	Dynamically create a new game object with a specified class, datablock, and optional properties. This is called on the actual SpawnSphere , not to be confused with the Sim::spawnObject() global function


	Parameters

	additionalProps – Optional set of semiconlon delimited parameters applied to the spawn object during creation.





Example:

// Use the SpawnSphere::spawnObject function to create a game object// No additional properties assigned
%player = DefaultSpawnSphere.spawnObject();












Fields


	
bool SpawnSphere::autoSpawn


	Flag to spawn object as soon as SpawnSphere is created, true to enable or false to disable.






	
float SpawnSphere::indoorWeight


	Deprecated.






	
float SpawnSphere::outdoorWeight


	Deprecated.






	
float SpawnSphere::radius


	Deprecated.






	
string SpawnSphere::spawnClass


	Object class to create (eg. Player , AIPlayer , Debris etc).






	
string SpawnSphere::spawnDatablock


	Predefined datablock assigned to the object when created.






	
string SpawnSphere::spawnProperties


	String containing semicolon (;) delimited properties to set when the object is created.






	
string SpawnSphere::spawnScript


	Command to execute immediately after spawning an object. New object id is stored in $SpawnObject. Max 255 characters.






	
bool SpawnSphere::spawnTransform


	Flag to set the spawned object’s transform to the SpawnSphere’s transform.






	
float SpawnSphere::sphereWeight


	Deprecated.











          

      

      

    

  

    
      
          
            
  
Splash

effect.


	Inherit:

	GameBase






Description

Manages the ring used for a Splash effect.







          

      

      

    

  

    
      
          
            
  
SplashData

is created from.


	Inherit:

	GameBaseData






Description

Acts as the physical point in space in white a Splash is created from.




Fields


	
float SplashData::acceleration


	Constant acceleration value to place upon the splash effect.






	
ColorF SplashData::colors[4]


	Color values to set the splash effect, rgba. Up to 4 allowed. Will transition through colors based on values set in the times value. Example: colors[0] = “0.6 1.0 1.0 0.5”.






	
int SplashData::delayMS


	Time to delay, in milliseconds, before actually starting this effect.






	
int SplashData::delayVariance


	Time variance for delayMS.






	
float SplashData::ejectionAngle


	Rotational angle to create a splash ring.






	
float SplashData::ejectionFreq


	Frequency in which to emit splash rings.






	
ParticleEmitterData SplashData::emitter[3]


	List of particle emitters to create at the point of this Splash effect.






	
ExplosionData SplashData::Explosion


	ExplosionData object to create at the creation position of this splash effect.






	
float SplashData::height


	Height for the splash to reach.






	
int SplashData::lifetimeMS


	Lifetime for this effect, in milliseconds.






	
int SplashData::lifetimeVariance


	Time variance for lifetimeMS.






	
int SplashData::numSegments


	Number of ejection points in the splash ring.






	
float SplashData::ringLifetime


	Lifetime, in milliseconds, for a splash ring.






	
Point3F SplashData::scale


	The scale of this splashing effect, defined as the F32 points X, Y, Z.






	
SFXProfile SplashData::soundProfile


	SFXProfile effect to play.






	
float SplashData::startRadius


	Starting radius size of a splash ring.






	
float SplashData::texFactor


	Factor in which to apply the texture to the splash ring, 0.0f - 1.0f.






	
filename SplashData::texture[2]


	Imagemap file to use as the texture for the splash effect.






	
float SplashData::texWrap


	Amount to wrap the texture around the splash ring, 0.0f - 1.0f.






	
float SplashData::times[4]


	Times to transition through the splash effect. Up to 4 allowed. Values are 0.0 - 1.0, and corrispond to the life of the particle where 0 is first created and 1 is end of lifespace.






	
float SplashData::velocity


	Velocity for the splash effect to travel.






	
float SplashData::width


	Width for the X and Y coordinates to create this effect within.











          

      

      

    

  

    
      
          
            
  
SpotLight

Lighting object which emits conical light in a direction.


	Inherit:

	LightBase






Description

SpotLight is one of the two types of lighting objects that can be added to a Torque 3D level, the other being PointLight. Unlike directional or point lights, the SpotLights emits lighting in a specific direction within a cone. The distance of the cone is controlled by the SpotLight::range variable.

Example:

// Declaration of a point light in script, or created by World EditornewSpotLight(SampleSpotLight)
{
   range = "10";
   innerAngle = "40";
   outerAngle = "45";
   isEnabled = "1";
   color = "1 1 1 1";
   brightness = "1";
   castShadows = "0";
   priority = "1";
   animate = "1";
   animationPeriod = "1";
   animationPhase = "1";
   flareType = "LightFlareExample0";
   flareScale = "1";
   attenuationRatio = "0 1 1";
   shadowType = "Spot";
   texSize = "512";
   overDarkFactor = "2000 1000 500 100";
   shadowDistance = "400";
   shadowSoftness = "0.15";
   numSplits = "1";
   logWeight = "0.91";
   fadeStartDistance = "0";
   lastSplitTerrainOnly = "0";
   representedInLightmap = "0";
   shadowDarkenColor = "0 0 0 -1";
   includeLightmappedGeometryInShadow = "0";
   position = "-29.4362 -5.86289 5.58602";
   rotation = "1 0 0 0";
};








Fields


	
float SpotLight::innerAngle


	




	
float SpotLight::outerAngle


	




	
float SpotLight::range


	









          

      

      

    

  

    
      
          
            
  
StaticShape

The most basic 3D shape with a datablock available in Torque 3D.


	Inherit:

	ShapeBase






Description

The most basic 3D shape with a datablock available in Torque 3D.

When it comes to placing 3D objects in the scene, you technically have two options:


	TSStatic objects


	ShapeBase derived objects




Since ShapeBase and ShapeBaseData are not meant to be instantiated in script, you will use one of its child classes instead. Several game related objects are derived from ShapeBase: Player, Vehicle, Item, and so on.

When you need a 3D object with datablock capabilities, you will use an object derived from ShapeBase. When you need an object with extremely low overhead, and with no other purpose than to be a 3D object in the scene, you will use TSStatic.

The most basic child of ShapeBase is StaticShape. It does not introduce any of the additional functionality you see in Player, Item, Vehicle or the other game play heavy classes. At its core, it is comparable to a TSStatic, but with a datbalock. Having a datablock provides a location for common variables as well as having access to various ShapeBaseData, GameBaseData and SimDataBlock callbacks.

Example:

// Create a StaticShape using a datablock
datablock StaticShapeData(BasicShapeData)
{
   shapeFile = "art/shapes/items/kit/healthkit.dts";
   testVar = "Simple string, not a stock variable";
};

newStaticShape()
{
   dataBlock = "BasicShapeData";
   position = "0.0 0.0 0.0";
   rotation = "1 0 0 0";
   scale = "1 1 1";
};











          

      

      

    

  

    
      
          
            
  
StaticShapeData

derrived shape datablock available in Torque 3D.


	Inherit:

	ShapeBaseData






Description

The most basic ShapeBaseData derrived shape datablock available in Torque 3D.

When it comes to placing 3D objects in the scene, you effectively have two options:


	TSStatic objects


	ShapeBase derived objects




Since ShapeBase and ShapeBaseData are not meant to be instantiated in script, you will use one of its child classes instead. Several game related objects are derived from ShapeBase: Player, Vehicle, Item, and so on.

When you need a 3D object with datablock capabilities, you will use an object derived from ShapeBase. When you need an object with extremely low overhead, and with no other purpose than to be a 3D object in the scene, you will use TSStatic.

The most basic child of ShapeBase is StaticShape. It does not introduce any of the additional functionality you see in Player, Item, Vehicle or the other game play heavy classes. At its core, it is comparable to a TSStatic, but with a datbalock. Having a datablock provides a location for common variables as well as having access to various ShapeBaseData, GameBaseData and SimDataBlock callbacks.

Example:

// Create a StaticShape using a datablock
datablock StaticShapeData(BasicShapeData)
{
   shapeFile = "art/shapes/items/kit/healthkit.dts";
   testVar = "Simple string, not a stock variable";
};

newStaticShape()
{
   dataBlock = "BasicShapeData";
   position = "0.0 0.0 0.0";
   rotation = "1 0 0 0";
   scale = "1 1 1";
};








Fields


	
int StaticShapeData::dynamicType


	An integer value which, if speficied, is added to the value retured by getType(). This allows you to extend the type mask for a StaticShape that uses this datablock. Type masks are used for container queries, etc.






	
bool StaticShapeData::noIndividualDamage


	Deprecated.











          

      

      

    

  

    
      
          
            
  
StreamObject

Base class for working with streams.


	Inherit:

	SimObject






Description

You do not instantiate a StreamObject directly. Instead, it is used as part of a FileStreamObject and ZipObject to support working with uncompressed and compressed files respectively.

Example:

// You cannot actually declare a StreamObject
// Instead, use the derived class "FileStreamObject"
%fsObject = FileStreamObject();








Methods


	
bool StreamObject::copyFrom(SimObject other)


	Copy from another StreamObject into this StreamObject .


	Parameters

	other – The StreamObject to copy from.



	Returns

	True if the copy was successful.










	
int StreamObject::getPosition()


	Gets the position in the stream. The easiest way to visualize this is to think of a cursor in a text file. If you have moved the cursor by five characters, the current position is 5. If you move ahead 10 more characters, the position is now 15. For StreamObject , when you read in the line the position is increased by the number of characters parsed, the null terminator, and a newline.


	Returns

	Number of bytes which stream has parsed so far, null terminators and newlines are included





Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
// This file contains two lines of text repeated:
// Hello World
// Hello World
%fsObject.open("./test.txt", "read");

// Read in the first line
%line = %fsObject.readLine();

// Get the position of the stream
%position = %fsObject.getPosition();

// Print the current position
// Should be 13, 10 for the words, 1 for the space,
// 1 for the null terminator, and 1 for the newline
echo(%position);

// Always remember to close a file stream when finished
%fsObject.close();










	
string StreamObject::getStatus()


	Gets a printable string form of the stream’s status. OK - Stream is active and no file errors IOError - Something went wrong during read or writing the stream EOS - End of Stream reached (mostly for reads) IllegalCall - An unsupported operation used. Always w/ accompanied by AssertWarn Closed - Tried to operate on a closed stream (or detached filter) UnknownError - Catch all for an error of some kind Invalid - Entire stream is invalid


	Returns

	String containing status constant, one of the following:





Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Get the status and print it
%status = %fsObject.getStatus();
echo(%status);

// Always remember to close a file stream when finished
%fsObject.close();










	
int StreamObject::getStreamSize()


	Gets the size of the stream. The size is dependent on the type of stream being used. If it is a file stream, returned value will be the size of the file. If it is a memory stream, it will be the size of the allocated buffer.


	Returns

	Size of stream, in bytes





Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
// This file contains the following two lines:
// HelloWorld
// HelloWorld
%fsObject.open("./test.txt", "read");

// Found out how large the file stream is
// Then print it to the console
// Should be 22
%streamSize = %fsObject.getStreamSize();
echo(%streamSize);

// Always remember to close a file stream when finished
%fsObject.close();










	
bool StreamObject::isEOF()


	Tests if the stream has reached the end of the file. This is an alternative name for isEOS. Both functions are interchangeable. This simply exists for those familiar with some C++ file I/O standards.


	Returns

	True if the parser has reached the end of the file, false otherwise





Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Keep reading until we reach the end of the file
while(!%fsObject.isEOF())
{
   %line = %fsObject.readLine();
   echo(%line);
}
// Made it to the end
echo("Finished reading file");

// Always remember to close a file stream when finished
%fsObject.close();










	
bool StreamObject::isEOS()


	Tests if the stream has reached the end of the file. This is an alternative name for isEOF. Both functions are interchangeable. This simply exists for those familiar with some C++ file I/O standards.


	Returns

	True if the parser has reached the end of the file, false otherwise





Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
%fsObject.open("./test.txt", "read");

// Keep reading until we reach the end of the file
while(!%fsObject.isEOS())
{
   %line = %fsObject.readLine();
   echo(%line);
}
// Made it to the end
echo("Finished reading file");

// Always remember to close a file stream when finished
%fsObject.close();










	
string StreamObject::readLine()


	Read a line from the stream. Emphasis on line, as in you cannot parse individual characters or chunks of data. There is no limitation as to what kind of data you can read.


	Returns

	String containing the line of data that was just read





Example:

// Create a file stream object for reading
// This file contains the following two lines:
// HelloWorld
// HelloWorld
%fsObject = newFileStreamObject();

%fsObject.open("./test.txt", "read");

// Read in the first line
%line = %fsObject.readLine();

// Print the line we just read
echo(%line);

// Always remember to close a file stream when finished
%fsObject.close();










	
String StreamObject::readLongString(int maxLength)


	Read in a string up to the given maximum number of characters.


	Parameters

	maxLength – The maximum number of characters to read in.



	Returns

	The string that was read from the stream.










	
String StreamObject::readString()


	Read a string up to a maximum of 256 characters.


	Returns

	The string that was read from the stream.










	
String StreamObject::readSTString(bool caseSensitive)


	Read in a string and place it on the string table.


	Parameters

	caseSensitive – If false then case will not be taken into account when attempting to match the read in string with what is already in the string table.



	Returns

	The string that was read from the stream.










	
bool StreamObject::setPosition(int newPosition)


	Gets the position in the stream. The easiest way to visualize this is to think of a cursor in a text file. If you have moved the cursor by five characters, the current position is 5. If you move ahead 10 more characters, the position is now 15. For StreamObject , when you read in the line the position is increased by the number of characters parsed, the null terminator, and a newline. Using setPosition allows you to skip to specific points of the file.


	Returns

	Number of bytes which stream has parsed so far, null terminators and newlines are included





Example:

// Create a file stream object for reading
%fsObject = newFileStreamObject();

// Open a file for reading
// This file contains the following two lines:
// 11111111111
// Hello World
%fsObject.open("./test.txt", "read");

// Skip ahead by 12, which will bypass the first line entirely
%fsObject.setPosition(12);

// Read in the next line
%line = %fsObject.readLine();

// Print the line just read in, should be "Hello World"
echo(%line);

// Always remember to close a file stream when finished
%fsObject.close();










	
void StreamObject::writeLine(string line)


	Write a line to the stream, if it was opened for writing. There is no limit as to what kind of data you can write. Any format and data is allowable, not just text. Be careful of what you write, as whitespace, current values, and literals will be preserved.


	Parameters

	line – The data we are writing out to file.





Example:

// Create a file stream
%fsObject = newFileStreamObject();

// Open the file for writing
// If it does not exist, it is created.
// If it does exist, the file is cleared
%fsObject.open("./test.txt", "write");

// Write a line to the file
%fsObject.writeLine("Hello World");

// Write another line to the file
%fsObject.writeLine("Documentation Rocks!");

// Always remember to close a file stream when finished
%fsObject.close();










	
void StreamObject::writeLongString(int maxLength, string string)


	Write out a string up to the maximum number of characters.


	Parameters

	
	maxLength – The maximum number of characters that will be written.


	string – The string to write out to the stream.













	
void StreamObject::writeString(string string, int maxLength)


	Write out a string with a default maximum length of 256 characters.


	Parameters

	
	string – The string to write out to the stream


	maxLength – The maximum string length to write out with a default of 256 characters. This value should not be larger than 256 as it is written to the stream as a single byte.


















          

      

      

    

  

    
      
          
            
  
Sun

A global light affecting your entire scene and optionally renders a corona effect.


	Inherit:

	SceneObject






Description

A global light affecting your entire scene and optionally renders a corona effect.

Sun is both the directional and ambient light for your entire scene.




Fields


	
ColorF Sun::ambient


	Color shading applied to surfaces not in direct contact with light source, such as in the shadows or interiors.






	
void Sun::animate


	animate( F32 duration, F32 startAzimuth, F32 endAzimuth, F32 startElevation, F32 endElevation )






	
void Sun::apply


	




	
Point3F Sun::attenuationRatio


	The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.






	
float Sun::azimuth


	The horizontal angle of the sun measured clockwise from the positive Y world axis.






	
float Sun::brightness


	Adjust the Sun’s global contrast/intensity.






	
bool Sun::castShadows


	Enables/disables shadows cast by objects due to Sun light.






	
ColorF Sun::color


	Color shading applied to surfaces in direct contact with light source.






	
filename Sun::cookie


	A custom pattern texture which is projected from the light.






	
bool Sun::coronaEnabled


	Enable or disable rendering of the corona sprite.






	
string Sun::coronaMaterial


	Texture for the corona sprite.






	
float Sun::coronaScale


	Controls size the corona sprite renders, specified as a fractional amount of the screen height.






	
ColorF Sun::coronaTint


	Modulates the corona sprite color ( if coronaUseLightColor is false ).






	
bool Sun::coronaUseLightColor


	Modulate the corona sprite color by the color of the light ( overrides coronaTint ).






	
float Sun::elevation


	The elevation angle of the sun above or below the horizon.






	
float Sun::fadeStartDistance


	Start fading shadows out at this distance. 0 = auto calculate this distance.






	
float Sun::flareScale


	Changes the size and intensity of the flare.






	
LightFlareData Sun::flareType


	Datablock for the flare produced by the Sun .






	
bool Sun::includeLightmappedGeometryInShadow


	This light should render lightmapped geometry during its shadow-map update (ignored if ‘representedInLightmap’ is false).






	
bool Sun::lastSplitTerrainOnly


	This toggles only terrain being rendered to the last split of a PSSM shadow map.






	
float Sun::logWeight


	The logrithmic PSSM split distance factor.






	
int Sun::numSplits


	The logrithmic PSSM split distance factor.






	
Point4F Sun::overDarkFactor


	The ESM shadow darkening factor.






	
bool Sun::representedInLightmap


	This light is represented in lightmaps (static light, default: false).






	
ColorF Sun::shadowDarkenColor


	The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if ‘representedInLightmap’ is false).






	
float Sun::shadowDistance


	The distance from the camera to extend the PSSM shadow.






	
float Sun::shadowSoftness


	




	
ShadowType Sun::shadowType


	The type of shadow to use on this light.






	
int Sun::texSize


	The texture size of the shadow map.











          

      

      

    

  

    
      
          
            
  
TCPObject

Allows communications between the game and a server using TCP/IP protocols.


	Inherit:

	SimObject






Description

To use TCPObject you set up a connection to a server, send data to the server, and handle each line of the server’s response using a callback. Once you are done communicating with the server, you disconnect.

TCPObject is intended to be used with text based protocols which means you’ll need to delineate the server’s response with an end-of-line character. i.e. the newline character n. You may optionally include the carriage return character r prior to the newline and TCPObject will strip it out before sending the line to the callback. If a newline character is not included in the server’s output, the received data will not be processed until you disconnect from the server (which flushes the internal buffer).

TCPObject may also be set up to listen to a specific port, making Torque into a TCP server. When used in this manner, a callback is received when a client connection is made. Following the outside connection, text may be sent and lines are processed in the usual manner.

If you want to work with HTTP you may wish to use HTTPObject instead as it handles all of the HTTP header setup and parsing.

Example:

// In this example well retrieve the new forum threads RSS
// feed from garagegames.com.  As were using TCPObject, the
// raw text response will be received from the server, including
// the HTTP header.

// Define callbacks for our specific TCPObject using our instances
// name (RSSFeed) as the namespace.

// Handle an issue with resolving the servers name
function RSSFeed::onDNSFailed(%this)
{
   // Store this state
   %this.lastState = "DNSFailed";

   // Handle DNS failure
}

function RSSFeed::onConnectFailed(%this)
{
   // Store this state
   %this.lastState = "ConnectFailed";

   // Handle connection failure
}

function RSSFeed::onDNSResolved(%this)
{
   // Store this state
   %this.lastState = "DNSResolved";

}

function RSSFeed::onConnected(%this)
{
   // Store this state
   %this.lastState = "Connected";

}

function RSSFeed::onDisconnect(%this)
{
   // Store this state
   %this.lastState = "Disconnected";

}

// Handle a line from the server
function RSSFeed::onLine(%this, %line)
{
   // Print the line to the consoleecho( %line );
}

// Create the TCPObject
%rss = newTCPObject(RSSFeed);

// Define a dynamic field to store the last connection state
%rss.lastState = "None";

// Connect to the server
%rss.connect("www.garagegames.com:80");

// Send the RSS feed request to the server.  Response will be// handled in onLine() callback above
%rss.send("GET /feeds/rss/threads HTTP/1.1\r\nHost: www.garagegames.com\r\n\r\n");








Methods


	
void TCPObject::connect(string address)


	Connect to the given address.


	Parameters

	address – Server address (including port) to connect to.





Example:

// Set the address.
%address = "www.garagegames.com:80";

// Inform this TCPObject to connect to the specified address.
%thisTCPObj.connect(%address);










	
void TCPObject::disconnect()


	Disconnect from whatever this TCPObject is currently connected to, if anything.

Example:

// Inform this TCPObject to disconnect from anything it is currently connected to.
%thisTCPObj.disconnect();










	
void TCPObject::listen(int port)


	Start listening on the specified port for connections. This method starts a listener which looks for incoming TCP connections to a port. You must overload the onConnectionRequest callback to create a new TCPObject to read, write, or reject the new connection.


	Parameters

	port – Port for this TCPObject to start listening for connections on.





Example:

// Create a listener on port 8080.
newTCPObject( TCPListener );
TCPListener.listen( 8080 );

function TCPListener::onConnectionRequest( %this, %address, %id )
{
   // Create a new object to manage the connection.newTCPObject( TCPClient, %id );
}

function TCPClient::onLine( %this, %line )
{
   // Print the line of text from client.echo( %line );
}










	
void TCPObject::onConnected()


	Called whenever a connection is established with a server.






	
void TCPObject::onConnectFailed()


	Called whenever a connection has failed to be established with a server.






	
void TCPObject::onConnectionRequest(string address, string ID)


	Called whenever a connection request is made. This callback is used when the TCPObject is listening to a port and a client is attempting to connect.


	Parameters

	
	address – Server address connecting from.


	ID – Connection ID













	
void TCPObject::onDisconnect()


	Called whenever the TCPObject disconnects from whatever it is currently connected to.






	
void TCPObject::onDNSFailed()


	Called whenever the DNS has failed to resolve.






	
void TCPObject::onDNSResolved()


	Called whenever the DNS has been resolved.






	
void TCPObject::onLine(string line)


	Called whenever a line of data is sent to this TCPObject . This callback is called when the received data contains a newline n character, or the connection has been disconnected and the TCPObject’s buffer is flushed.


	Parameters

	line – Data sent from the server.










	
void TCPObject::send(string data)


	Transmits the data string to the connected computer. This method is used to send text data to the connected computer regardless if we initiated the connection using connect() , or listening to a port using listen() .


	Parameters

	data – The data string to send.





Example:

// Set the command data
%data = "GET " @ $RSSFeed::serverURL @ " HTTP/1.0\r\n";
%data = %data @ "Host: " @ $RSSFeed::serverName @ "\r\n";
%data = %data @ "User-Agent: " @ $RSSFeed::userAgent @ "\r\n\r\n"
// Send the command to the connected server.
%thisTCPObj.send(%data);















          

      

      

    

  

    
      
          
            
  
TSForestItemData

Concrete implementation of ForestItemData which loads and renders dts format shapeFiles.


	Inherit:

	ForestItemData









          

      

      

    

  

    
      
          
            
  
TSShapeConstructor

An object used to modify a DTS or COLLADA shape model after it has been loaded by Torque.


	Inherit:

	SimObject






Description

An object used to modify a DTS or COLLADA shape model after it has been loaded by Torque.

TSShapeConstructor is a special object used to modify a DTS or COLLADA shape model after it has been loaded by Torque, but before it is used by any other object.

It is often used to share animations from DSQ files between shapes with a common skeleton.

It may also be used to ‘Torquify’ a model that is missing the nodes and/or sequences required to function as a particular Torque object. A model used for a Player character for example should have an eye and a cam node, but these might not be present in a model not specifically created for Torque. TSShapeConstructor allows the missing nodes to be added and positioned so that the shape does not need to be re-worked or re-exported by an artist.

TSShapeConstructor also includes features to aid in loading COLLADA models, such as allowing the <up_axis> and <unit> elements to be overridden, and can also apply a user specified prefix to the names of COLLADA materials as shown below. Prefixing material names is useful to avoid name clashes, particularly for 3D apps like Google SketchUp that export models with generic material names like “material0”. These options are most easily accessed using the COLLADA import gui, which will be displayed automatically the first time a COLLADA model is imported into Torque.

Settings from the import gui are automatically saved to a TSShapeConstructor script in the same folder as the model.

To create your own TSShapeConstructor object, simply create a TorqueScript file in the same folder as your DTS or COLLADA model, with the same filename but .cs extension. For example, if your model file was called myShape.dts, you would create a file called myShape.cs. Some example appear below:

The name of the TSShapeConstructor object (MyShapeDae and MyShape2Dae in the code samples above) is up to you, but you should choose a name that does not conflict with other objects or datablocks. A common convention for TSShapeConstructor objects is the name of the shape file. eg. MyShapeDae for a file called myshape.dae.

When Torque loads a DTS (.dts) or COLLADA (.dae) file, it first looks in the same folder for a TorqueScript file with the same filename (but .cs extension) in order to create the TSShapeConstructor object. Such scripts are executed automatically by Torque 3D, so there is no need to manually call exec(“myShape.cs”) from another script. Also, you should avoid adding other object and datablock declarations to this script because it will be executed every time the model is loaded, which may cause unexpected results if the datablocks already exist.

After Torque has loaded the model from the DTS or COLLADA file, it executes the TSShapeConstructor onLoad method to apply the desired set of changes to the shape. It should be noted that the changes are applied to the loaded model in memory rather than to the DTS or COLLADA file itself. This means the model can be re-exported to DTS or COLLADA without overwriting the TSShapeConstructor changes. TSShapeConstructor should be thought of as a post-export processing step, and is intended to be used alongside existing object and datablock setups.

Note that DSQ sequences may still be specified within the TSShapeConstructor object as normal:

Note that most of the features in TSShapeConstructor are far more easily accessible in the Shape Editor tool. This tool uses TSShapeConstructor ‘under-the-hood’ to edit the nodes, sequences and details of a shape, and the changes are saved to a TSShapeConstructor script object.




Shape Terminology

The following definitions should be understood before reading the TSShapeConstructor examples and function reference:




Example 1: Adding a Collision Mesh To an Existing Shape

Imagine you have a model that you want to add to the scene as a StaticShape, but it is missing a collision mesh. TSShapeConstructor makes it simple to modify an existing DTS shape to add a collision (or line-of-sight collision) detail level.

First, define the StaticShapeData datablock as normal. Create a script called myShape.cs in the art/datablocks folder, and define the datablock:

We need to tell Torque to execute this script so add exec(“./myShape.cs”); to art/datablocks/datablockExec.cs.

Now we define the TSShapeConstructor object by creating a new script called myShape.cs in the art/shapes/myShape folder:

This script will add a box mesh with the same center and dimensions as the original model using the “Col” detail level at size -1. The negative detail size means that the mesh will not be rendered in-game, and the use of the special “Col” name means that this mesh will be detected as a collision mesh by the Torque engine.

When a Torque mission is started, the following steps occur:




Example 2: Adding a Mesh From an Existing DTS File

The image below shows a boulder.dts shape in the Torque Show Tool Pro (TSTPro). The circled items indicate the geometry and material that will be copied into a different shape using TSShapeConstructor.

The following shows how to include the boulder1 mesh in another shape:

The output of the dumpShape command is shown below:

Note that the new detail (“detail128”), object (“test”) and material (“MossyRock02”) have been added to the normal rock1.dts shape.




Example 3: Auto-loading animations

Instead of manually specifying all of the animations to load, it’s easy to write some TorqueScript that will scan a folder for any matching animations and add them to the shape automatically. Imagine that we have the following shape (DTS) and sequence (DSQ) files:

The following script will scan the animations folder and add the sequences to the shape.




Example 4: Splitting COLLADA animations

Many COLLADA exporters do not support the <animation_clip> element, meaning that animated models imported into Torque appear to have only a single sequence containing all of the animations. TSShapeConstructor can be used to split this combined animation into individual sequences. This is most easily done using the Shape Editor tool, but can also be done manually as follows:




Example 5: LOD using separate files

In the past, using LOD required the artist to export all detail levels into a single DTS file. Using TSShapeConstructor, we can combine separate model files together. In fact, we can even use the folder-scanning approach from Example 3 to automatically construct the shape detail levels using all of the model files in the folder!

Note that the detail level models must contain the same object name, and for skinned models, the skin must be applied to the same skeleton for this script to work.

Imagine that we have the following shape (DAE) files:




Example 6: Add lights to the scene

Although most often used to modify a shape before it is used, TSShapeConstructor can also be used as a general purpose interface to a 3D shape. For example, a 3D modeling package could be used to layout positions for lights in the scene. On import, the shape hierarchy might look like this:

The following code demonstrates how to create a TSShapeConstructor object on-demand in order to access the 3D shape data. This example adds lights to the current scene at position of the lightX nodes in the shape:

The original shape can be placed anywhere in the scene, then AddLights is called to create and place a PointLight at each node.




Example 7: Rigid-body Player Character

Using the addNode and addMesh functions, it is possible to create a rigid-body (ie. non-skinned) player model compatible with the default animations, completely from TorqueScript!

The default player skeleton node transforms were obtained by adding the following code to the TSShapeConstructor onLoad function for a shape that already contained the default skeleton:

The contents of the console can then be copied and pasted into a new script. The script below shows the player model creation process: first pick a dummy dts file (rock1.dts in this case), and delete its existing nodes and meshes. Then create the default player skeleton. Finally, some box meshes are added at certain nodes to build up a rigid-body player character.

This produces the following shape:




Methods


	
bool TSShapeConstructor::addCollisionDetail(int size, string type, string target, int depth, float merge, float concavity, int maxVerts, float boxMaxError, float sphereMaxError, float capsuleMaxError)


	Autofit a mesh primitive or set of convex hulls to the shape geometry. Hulls may optionally be converted to boxes, spheres and/or capsules based on their volume.


	Parameters

	
	size – size for this detail level


	type – one of: box, sphere, capsule, 10-dop x, 10-dop y, 10-dop z, 18-dop, 26-dop, convex hulls. See the Shape Editor documentation for more details about these types.


	target – geometry to fit collision mesh(es) to; either “bounds” (for the whole shape), or the name of an object in the shape


	depth – maximum split recursion depth (hulls only)


	merge – volume % threshold used to merge hulls together (hulls only)


	concavity – volume % threshold used to detect concavity (hulls only)


	maxVerts – maximum number of vertices per hull (hulls only)


	boxMaxError – max % volume difference for a hull to be converted to a box (hulls only)


	sphereMaxError – max % volume difference for a hull to be converted to a sphere (hulls only)


	capsuleMaxError – max % volume difference for a hull to be converted to a capsule (hulls only)






	Returns

	true if successful, false otherwise





Example:

%this.addCollisionDetail( -1, "box", "bounds" );
%this.addCollisionDetail( -1, "convex hulls", "bounds", 4, 30, 30, 32, 0, 0, 0 );
%this.addCollisionDetail( -1, "convex hulls", "bounds", 4, 30, 30, 32, 50, 50, 50 );










	
int TSShapeConstructor::addImposter(int size, int equatorSteps, int polarSteps, int dl, int dim, bool includePoles, float polarAngle)


	Add (or edit) an imposter detail level to the shape. If the shape already contains an imposter detail level, this command will simply change the imposter settings


	Parameters

	
	size – size of the imposter detail level


	equatorSteps – defines the number of snapshots to take around the equator. Imagine the object being rotated around the vertical axis, then a snapshot taken at regularly spaced intervals.


	polarSteps – defines the number of snapshots taken between the poles (top and bottom), at each equator step. eg. At each equator snapshot, snapshots are taken at regular intervals between the poles.


	dl – the detail level to use when generating the snapshots. Note that this is an array index rather than a detail size. So if an object has detail sizes of: 200, 150, and 40, then setting dl to 1 will generate the snapshots using detail size 150.


	dim – defines the size of the imposter images in pixels. The larger the number, the more detailed the billboard will be.


	includePoles – flag indicating whether to include the “pole” snapshots. ie. the views from the top and bottom of the object.


	polar_angle – if pole snapshots are active (includePoles is true), this parameter defines the camera angle (in degrees) within which to render the pole snapshot. eg. if polar_angle is set to 25 degrees, then the snapshot taken at the pole (looking directly down or up at the object) will be rendered when the camera is within 25 degrees of the pole.






	Returns

	true if successful, false otherwise





Example:

%this.addImposter( 2, 4, 0, 0, 64, false, 0 );
%this.addImposter( 2, 4, 2, 0, 64, true, 10 );   // this command would edit the existing imposter detail level










	
bool TSShapeConstructor::addMesh(string meshName, string srcShape, string srcMesh)


	Add geometry from another DTS or DAE shape file into this shape. Any materials required by the source mesh are also copied into this shape.


	Parameters

	
	meshName – full name (object name + detail size) of the new mesh. If no detail size is present at the end of the name, a value of 2 is used. An underscore before the number at the end of the name will be interpreted as a negative sign. eg. “MyMesh_4” will be interpreted as “MyMesh-4”.


	srcShape – name of a shape file (DTS or DAE) that contains the mesh


	srcMesh – the full name (object name + detail size) of the mesh to copy from the DTS/DAE file into this shape






	Returns

	true if successful, false otherwise





Example:

%this.addMesh( "ColMesh-1", "./collision.dts", "ColMesh", "Col-1" );
%this.addMesh( "SimpleShape10", "./testShape.dae", "MyMesh2",  );










	
bool TSShapeConstructor::addNode(string name, string parentName, TransformF txfm, bool isWorld)


	Add a new node.


	Parameters

	
	name – name for the new node (must not already exist)


	parentName – name of an existing node to be the parent of the new node. If empty (“”), the new node will be at the root level of the node hierarchy.


	txfm – (optional) transform string of the form: “pos.x pos.y pos.z rot.x rot.y rot.z rot.angle”


	isworld – (optional) flag to set the local-to-parent or the global transform. If false, or not specified, the position and orientation are treated as relative to the node’s parent.






	Returns

	true if successful, false otherwise





Example:

%this.addNode( "Nose", "Bip01 Head", "0 2 2 0 0 1 0" );
%this.addNode( "myRoot", "", "0 0 4 0 0 1 1.57" );
%this.addNode( "Nodes", "Bip01 Head", "0 2 0 0 0 1 0", true );










	
bool TSShapeConstructor::addPrimitive(string meshName, string type, string params, TransformF txfm, string nodeName)


	Add a new mesh primitive to the shape.


	Parameters

	
	meshName – full name (object name + detail size) of the new mesh. If no detail size is present at the end of the name, a value of 2 is used. An underscore before the number at the end of the name will be interpreted as a negative sign. eg. “MyMesh_4” will be interpreted as “MyMesh-4”.


	type – one of: “box”, “sphere”, “capsule”


	params – mesh primitive parameters: for box: “size_x size_y size_z”, for sphere: “radius”, for capsule: “height radius”


	txfm – local transform offset from the node for this mesh


	nodeName – name of the node to attach the new mesh to (will change the object’s node if adding a new mesh to an existing object)






	Returns

	true if successful, false otherwise





Example:

%this.addMesh( "Box4", "box", "2 4 2", "0 2 0 0 0 1 0", "eye" );
%this.addMesh( "Sphere256", "sphere", "2", "0 0 0 0 0 1 0", "root" );
%this.addMesh( "MyCapsule-1", "capsule", "2 5", "0 0 2 0 0 1 0", "base01" );










	
bool TSShapeConstructor::addSequence(string source, string name, int start, int end, bool padRot, bool padTrans)


	Add a new sequence to the shape.


	Parameters

	
	source – the name of an existing sequence, or the name of a DTS or DAE shape or DSQ sequence file. When the shape file contains more than one sequence, the desired sequence can be specified by appending the name to the end of the shape file. eg. “myShape.dts run” would select the “run” sequence from the “myShape.dts” file.


	name – name of the new sequence


	start – (optional) first frame to copy. Defaults to 0, the first frame in the sequence.


	end – (optional) last frame to copy. Defaults to -1, the last frame in the sequence.


	padRot – (optional) copy root-pose rotation keys for non-animated nodes. This is useful if the source sequence data has a different root-pose to the target shape, such as if one character was in the T pose, and the other had arms at the side. Normally only nodes that are actually rotated by the source sequence have keyframes added, but setting this flag will also add keyframes for nodes that are not animated, but have a different root-pose rotation to the target shape root pose.


	padTrans – (optional) copy root-pose translation keys for non-animated nodes. This is useful if the source sequence data has a different root-pose to the target shape, such as if one character was in the T pose, and the other had arms at the side. Normally only nodes that are actually moved by the source sequence have keyframes added, but setting this flag will also add keyframes for nodes that are not animated, but have a different root-pose position to the target shape root pose.






	Returns

	true if successful, false otherwise





Example:

%this.addSequence( "./testShape.dts ambient", "ambient" );
%this.addSequence( "./myPlayer.dae run", "run" );
%this.addSequence( "./player_look.dsq", "look", 0, -1 );     // start to end
%this.addSequence( "walk", "walk_shortA", 0, 4 );            // start to frame 4
%this.addSequence( "walk", "walk_shortB", 4, -1 );           // frame 4 to end










	
bool TSShapeConstructor::addTrigger(string name, int keyframe, int state)


	Add a new trigger to the sequence.


	Parameters

	
	name – name of the sequence to modify


	keyframe – keyframe of the new trigger


	state – of the new trigger






	Returns

	true if successful, false otherwise





Example:

%this.addTrigger( "walk", 3, 1 );
%this.addTrigger( "walk", 5, -1 );










	
void TSShapeConstructor::dumpShape(string filename)


	Dump the shape hierarchy to the console or to a file. Useful for reviewing the result of a series of construction commands.


	Parameters

	filename – Destination filename. If not specified, dump to console.





Example:

%this.dumpShape();               // dump to console
%this.dumpShape( "./dump.txt" ); // dump to file










	
Box3F TSShapeConstructor::getBounds()


	Get the bounding box for the shape.


	Returns

	Bounding box “minX minY minZ maxX maxY maxZ”










	
int TSShapeConstructor::getDetailLevelCount()


	Get the total number of detail levels in the shape.


	Returns

	the number of detail levels in the shape










	
int TSShapeConstructor::getDetailLevelIndex(int size)


	Get the index of the detail level with a given size.


	Parameters

	size – size of the detail level to lookup



	Returns

	index of the detail level with the desired size, or -1 if no such detail exists





Example:

if ( %this.getDetailLevelSize( 32 ) == -1 )
   echo( "Error: This shape does not have a detail level at size 32" );










	
string TSShapeConstructor::getDetailLevelName(int index)


	Get the name of the indexed detail level.


	Parameters

	index – detail level index (valid range is 0 - getDetailLevelCount()-1)



	Returns

	the detail level name





Example:

// print the names of all detail levels in the shape
%count = %this.getDetailLevelCount();
for ( %i = 0; %i < %count; %i++ )
   echo( %i SPC %this.getDetailLevelName( %i ) );










	
int TSShapeConstructor::getDetailLevelSize(int index)


	Get the size of the indexed detail level.


	Parameters

	index – detail level index (valid range is 0 - getDetailLevelCount()-1)



	Returns

	the detail level size





Example:

// print the sizes of all detail levels in the shape
%count = %this.getDetailLevelCount();
for ( %i = 0; %i < %count; %i++ )
   echo( "Detail" @ %i @ " has size " @ %this.getDetailLevelSize( %i ) );










	
int TSShapeConstructor::getImposterDetailLevel()


	Get the index of the imposter (auto-billboard) detail level (if any).


	Returns

	imposter detail level index, or -1 if the shape does not use imposters.










	
string TSShapeConstructor::getImposterSettings(int index)


	Get the settings used to generate imposters for the indexed detail level.


	Parameters

	index – index of the detail level to query (does not need to be an imposter detail level



	Returns

	1 if this detail level generates imposters, 0 otherwise





Example:

// print the imposter detail level settings
%index = %this.getImposterDetailLevel();
if ( %index != -1 )
   echo( "Imposter settings: " @ %this.getImposterSettings( %index ) );










	
int TSShapeConstructor::getMeshCount(string name)


	Get the number of meshes (detail levels) for the specified object.


	Parameters

	name – name of the object to query



	Returns

	the number of meshes for this object.





Example:

%count = %this.getMeshCount( "SimpleShape" );










	
string TSShapeConstructor::getMeshMaterial(string name)


	Get the name of the material attached to a mesh. Note that only the first material used by the mesh is returned.


	Parameters

	name – full name (object name + detail size) of the mesh to query



	Returns

	mapTo field)





Example:

echo( "Mesh material is " @ %this.sgetMeshMaterial( "SimpleShape128" ) );










	
string TSShapeConstructor::getMeshName(string name, int index)


	Get the name of the indexed mesh (detail level) for the specified object.


	Parameters

	
	name – name of the object to query


	index – index of the mesh (valid range is 0 - getMeshCount()-1)






	Returns

	the mesh name.





Example:

// print the names of all meshes in the shape
%objCount = %this.getObjectCount();
for ( %i = 0; %i < %objCount; %i++ )
{
   %objName = %this.getObjectName( %i );
   %meshCount = %this.getMeshCount( %objName );
   for ( %j = 0; %j < %meshCount; %j++ )
      echo( %this.getMeshName( %objName, %j ) );
}










	
int TSShapeConstructor::getMeshSize(string name, int index)


	Get the detail level size of the indexed mesh for the specified object.


	Parameters

	
	name – name of the object to query


	index – index of the mesh (valid range is 0 - getMeshCount()-1)






	Returns

	the mesh detail level size.





Example:

// print sizes for all detail levels of this object
%objName = "trunk";
%count = %this.getMeshCount( %objName );
for ( %i = 0; %i < %count; %i++ )
   echo( %this.getMeshSize( %objName, %i ) );










	
string TSShapeConstructor::getMeshType(string name)


	Get the display type of the mesh.


	Parameters

	name – name of the mesh to query



	Returns

	a normal 3D mesh





Example:

echo( "Mesh type is " @ %this.getMeshType( "SimpleShape128" ) );










	
int TSShapeConstructor::getNodeChildCount(string name)


	Get the number of children of this node.


	Parameters

	name – name of the node to query.



	Returns

	the number of child nodes.





Example:

%count = %this.getNodeChildCount( "Bip01 Pelvis" );










	
string TSShapeConstructor::getNodeChildName(string name, int index)


	Get the name of the indexed child node.


	Parameters

	
	name – name of the parent node to query.


	index – index of the child node (valid range is 0 - getNodeChildName()-1).






	Returns

	the name of the indexed child node.





Example:

function dumpNode( %shape, %name, %indent )
{
   echo( %indent @ %name );
   %count = %shape.getNodeChildCount( %name );
   for ( %i = 0; %i < %count; %i++ )
      dumpNode( %shape, %shape.getNodeChildName( %name, %i ), %indent @ "" );
}

function dumpShape( %shape )
{
   // recursively dump node hierarchy
   %count = %shape.getNodeCount();
   for ( %i = 0; %i < %count; %i++ )
   {
      // dump top level nodes
      %name = %shape.getNodeName( %i );
      if ( %shape.getNodeParentName( %name ) $=  )
         dumpNode( %shape, %name, "" );
   }
}










	
int TSShapeConstructor::getNodeCount()


	Get the total number of nodes in the shape.


	Returns

	the number of nodes in the shape.





Example:

%count = %this.getNodeCount();










	
int TSShapeConstructor::getNodeIndex(string name)


	Get the index of the node.


	Parameters

	name – name of the node to lookup.



	Returns

	the index of the named node, or -1 if no such node exists.





Example:

// get the index of Bip01 Pelvis node in the shape
%index = %this.getNodeIndex( "Bip01 Pelvis" );










	
string TSShapeConstructor::getNodeName(int index)


	Get the name of the indexed node.


	Parameters

	index – index of the node to lookup (valid range is 0 - getNodeCount()-1).



	Returns

	the name of the indexed node, or “” if no such node exists.





Example:

// print the names of all the nodes in the shape
%count = %this.getNodeCount();
for (%i = 0; %i < %count; %i++)
   echo(%i SPC %this.getNodeName(%i));










	
int TSShapeConstructor::getNodeObjectCount(string name)


	Get the number of geometry objects attached to this node.


	Parameters

	name – name of the node to query.



	Returns

	the number of attached objects.





Example:

%count = %this.getNodeObjectCount( "Bip01 Head" );










	
string TSShapeConstructor::getNodeObjectName(string name, int index)


	Get the name of the indexed object.


	Parameters

	
	name – name of the node to query.


	index – index of the object (valid range is 0 - getNodeObjectCount()-1).






	Returns

	the name of the indexed object.





Example:

// print the names of all objects attached to the node
%count = %this.getNodeObjectCount( "Bip01 Head" );
for ( %i = 0; %i < %count; %i++ )
   echo( %this.getNodeObjectName( "Bip01 Head", %i ) );










	
string TSShapeConstructor::getNodeParentName(string name)


	Get the name of the node’s parent. If the node has no parent (ie. it is at the root level), return an empty string.


	Parameters

	name – name of the node to query.



	Returns

	the name of the node’s parent, or “” if the node is at the root level





Example:

echo( "Bip01 Pelvis parent = " @ %this.getNodeParentName( "Bip01 Pelvis ") );










	
TransformF TSShapeConstructor::getNodeTransform(string name, bool isWorld)


	Get the base (ie. not animated) transform of a node.


	Parameters

	
	name – name of the node to query.


	isWorld – true to get the global transform, false (or omitted) to get the local-to-parent transform.






	Returns

	the node transform in the form “pos.x pos.y pos.z rot.x rot.y rot.z rot.angle”.





Example:

%ret = %this.getNodeTransform( "mount0" );
%this.setNodeTransform( "mount4", %ret );










	
int TSShapeConstructor::getObjectCount()


	Get the total number of objects in the shape.


	Returns

	the number of objects in the shape.





Example:

%count = %this.getObjectCount();










	
int TSShapeConstructor::getObjectIndex(string name)


	Get the index of the first object with the given name.


	Parameters

	name – name of the object to get.



	Returns

	the index of the named object.





Example:

%index = %this.getObjectIndex( "Head" );










	
string TSShapeConstructor::getObjectName(int index)


	Get the name of the indexed object.


	Parameters

	index – index of the object to get (valid range is 0 - getObjectCount()-1).



	Returns

	the name of the indexed object.





Example:

// print the names of all objects in the shape
%count = %this.getObjectCount();
for ( %i = 0; %i < %count; %i++ )
   echo( %i SPC %this.getObjectName( %i ) );










	
string TSShapeConstructor::getObjectNode(string name)


	Get the name of the node this object is attached to.


	Parameters

	name – name of the object to get.



	Returns

	the name of the attached node, or an empty string if this object is not attached to a node (usually the case for skinned meshes).





Example:

echo( "Hand is attached to " @ %this.getObjectNode( "Hand" ) );










	
string TSShapeConstructor::getSequenceBlend(string name)


	Get information about blended sequences.


	Parameters

	name – name of the sequence to query



	Returns

	a boolean flag indicating whether this sequence is a blend





Example:

%blendData = %this.getSequenceBlend( "look" );
if ( getField( %blendData, 0 ) )
   echo( "look is a blend, reference: " @ getField( %blendData, 1 ) );










	
int TSShapeConstructor::getSequenceCount()


	Get the total number of sequences in the shape.


	Returns

	the number of sequences in the shape










	
bool TSShapeConstructor::getSequenceCyclic(string name)


	Check if this sequence is cyclic (looping).


	Parameters

	name – name of the sequence to query



	Returns

	true if this sequence is cyclic, false if not





Example:

if ( !%this.getSequenceCyclic( "ambient" ) )
   error( "ambient sequence is not cyclic!" );










	
int TSShapeConstructor::getSequenceFrameCount(string name)


	Get the number of keyframes in the sequence.


	Parameters

	name – name of the sequence to query



	Returns

	number of keyframes in the sequence





Example:

echo( "Run has " @ %this.getSequenceFrameCount( "run" ) @ " keyframes" );










	
string TSShapeConstructor::getSequenceGroundSpeed(string name)


	Get the ground speed of the sequence.


	Parameters

	name – name of the sequence to query



	Returns

	string of the form: “trans.x trans.y trans.z rot.x rot.y rot.z”





Example:

%speed = VectorLen( getWords( %this.getSequenceGroundSpeed( "run" ), 0, 2 ) );
   echo( "Run moves at " @ %speed @ " units per frame" );










	
int TSShapeConstructor::getSequenceIndex(string name)


	Find the index of the sequence with the given name.


	Parameters

	name – name of the sequence to lookup



	Returns

	index of the sequence with matching name, or -1 if not found





Example:

// Check if a given sequence exists in the shapeif ( %this.getSequenceIndex( "walk" ) == -1 )
   echo( "Could not find walk sequence" );










	
string TSShapeConstructor::getSequenceName(int index)


	Get the name of the indexed sequence.


	Parameters

	index – index of the sequence to query (valid range is 0 - getSequenceCount()-1)



	Returns

	the name of the sequence





Example:

// print the name of all sequences in the shape
%count = %this.getSequenceCount();
for ( %i = 0; %i < %count; %i++ )
   echo( %i SPC %this.getSequenceName( %i ) );










	
float TSShapeConstructor::getSequencePriority(string name)


	Get the priority setting of the sequence.


	Parameters

	name – name of the sequence to query



	Returns

	priority value of the sequence










	
string TSShapeConstructor::getSequenceSource(string name)


	Get information about where the sequence data came from. For example, whether it was loaded from an external DSQ file.


	Parameters

	name – name of the sequence to query



	Returns

	the source of the animation data, such as the path to a DSQ file, or the name of an existing sequence in the shape. This field will be empty for sequences already embedded in the DTS or DAE file.





Example:

// print the source for the walk animationecho( "walk source:" SPC getField( %this.getSequenceSource( "walk" ), 0 ) );










	
int TSShapeConstructor::getTargetCount()


	Get the number of materials in the shape.


	Returns

	the number of materials in the shape.





Example:

%count = %this.getTargetCount();










	
string TSShapeConstructor::getTargetName(int index)


	Get the name of the indexed shape material.


	Parameters

	index – index of the material to get (valid range is 0 - getTargetCount()-1).



	Returns

	the name of the indexed material.





Example:

%count = %this.getTargetCount();
for ( %i = 0; %i < %count; %i++ )
   echo( "Target " @ %i @ ": " @ %this.getTargetName( %i ) );










	
string TSShapeConstructor::getTrigger(string name, int index)


	Get information about the indexed trigger.


	Parameters

	
	name – name of the sequence to query


	index – index of the trigger (valid range is 0 - getTriggerCount()-1)






	Returns

	string of the form “frame state”





Example:

// print all triggers in the sequence
%count = %this.getTriggerCount( "back" );
for ( %i = 0; %i < %count; %i++ )
   echo( %i SPC %this.getTrigger( "back", %i ) );










	
int TSShapeConstructor::getTriggerCount(string name)


	Get the number of triggers in the specified sequence.


	Parameters

	name – name of the sequence to query



	Returns

	number of triggers in the sequence










	
void TSShapeConstructor::notifyShapeChanged()


	Notify game objects that this shape file has changed, allowing them to update internal data if needed.






	
void TSShapeConstructor::onLoad()


	Called immediately after the DTS or DAE file has been loaded; before the shape data is available to any other object ( StaticShape , Player etc). This is where you should put any post-load commands to modify the shape in-memory such as addNode, renameSequence etc.






	
void TSShapeConstructor::onUnload()


	Called when the DTS or DAE resource is flushed from memory. Not normally required, but may be useful to perform cleanup.






	
bool TSShapeConstructor::removeDetailLevel(int index)


	Remove the detail level (including all meshes in the detail level).


	Parameters

	size – size of the detail level to remove



	Returns

	true if successful, false otherwise





Example:

%this.removeDetailLevel( 2 );










	
bool TSShapeConstructor::removeImposter()


	Remove the imposter detail level (if any) from the shape.


	Returns

	true if successful, false otherwise










	
bool TSShapeConstructor::removeMesh(string name)


	Remove a mesh from the shape. If all geometry is removed from an object, the object is also removed.


	Parameters

	name – full name (object name + detail size) of the mesh to remove



	Returns

	true if successful, false otherwise





Example:

%this.removeMesh( "SimpleShape128" );










	
bool TSShapeConstructor::removeNode(string name)


	Remove a node from the shape. The named node is removed from the shape, including from any sequences that use the node. Child nodes and objects attached to the node are re-assigned to the node’s parent.


	Parameters

	name – name of the node to remove.



	Returns

	true if successful, false otherwise.





Example:

%this.removeNode( "Nose" );










	
bool TSShapeConstructor::removeObject(string name)


	Remove an object (including all meshes for that object) from the shape.


	Parameters

	name – name of the object to remove.



	Returns

	true if successful, false otherwise.





Example:

// clear all objects in the shape
%count = %this.getObjectCount();
for ( %i = %count-1; %i >= 0; %i-- )
   %this.removeObject( %this.getObjectName(%i) );










	
bool TSShapeConstructor::removeSequence(string name)


	Remove the sequence from the shape.


	Parameters

	name – name of the sequence to remove



	Returns

	true if successful, false otherwise










	
bool TSShapeConstructor::removeTrigger(string name, int keyframe, int state)


	Remove a trigger from the sequence.


	Parameters

	
	name – name of the sequence to modify


	keyframe – keyframe of the trigger to remove


	state – of the trigger to remove






	Returns

	true if successful, false otherwise





Example:

%this.removeTrigger( "walk", 3, 1 );










	
bool TSShapeConstructor::renameDetailLevel(string oldName, string newName)


	Rename a detail level.


	Parameters

	
	oldName – current name of the detail level


	newName – new name of the detail level






	Returns

	true if successful, false otherwise





Example:

%this.renameDetailLevel( "detail-1", "collision-1" );










	
bool TSShapeConstructor::renameNode(string oldName, string newName)


	Rename a node.


	Parameters

	
	oldName – current name of the node


	newName – new name of the node






	Returns

	true if successful, false otherwise





Example:

%this.renameNode( "Bip01 L Hand", "mount5" );










	
bool TSShapeConstructor::renameObject(string oldName, string newName)


	Rename an object.


	Parameters

	
	oldName – current name of the object


	newName – new name of the object






	Returns

	true if successful, false otherwise





Example:

%this.renameObject( "MyBox", "Box" );










	
bool TSShapeConstructor::renameSequence(string oldName, string newName)


	Rename a sequence.


	Parameters

	
	oldName – current name of the sequence


	newName – new name of the sequence






	Returns

	true if successful, false otherwise





Example:

%this.renameSequence( "walking", "walk" );










	
void TSShapeConstructor::saveShape(string filename)


	Save the shape (with all current changes) to a new DTS file.


	Parameters

	filename – Destination filename.





Example:

%this.saveShape( "./myShape.dts" );










	
bool TSShapeConstructor::setBounds(Box3F bbox)


	Set the shape bounds to the given bounding box.


	Parameters

	Bounding – box “minX minY minZ maxX maxY maxZ”



	Returns

	true if successful, false otherwise










	
int TSShapeConstructor::setDetailLevelSize(int index, int newSize)


	Change the size of a detail level.


	Parameters

	
	index – index of the detail level to modify


	newSize – new size for the detail level






	Returns

	new index for this detail level





Example:

%this.setDetailLevelSize( 2, 256 );










	
bool TSShapeConstructor::setMeshMaterial(string meshName, string matName)


	Set the name of the material attached to the mesh.


	Parameters

	
	meshName – full name (object name + detail size) of the mesh to modify


	matName – name of the material to attach. This could be the base name of the diffuse texture (eg. “test_mat” for “test_mat.jpg”), or the name of a Material object already defined in script.






	Returns

	true if successful, false otherwise





Example:

// set the mesh material
%this.setMeshMaterial( "SimpleShape128", "test_mat" );










	
bool TSShapeConstructor::setMeshSize(string name, int size)


	Change the detail level size of the named mesh.


	Parameters

	
	name – full name (object name + current size ) of the mesh to modify


	size – new detail level size






	Returns

	true if successful, false otherwise.





Example:

%this.setMeshSize( "SimpleShape128", 64 );










	
bool TSShapeConstructor::setMeshType(string name, string type)


	Set the display type for the mesh.


	Parameters

	
	name – full name (object name + detail size) of the mesh to modify


	type – the new type for the mesh: “normal”, “billboard” or “billboardzaxis”






	Returns

	true if successful, false otherwise





Example:

// set the mesh to be a billboard
%this.setMeshType( "SimpleShape64", "billboard" );










	
bool TSShapeConstructor::setNodeParent(string name, string parentName)


	Set the parent of a node.


	Parameters

	
	name – name of the node to modify


	parentName – name of the parent node to set (use “” to move the node to the root level)






	Returns

	true if successful, false if failed





Example:

%this.setNodeParent( "Bip01 Pelvis", "start01" );










	
bool TSShapeConstructor::setNodeTransform(string name, TransformF txfm, bool isWorld)


	Set the base transform of a node. That is, the transform of the node when in the root (not-animated) pose.


	Parameters

	
	name – name of the node to modify


	txfm – transform string of the form: “pos.x pos.y pos.z rot.x rot.y rot.z rot.angle”


	isworld – (optional) flag to set the local-to-parent or the global transform. If false, or not specified, the position and orientation are treated as relative to the node’s parent.






	Returns

	true if successful, false otherwise





Example:

%this.setNodeTransform( "mount0", "0 0 1 0 0 1 0" );
%this.setNodeTransform( "mount0", "0 0 0 0 0 1 1.57" );
%this.setNodeTransform( "mount0", "1 0 0 0 0 1 0", true );










	
bool TSShapeConstructor::setObjectNode(string objName, string nodeName)


	Set the node an object is attached to. When the shape is rendered, the object geometry is rendered at the node’s current transform.


	Parameters

	
	objName – name of the object to modify


	nodeName – name of the node to attach the object to






	Returns

	true if successful, false otherwise





Example:

%this.setObjectNode( "Hand", "Bip01 LeftHand" );










	
bool TSShapeConstructor::setSequenceBlend(string name, bool blend, string blendSeq, int blendFrame)


	Mark a sequence as a blend or non-blend. A blend sequence is one that will be added on top of any other playing sequences. This is done by storing the animated node transforms relative to a reference frame, rather than as absolute transforms.


	Parameters

	
	name – name of the sequence to modify


	blend – true to make the sequence a blend, false for a non-blend


	blendSeq – the name of the sequence that contains the blend reference frame


	blendFrame – the reference frame in the blendSeq sequence






	Returns

	true if successful, false otherwise





Example:

%this.setSequenceBlend( "look", true, "root", 0 );










	
bool TSShapeConstructor::setSequenceCyclic(string name, bool cyclic)


	Mark a sequence as cyclic or non-cyclic.


	Parameters

	
	name – name of the sequence to modify


	cyclic – true to make the sequence cyclic, false for non-cyclic






	Returns

	true if successful, false otherwise





Example:

%this.setSequenceCyclic( "ambient", true );
%this.setSequenceCyclic( "shoot", false );










	
bool TSShapeConstructor::setSequenceGroundSpeed(string name, Point3F transSpeed, Point3F rotSpeed)


	Set the translation and rotation ground speed of the sequence. The ground speed of the sequence is set by generating ground transform keyframes. The ground translational and rotational speed is assumed to be constant for the duration of the sequence. Existing ground frames for the sequence (if any) will be replaced.


	Parameters

	
	name – name of the sequence to modify


	transSpeed – translational speed (trans.x trans.y trans.z) in Torque units per frame


	rotSpeed – (optional) rotational speed (rot.x rot.y rot.z) in radians per frame. Default is “0 0 0”






	Returns

	true if successful, false otherwise





Example:

%this.setSequenceGroundSpeed( "run", "5 0 0" );
%this.setSequenceGroundSpeed( "spin", "0 0 0", "4 0 0" );










	
bool TSShapeConstructor::setSequencePriority(string name, float priority)


	Set the sequence priority.


	Parameters

	
	name – name of the sequence to modify


	priority – new priority value






	Returns

	true if successful, false otherwise










	
void TSShapeConstructor::writeChangeSet()


	Write the current change set to a TSShapeConstructor script file. The name of the script file is the same as the model, but with .cs extension. eg. myShape.cs for myShape.dts or myShape.dae.








Fields


	
bool TSShapeConstructor::adjustCenter


	Translate COLLADA model on import so the origin is at the center. No effect for DTS files.






	
bool TSShapeConstructor::adjustFloor


	Translate COLLADA model on import so origin is at the (Z axis) bottom of the model. No effect for DTS files. This can be used along with adjustCenter to have the origin at the center of the bottom of the model.






	
string TSShapeConstructor::alwaysImport


	TAB separated patterns of nodes to import even if in neverImport list. No effect for DTS files. Torque allows unwanted nodes in COLLADA (.dae) files to to be ignored during import. This field contains a TAB separated list of patterns to match node names. Any node that matches one of the patterns in the list will always be imported, even if it also matches the neverImport list

Example:

singleton TSShapeConstructor(MyShapeDae)
{
   baseShape = "./myShape.dae";
   alwaysImport = "mount*" TAB "eye";
   neverImport = "*-PIVOT";
}










	
string TSShapeConstructor::alwaysImportMesh


	TAB separated patterns of meshes to import even if in neverImportMesh list. No effect for DTS files. Torque allows unwanted meshes in COLLADA (.dae) files to to be ignored during import. This field contains a TAB separated list of patterns to match mesh names. Any mesh that matches one of the patterns in the list will always be imported, even if it also matches the neverImportMesh list

Example:

singleton TSShapeConstructor(MyShapeDae)
{
   baseShape = "./myShape.dae";
   alwaysImportMesh = "body*" TAB "armor" TAB "bounds";
   neverImportMesh = "*-dummy";
}










	
filename TSShapeConstructor::baseShape


	Specifies the path to the DTS or DAE file to be operated on by this object. Since the TSShapeConstructor script must be in the same folder as the DTS or DAE file, it is recommended to use a relative path so that the shape and script files can be copied to another location without having to modify the path.






	
bool TSShapeConstructor::forceUpdateMaterials


	Forces update of the materials.cs file in the same folder as the COLLADA (.dae) file, even if Materials already exist. No effect for DTS files. Normally only Materials that are not already defined are written to materials.cs.






	
bool TSShapeConstructor::ignoreNodeScale


	Ignore lt scale gt elements inside COLLADA lt node gt s. No effect for DTS files. This field is a workaround for certain exporters that generate bad node scaling, and is not usually required.






	
TSShapeConstructorLodType TSShapeConstructor::lodType


	Control how the COLLADA (.dae) importer interprets LOD in the model. No effect for DTS files. Set to one of the following values:






	
string TSShapeConstructor::matNamePrefix


	Prefix to apply to all material map names in the COLLADA (.dae) file. No effect for DTS files. This field is useful to avoid material name clashes for exporters that generate generic material names like “texture0” or “material1”.






	
string TSShapeConstructor::neverImport


	TAB separated patterns of nodes to ignore on loading. No effect for DTS files. Torque allows unwanted nodes in COLLADA (.dae) files to to be ignored during import. This field contains a TAB separated list of patterns to match node names. Any node that matches one of the patterns in the list will not be imported (unless it matches the alwaysImport list.






	
string TSShapeConstructor::neverImportMesh


	TAB separated patterns of meshes to ignore on loading. No effect for DTS files. Torque allows unwanted meshes in COLLADA (.dae) files to to be ignored during import. This field contains a TAB separated list of patterns to match mesh names. Any mesh that matches one of the patterns in the list will not be imported (unless it matches the alwaysImportMesh list.






	
filename TSShapeConstructor::sequence


	Legacy method of adding sequences to a DTS or DAE shape after loading.

Example:

singleton TSShapeConstructor(MyShapeDae)
{
   baseShape = "./myShape.dae";
   sequence = "../anims/root.dae root";
   sequence = "../anims/walk.dae walk";
   sequence = "../anims/jump.dsq jump";
}










	
int TSShapeConstructor::singleDetailSize


	Sets the detail size when lodType is set to SingleSize. No effect otherwise, and no effect for DTS files.






	
float TSShapeConstructor::unit


	Override the lt unit gt element in the COLLADA (.dae) file. No effect for DTS files. COLLADA (.dae) files usually contain a lt unit gt element that indicates the ‘real world’ units that the model is described in. It means you can work in sensible and meaningful units in your modeling app. For example, if you were modeling a small object like a cup, it might make sense to work in inches (1 MAX unit = 1 inch), but if you were modeling a building, it might make more sense to work in feet (1 MAX unit = 1 foot). If you export both models to COLLADA, T3D will automatically scale them appropriately. 1 T3D unit = 1 meter, so the cup would be scaled down by 0.0254, and the building scaled down by 0.3048, given them both the correct scale relative to each other. Omit the field or set to -1 to use the value in the .dae file (1.0 if the lt unit gt element is not present)






	
TSShapeConstructorUpAxis TSShapeConstructor::upAxis


	Override the lt up_axis gt element in the COLLADA (.dae) file. No effect for DTS files. Set to one of the following values:











          

      

      

    

  

    
      
          
            
  
TSStatic

A static object derived from a 3D model file and placed within the game world.


	Inherit:

	SceneObject






Description

A static object derived from a 3D model file and placed within the game world.

TSStatic is the most basic 3D shape in Torque. Unlike StaticShape it doesn’t make use of a datablock. It derrives directly from SceneObject. This makes TSStatic extremely light weight, which is why the Tools use this class when you want to drop in a DTS or DAE object.

While a TSStatic doesn’t provide any motion – it stays were you initally put it – it does allow for a single ambient animation sequence to play when the object is first added to the scene.

Example:

newTSStatic(Team1Base) {
   shapeName = "art/shapes/desertStructures/station01.dts";
   playAmbient = "1";
   receiveSunLight = "1";
   receiveLMLighting = "1";
   useCustomAmbientLighting = "0";
   customAmbientLighting = "0 0 0 1";
   collisionType = "Visible Mesh";
   decalType = "Collision Mesh";
   allowPlayerStep = "1";
   renderNormals = "0";
   forceDetail = "-1";
   position = "315.18 -180.418 244.313";
   rotation = "0 0 1 195.952";
   scale = "1 1 1";
   isRenderEnabled = "true";
   canSaveDynamicFields = "1";
};








Methods


	
void TSStatic::changeMaterial(string mapTo, Material oldMat, Material newMat)


	Change one of the materials on the shape. This method changes materials per mapTo with others. The material that is being replaced is mapped to unmapped_mat as a part of this transition.


	Parameters

	
	mapTo – the name of the material target to remap (from getTargetName)


	oldMat – the old Material that was mapped


	newMat – the new Material to map








Example:

// remap the first material in the shape
%mapTo = %obj.getTargetName( 0 );
%obj.changeMaterial( %mapTo, 0, MyMaterial );










	
string TSStatic::getModelFile()


	Get the model filename used by this shape.


	Returns

	the shape filename





Example:

// Acquire the model filename used on this shape.
%modelFilename = %obj.getModelFile();










	
int TSStatic::getTargetCount()


	Get the number of materials in the shape.


	Returns

	the number of materials in the shape.










	
string TSStatic::getTargetName(int index)


	Get the name of the indexed shape material.


	Parameters

	index – index of the material to get (valid range is 0 - getTargetCount()-1).



	Returns

	the name of the indexed material.












Fields


	
bool TSStatic::allowPlayerStep


	Allow a Player to walk up sloping polygons in the TSStatic (based on the collisionType). When set to false, the slightest bump will stop the player from walking on top of the object.






	
TSMeshType TSStatic::collisionType


	The type of mesh data to use for collision queries.






	
TSMeshType TSStatic::decalType


	The type of mesh data used to clip decal polygons against.






	
int TSStatic::forceDetail


	Forces rendering to a particular detail level.






	
bool TSStatic::meshCulling


	Enables detailed culling of meshes within the TSStatic . Should only be used with large complex shapes like buildings which contain many submeshes.






	
bool TSStatic::originSort


	Enables translucent sorting of the TSStatic by its origin instead of the bounds.






	
bool TSStatic::playAmbient


	Enables automatic playing of the animation sequence named “ambient” (if it exists) when the TSStatic is loaded.






	
float TSStatic::renderNormals


	Debug rendering mode shows the normals for each point in the TSStatic’s mesh.






	
filename TSStatic::shapeName


	Path and filename of the model file (.DTS, .DAE) to use for this TSStatic .






	
string TSStatic::skin


	The skin applied to the shape. ‘Skinning’ the shape effectively renames the material targets, allowing different materials to be used on different instances of the same model. Any material targets that start with the old skin name have that part of the name replaced with the new skin name. The initial old skin name is “base”. For example, if a new skin of “blue” was applied to a model that had material targets base_body and face , the new targets would be blue_body and face . Note that face was not renamed since it did not start with the old skin name of “base”. To support models that do not use the default “base” naming convention, you can also specify the part of the name to replace in the skin field itself. For example, if a model had a material target called shapemat , we could apply a new skin “shape=blue”, and the material target would be renamed to bluemat (note “shape” has been replaced with “blue”). Multiple skin updates can also be applied at the same time by separating them with a semicolon. For example: “base=blue;face=happy_face”. Material targets are only renamed if an existing Material maps to that name, or if there is a diffuse texture in the model folder with the same name as the new target.











          

      

      

    

  

    
      
          
            
  
TerrainBlock

Represent a terrain object in a Torque 3D level.


	Inherit:

	SceneObject






Description

Represent a terrain object in a Torque 3D level.

Example:

newTerrainBlock(theTerrain)
{
   terrainFile = "art/terrains/Deathball Desert_0.ter";
   squareSize = "2";
   tile = "0";
   baseTexSize = "1024";
   screenError = "16";
   position = "-1024 -1024 179.978";
   rotation = "1 0 0 0";
   scale = "1 1 1";
   isRenderEnabled = "true";
   canSaveDynamicFields = "1";
};








Methods


	
bool TerrainBlock::exportHeightMap(string filename)


	export the terrain block’s heightmap to a bitmap file (default: png)






	
bool TerrainBlock::exportLayerMaps(string filePrefix)


	export the terrain block’s layer maps to bitmap files (default: png)






	
int TerrainBlock::import(String terrainName, String heightMap, F32 metersPerPixel, F32 heightScale, String materials, String opacityLayers)


	




	
bool TerrainBlock::save(string fileName)


	Saves the terrain block’s terrain file to the specified file name.


	Parameters

	fileName – Name and path of file to save terrain data to.



	Returns

	True if file save was successful, false otherwise












Fields


	
int TerrainBlock::baseTexSize


	Size of base texture size per meter.






	
bool TerrainBlock::castShadows


	Allows the terrain to cast shadows onto itself and other objects.






	
int TerrainBlock::createNew


	TerrainBlock.create( String terrainName, U32 resolution, String materialName, bool genNoise ).






	
int TerrainBlock::lightMapSize


	Light map dimensions in pixels.






	
int TerrainBlock::screenError


	Not yet implemented.






	
float TerrainBlock::squareSize


	Indicates the spacing between points on the XY plane on the terrain.






	
filename TerrainBlock::terrainFile


	The source terrain data file.











          

      

      

    

  

    
      
          
            
  
TerrainMaterial

The TerrainMaterial class orginizes the material settings for a single terrain material layer.


	Inherit:

	SimObject






Description

The TerrainMaterial class orginizes the material settings for a single terrain material layer.

Example:

// Created by the Terrain Painter tool in the World EditornewTerrainMaterial()
{
   internalName = "grass1";
   diffuseMap = "art/terrains/Test/grass1";
   detailMap = "art/terrains/Test/grass1_d";
   detailSize = "10";
   isManaged = "1";
   detailBrightness = "1";
   Enabled = "1";
   diffuseSize = "200";
};








Fields


	
float TerrainMaterial::detailDistance


	Changes how far camera can see the detail map rendering on the material.






	
filename TerrainMaterial::detailMap


	Detail map for the material.






	
float TerrainMaterial::detailSize


	Used to scale the detail map to the material square.






	
float TerrainMaterial::detailStrength


	Exponentially sharpens or lightens the detail map rendering on the material.






	
filename TerrainMaterial::diffuseMap


	Base texture for the material.






	
float TerrainMaterial::diffuseSize


	Used to scale the diffuse map to the material square.






	
float TerrainMaterial::macroDistance


	Changes how far camera can see the Macro map rendering on the material.






	
filename TerrainMaterial::macroMap


	Macro map for the material.






	
float TerrainMaterial::macroSize


	Used to scale the Macro map to the material square.






	
float TerrainMaterial::macroStrength


	Exponentially sharpens or lightens the Macro map rendering on the material.






	
filename TerrainMaterial::normalMap


	Bump map for the material.






	
float TerrainMaterial::parallaxScale


	Used to scale the height from the normal map to give some self occlusion effect (aka parallax) to the terrain material.






	
bool TerrainMaterial::useSideProjection


	Makes that terrain material project along the sides of steep slopes instead of projected downwards.











          

      

      

    

  

    
      
          
            
  
TheoraTextureObject

Definition of a named texture target playing a Theora video.


	Inherit:

	SimObject






Description

TheoraTextureObject defines a named texture target that may play back a Theora video. This texture target can, for example, be used by materials to texture objects with videos.

Example:

// The object that provides the video texture and controls its playback.
singleton TheoraTextureObject( TheVideo )
{
   // Unique name for the texture target for referencing in materials.
   texTargetName = "video";

   // Path to the video file.
   theoraFile = "./MyVideo.ogv";
};

// Material that uses the video texture.
singleton Material( TheVideoMaterial )
{
   // This has to reference the named texture target defined by the
   // TheoraTextureObjects texTargetName property.  Prefix with # to
   // identify as texture target reference.
   diffuseMap[ 0 ] = "#video";
};








Methods


	
void TheoraTextureObject::pause()


	Pause playback of the video.






	
void TheoraTextureObject::play()


	Start playback of the video.






	
void TheoraTextureObject::stop()


	Stop playback of the video.








Fields


	
bool TheoraTextureObject::loop


	Should the video loop.






	
SFXDescription TheoraTextureObject::SFXDescription


	Sound description to use for the video’s audio channel. If not set, will use a default one.






	
string TheoraTextureObject::texTargetName


	Name of the texture target by which the texture can be referenced in materials.






	
filename TheoraTextureObject::theoraFile


	Theora video file to play.











          

      

      

    

  

    
      
          
            
  
TimeOfDay

Environmental object that triggers a day/night cycle in level.


	Inherit:

	SceneObject






Description

Environmental object that triggers a day/night cycle in level.

Example:

newTimeOfDay(tod)
{
   axisTilt = "23.44";
   dayLength = "120";
   startTime = "0.15";
   time = "0.15";
   play = "0";
   azimuthOverride = "572.958";
   dayScale = "1";
   nightScale = "1.5";
   position = "598.399 550.652 196.297";
   rotation = "1 0 0 0";
   scale = "1 1 1";
   canSave = "1";
   canSaveDynamicFields = "1";
};








Methods


	
void TimeOfDay::addTimeOfDayEvent(float elevation, string identifier)


	




	
void TimeOfDay::animate(float elevation, float degreesPerSecond)


	




	
void TimeOfDay::setDayLength(float seconds)


	




	
void TimeOfDay::setPlay(bool enabled)


	




	
void TimeOfDay::setTimeOfDay(float time)


	






Fields


	
float TimeOfDay::axisTilt


	The angle in degrees between global equator and tropic.






	
float TimeOfDay::azimuthOverride


	




	
float TimeOfDay::dayLength


	The length of a virtual day in real world seconds.






	
float TimeOfDay::dayScale


	Scalar applied to time that elapses while the sun is up.






	
float TimeOfDay::nightScale


	Scalar applied to time that elapses while the sun is down.






	
bool TimeOfDay::play


	True when the TimeOfDay object is operating.






	
float TimeOfDay::startTime


	




	
float TimeOfDay::time


	Current time of day.











          

      

      

    

  

    
      
          
            
  
Trigger

.


	Inherit:

	GameBase






Description

A Trigger is a volume of space that initiates script callbacks when objects pass through the Trigger.

TriggerData provides the callbacks for the Trigger when an object enters, stays inside or leaves the Trigger’s volume.




Methods


	
int Trigger::getNumObjects()


	Get the number of objects that are within the Trigger’s bounds.






	
int Trigger::getObject(int index)


	Retrieve the requested object that is within the Trigger’s bounds.


	Parameters

	index – Index of the object to get (range is 0 to getNumObjects()-1)



	Returns

	The SimObjectID of the object, or -1 if the requested index is invalid.










	
void Trigger::onAdd(int objectId)


	Called when the Trigger is being created.


	Parameters

	objectId – the object id of the Trigger being created










	
void Trigger::onRemove(int objectId)


	Called just before the Trigger is deleted.


	Parameters

	objectId – the object id of the Trigger being deleted












Fields


	
string Trigger::enterCommand


	The command to execute when an object enters this trigger. Object id stored in %obj. Maximum 1023 characters.






	
string Trigger::leaveCommand


	The command to execute when an object leaves this trigger. Object id stored in %obj. Maximum 1023 characters.






	
floatList Trigger::polyhedron


	Defines a non-rectangular area for the trigger. Rather than the standard rectangular bounds, this optional parameter defines a quadrilateral trigger area. The quadrilateral is defined as a corner point followed by three vectors representing the edges extending from the corner.






	
string Trigger::tickCommand


	The command to execute while an object is inside this trigger. Maximum 1023 characters.











          

      

      

    

  

    
      
          
            
  
TriggerData

objects.


	Inherit:

	GameBaseData






Description

Defines shared properties for Trigger objects.

The primary focus of the TriggerData datablock is the callbacks it provides when an object is within or leaves the Trigger bounds.




Methods


	
void TriggerData::onEnterTrigger(Trigger trigger, GameBase obj)


	Called when an object enters the volume of the Trigger instance using this TriggerData .


	Parameters

	
	trigger – the Trigger instance whose volume the object entered


	obj – the object that entered the volume of the Trigger instance













	
void TriggerData::onLeaveTrigger(Trigger trigger, GameBase obj)


	Called when an object leaves the volume of the Trigger instance using this TriggerData .


	Parameters

	
	trigger – the Trigger instance whose volume the object left


	obj – the object that left the volume of the Trigger instance













	
void TriggerData::onTickTrigger(Trigger trigger)


	Called every tickPeriodMS number of milliseconds (as specified in the TriggerData ) whenever one or more objects are inside the volume of the trigger. The Trigger has methods to retrieve the objects that are within the Trigger’s bounds if you want to do something with them in this callback.


	Parameters

	trigger – the Trigger instance whose volume the object is inside












Fields


	
bool TriggerData::clientSide


	Forces Trigger callbacks to only be called on clients.






	
int TriggerData::tickPeriodMS


	Time in milliseconds between calls to onTickTrigger() while at least one object is within a Trigger’s bounds.











          

      

      

    

  

    
      
          
            
  
TurretShape

Base turret class.


	Inherit:

	Item






Description

Base turret class.

Uses the TurretShapeData datablock for common properties.

The TurretShape class provides a player mountable turret. It also forms the base for AITurretShape, an AI controlled turret. It is based on the Item class, which allows turrets to be treated as any other Item by the Player, such as throwing smaller turrets. When used directly, TurretShape takes input moves from the player’s GameConnection to rotate the turret and trigger its weapons.

A turret consists of two components. There is the TurretShape object (or AITurretShape), and then there are one or more ShapeBaseImageData objects that are mounted to the turret. The TurretShape provides the weapons platform that rotates towards a target. The ShapeBaseImageData provides the actual weapon that fires at the target. Any standard ShapeBaseImageData weapon may be used.




Shape File Nodes

The shape file used for the TurretShape needs to have a number of defined nodes. The first node is named ‘heading’. The heading node is special in that it is controlled by the TurretShape code. This means that it should not be animated by the artist, nor should it have anything but the default transform applied to it. This doesn’t stop the heading node’s parent or its children from being animated, however.

The second special node is named ‘pitch’. The pitch node is also controlled by the TurretShape code so it too should not be animated within the shape file. Typically the pitch node will be a child of the heading node, although it need not be a direct child. The pitch node is also optional if you don’t want the TurretShape to pitch towards its target. In this case you may be doing something special with the mounted weapon to have its projectiles automatically aim towards the target.

The next set of nodes are weaponMount0 through weaponMount3. These provide up to four mounting points for weapons on the turret. Typically these are children of the pitch nodes, although they need not be direct children of that node. You do not need to have all of these weapon mount point nodes defined within the shape. Only as many as you need for the weapons. The mounted ShapeBaseImageData weapons’ mountPoint node will mount to these nodes.

There are four optional nodes named pitch0 through pitch3 that may be used in special cases. These nodes are also controlled by the TurretShape code and have the same restrictions. Their rotation exactly matches that of the standard pitch node. These exist for mounted weapons that may not all rotate about the same x axis. For example, a turret may have two sets of weapons, one mounted above the other. These two sets of weapons could all share the same point of rotation (the pitch node) which means they’ll rotate as a group. Or the top weapons could be attached to the pitch node while the bottom weapons could be attached to the pitch0 node. This makes the two sets of weapons rotate about their own centers and provides an entirely different look.

You could also use these additional pitchN nodes to animate some non-weapon attachments on the turret, such as a radar dish or targeting scope. TurretShape also supports four optional heading0 through heading3 nodes that operate in the same way as the pitchN nodes.




Weapon Mounting

TurretShape weapon mounting is done within the TurretShapeData::onAdd() script method. This method makes use of datablock fields that are only defined in script and are not passed along to the client. The first field is numWeaponMountPoints that defines the number of weapons that will be mounted and the number of weaponMountN nodes to expect within the turret’s shape file.

The other fields that are required to mount weapons are the weapon[], weaponAmmo[] and weaponAmmoAmount[] arrays – one of each per weapon to mount. The weapon[] array points to an ItemData datablock that defines the weapon (just like any Player weapon). The weaponAmmo[] array points to an ItemData datablock that defines the ammo to use for the weapon. Finally, the weaponAmmoAmount[] array is the quantity of ammo the turret has for that weapon.

As turrets use the same inventory system as players, you also need to define the maximum number of weapons and ammo that the turret may possess. Here is an example of setting up three weapons and their ammo for a turret (a TurretShapeData fragment):

Example:

// Weapon mounting
   numWeaponMountPoints = 3;

   weapon[0] = TurretWeapon;
   weaponAmmo[0] = BulletAmmo;
   weaponAmmoAmount[0] = 10000;

   weapon[1] = TurretWeaponB;
   weaponAmmo[1] = BulletAmmo;
   weaponAmmoAmount[1] = 10000;

   weapon[2] = TurretWeapon;
   weaponAmmo[2] = BulletAmmo;
   weaponAmmoAmount[2] = 10000;

   maxInv[TurretWeaponB] = 1;
   maxInv[TurretWeapon] = 2;
   maxInv[BulletAmmo] = 10000;








Mounted Weapon States

There are a couple of things to be aware of so that an turret’s mounted weapons play along with the turret’s states, especially for AI turrets. Setting TurretShapeData::startLoaded to true indicates that all mounted weapons will start loaded when their state machines start up. A static turret placed with the World Editor would normally begin this way. Setting TurretShapeData::startLoaded to false causes all mounted weapons to not start in a loaded state. This can be used to have the mounted weapons begin in some folded state when a deployable turret is thrown by the player. When a thrown turret comes to rest and begins to deploy, all mounted weapons are automatically set to the loaded state so they may also unfold, start up, or show some other method that the weapon is becoming ready to fight. This could also be used for player mountable turrets so that the weapons come to life when a player mounts the turret.

The default scripts for AITurretShapeData also fires the first image generic trigger on all mounted weapons when the turret is destroyed. This shows up as stateTransitionGeneric0In within a weapon image’s state machine. This allows for all weapons to show that they are destroyed or shutting down. Something similar could be done for general TurretShapeData turrets.

Weapons can also feed back to the turret they are mounted on. TurretShape supports the standard ShapeBaseImageData stateRecoil and will play the indicated animation, if available. You can also use ShapeBaseImageData’s stateShapeSequence field to play a generic sequence on the turret at any time from a mounted weapon.




Player Mounting

Turrets act very similar to vehicles when it comes to player mounting. By default colliding with a turret causes the player to mount it, if the turret is free.

When it comes to firing the turret’s weapons there are a number of methods that are triggered based on the weaponLinkType on the TurretShapeData datablock. Setting this field to FireTogether causes all weapons to fire at once based on the input from trigger 0. Using GroupedFire will make weaponMount0 and weaponMount2 mounted weapons fire on trigger 0, and weaponMount1 and weaponMount3 mounted weapons fire on trigger 1. Finally, IndividualFire will have each weaponMountN mounted weapons fire based on their own trigger (0 through 3). This provides exact control over which turret weapon will fire when there are multiple weapons mounted.

The player mounting callbacks are done using the TurretBaseData datablock on the server, and in a special case on the TurretBase object on the client. The server side makes use of the standard TurretBaseData::onMountObject() and TurretBaseData::onUnmountObject() callbacks. See those for more information.

When a player mounted turret is destroyed the TurretShapeData::damage() method will automatically kill all mounted players. To modify this behaviour – such as only dismounting players from a destroyed turret – you’ll need to create your own damage() method for your turret’s datablock.

On the client side the special turretMountCallback() callback function is called for the TurretShape object that is being mounted. This callback receives the SimObjectID of the turret object, the SimObjectID of the player doing the mounting or unmounting, and a Boolean set to true if mounting and false if unmounting. As this callback is made on the client, it allows the client to set up any action maps, make HUD changes, etc.

Example:

// ----------------------------------------------------------------------------// Turret Support// ----------------------------------------------------------------------------// Called by the TurretShape class when a player mounts or unmounts it.// %turret = The turret that was mounted// %player = The player doing the mounting// %mounted = True if the turret was mounted, false if it was unmounted
function turretMountCallback(%turret, %player, %mounted)
{
   echo ( "\c4turretMountCallback ->" @ %mounted );

   if (%mounted)
   {
      // Push the action map
      turretMap.push();
   }
   else
   {
      // Pop the action map
      turretMap.pop();
   }
}








Turret Destruction

When a turret is destroyed the default TurretBaseData::onDestroyed() method is called. This causes the turret to sit in a Dead state for TurretBase::DestroyedFadeDelay milliseconds, and then the turret will fade away. If the turret is marked to respawn – TurretShape::doRespawn() returns true – then the turret is respawned after TurretShape::RespawnTime milliseconds. By default all turrets placed in the World Editor are marked to respawn.




Turret Optional Animation Sequences

If present in the TurretShape’s shape, the optional ‘heading’ and ‘pitch’ sequences will be played as the turret rotates. These sequences are given a timeline position that corresponds to the turret’s rotation within its minimum and maximum ranges. These sequences could be used to rotate wheels or gears on the turret as it rotates, for example.




Methods


	
bool TurretShape::doRespawn()


	Does the turret respawn after it has been destroyed.


	Returns

	True if the turret respawns.










	
bool TurretShape::getAllowManualFire()


	Get if the turret is allowed to fire through moves.


	Returns

	True if the turret is allowed to fire through moves.










	
bool TurretShape::getAllowManualRotation()


	Get if the turret is allowed to rotate through moves.


	Returns

	True if the turret is allowed to rotate through moves.










	
string TurretShape::getState()


	Get the name of the turret’s current state. The state is one of the following:


	Dead - The TurretShape is destroyed.


	Mounted - The TurretShape is mounted to an object such as a vehicle.


	Ready - The TurretShape is free to move. The usual state.





	Returns

	The current state; one of: “Dead”, “Mounted”, “Ready”










	
Point3F TurretShape::getTurretEulerRotation()


	Get Euler rotation of this turret’s heading and pitch nodes.


	Returns

	the orientation of the turret’s heading and pitch nodes in the form of rotations around the X, Y and Z axes in degrees.










	
void TurretShape::setAllowManualFire(bool allow)


	Set if the turret is allowed to fire through moves.


	Parameters

	allow – If true then the turret may be fired through moves.










	
void TurretShape::setAllowManualRotation(bool allow)


	Set if the turret is allowed to rotate through moves.


	Parameters

	allow – If true then the turret may be rotated through moves.










	
void TurretShape::setTurretEulerRotation(Point3F rot)


	Set Euler rotation of this turret’s heading and pitch nodes in degrees.


	Parameters

	rot – The rotation in degrees. The pitch is the X component and the heading is the Z component. The Y component is ignored.












Fields


	
bool TurretShape::respawn


	Respawn the turret after it has been destroyed. If true, the turret will respawn after it is destroyed.











          

      

      

    

  

    
      
          
            
  
TurretShapeData

object.


	Inherit:

	ItemData






Description

Defines properties for a TurretShape object.




Methods


	
void TurretShapeData::onMountObject(TurretShape turret, SceneObject obj, int node)


	Informs the TurretShapeData object that a player is mounting it.


	Parameters

	
	turret – The TurretShape object.


	obj – The player that is mounting.


	node – The node the player is mounting to.













	
void TurretShapeData::onStickyCollision(TurretShape obj)


	Informs the TurretData object that it is now sticking to another object. This callback is only called if the TurretData::sticky property for this Turret is true.


	Parameters

	obj – The Turret object that is colliding.










	
void TurretShapeData::onUnmountObject(TurretShape turret, SceneObject obj)


	Informs the TurretShapeData object that a player is unmounting it.


	Parameters

	
	turret – The TurretShape object.


	obj – The player that is unmounting.















Fields


	
float TurretShapeData::cameraOffset


	Vertical (Z axis) height of the camera above the turret.






	
float TurretShapeData::headingRate


	Degrees per second rotation. A value of 0 means no rotation is allowed. A value less than 0 means the rotation is instantaneous.






	
float TurretShapeData::maxHeading


	Maximum number of degrees to rotate from center. A value of 180 or more degrees indicates the turret may rotate completely around.






	
float TurretShapeData::maxPitch


	Maximum number of degrees to rotate up from straight ahead.






	
float TurretShapeData::minPitch


	Minimum number of degrees to rotate down from straight ahead.






	
float TurretShapeData::pitchRate


	Degrees per second rotation. A value of 0 means no rotation is allowed. A value less than 0 means the rotation is instantaneous.






	
bool TurretShapeData::startLoaded


	Does the turret’s mounted weapon(s) start in a loaded state. True indicates that all mounted weapons start in a loaded state.






	
TurretShapeFireLinkType TurretShapeData::weaponLinkType


	Set how the mounted weapons are linked and triggered.


	FireTogether: All weapons fire under trigger 0.


	GroupedFire: Weapon mounts 0,2 fire under trigger 0, mounts 1,3 fire under trigger 1.


	IndividualFire: Each weapon mount fires under its own trigger 0-3.









	
bool TurretShapeData::zRotOnly


	Should the turret allow only z rotations. True indicates that the turret may only be rotated on its z axis, just like the Item class. This keeps the turret always upright regardless of the surface it lands on.











          

      

      

    

  

    
      
          
            
  
Vehicle

Base functionality shared by all Vehicles (FlyingVehicle, HoverVehicle, WheeledVehicle).


	Inherit:

	ShapeBase






Description

This object implements functionality shared by all Vehicle types, but should not be instantiated directly. Create a FlyingVehicle, HoverVehicle, or WheeledVehicle instead.




Fields


	
bool Vehicle::disableMove


	When this flag is set, the vehicle will ignore throttle changes.






	
float Vehicle::workingQueryBoxSizeMultiplier[static]


	How much larger the mWorkingQueryBox should be made when updating the working collision list. The larger this number the less often the working list will be updated due to motion, but any non-static shape that moves into the query box will not be noticed.






	
int Vehicle::workingQueryBoxStaleThreshold[static]


	The maximum number of ticks that go by before the mWorkingQueryBox is considered stale and needs updating. Other factors can cause the collision working query box to become invalidated, such as the vehicle moving far enough outside of this cached box. The smaller this number, the more times the working list of triangles that are considered for collision is refreshed. This has the greatest impact with colliding with high triangle count meshes.











          

      

      

    

  

    
      
          
            
  
VehicleData

Base properties shared by all Vehicles (FlyingVehicle, HoverVehicle, WheeledVehicle).


	Inherit:

	ShapeBaseData






Description

This datablock defines properties shared by all Vehicle types, but should not be instantiated directly. Instead, set the desired properties in the FlyingVehicleData, HoverVehicleData or WheeledVehicleData datablock.




Damage

The VehicleData class extends the basic energy/damage functionality provided by ShapeBaseData to include damage from collisions, as well as particle emitters activated automatically when damage levels reach user specified thresholds.

The example below shows how to setup a Vehicle to:

Example:

// damage from collisionscollDamageMultiplier = 0.05;
collDamageThresholdVel = 15;

// damage levelsdamageLevelTolerance[0] = 0.5;
damageEmitter[0] = GraySmokeEmitter;     // emitter used when damage is >= 50%
damageLevelTolerance[1] = 0.85;
damageEmitter[1] = BlackSmokeEmitter;    // emitter used when damage is >= 85%
damageEmitter[2] = DamageBubbleEmitter;  // emitter used instead of damageEmitter[0:1]
// when offset point is underwater
// emit offsets (used for all active damage level emitters)
damageEmitterOffset[0] = "0.5 3 1";
damageEmitterOffset[1] = "-0.5 3 1";
numDmgEmitterAreas = 2;








Methods


	
void VehicleData::onEnterLiquid(Vehicle obj, float coverage, string type)


	Called when the vehicle enters liquid.


	Parameters

	
	obj – the Vehicle object


	coverage – percentage of the vehicle’s bounding box covered by the liquid


	type – type of liquid the vehicle has entered













	
void VehicleData::onLeaveLiquid(Vehicle obj, string type)


	Called when the vehicle leaves liquid.


	Parameters

	
	obj – the Vehicle object


	type – type of liquid the vehicle has left















Fields


	
float VehicleData::bodyFriction


	Collision friction coefficient. How well this object will slide against objects it collides with.






	
float VehicleData::bodyRestitution


	Collision ‘bounciness’. Normally in the range 0 (not bouncy at all) to 1 (100% bounciness).






	
float VehicleData::cameraDecay


	How quickly the camera moves back towards the vehicle when stopped.






	
float VehicleData::cameraLag


	How much the camera lags behind the vehicle depending on vehicle speed. Increasing this value will make the camera fall further behind the vehicle as it accelerates away.






	
float VehicleData::cameraOffset


	Vertical (Z axis) height of the camera above the vehicle.






	
bool VehicleData::cameraRoll


	If true, the camera will roll with the vehicle. If false, the camera will always have the positive Z axis as up.






	
float VehicleData::collDamageMultiplier


	Damage to this vehicle after a collision (multiplied by collision velocity). Currently unused.






	
float VehicleData::collDamageThresholdVel


	Minimum collision velocity to cause damage to this vehicle. Currently unused.






	
float VehicleData::collisionTol


	Minimum distance between objects for them to be considered as colliding.






	
float VehicleData::contactTol


	Maximum relative velocity between objects for collisions to be resolved as contacts. Velocities greater than this are handled as collisions.






	
ParticleEmitterData VehicleData::damageEmitter[3]


	Array of particle emitters used to generate damage (dust, smoke etc) effects. Currently, the first two emitters (indices 0 and 1) are used when the damage level exceeds the associated damageLevelTolerance. The 3rd emitter is used when the emitter point is underwater.






	
Point3F VehicleData::damageEmitterOffset[2]


	Object space “x y z” offsets used to emit particles for the active damageEmitter.

Example:

// damage levelsdamageLevelTolerance[0] = 0.5;
damageEmitter[0] = SmokeEmitter;
// emit offsets (used for all active damage level emitters)
damageEmitterOffset[0] = "0.5 3 1";
damageEmitterOffset[1] = "-0.5 3 1";
numDmgEmitterAreas = 2;










	
float VehicleData::damageLevelTolerance[2]


	Damage levels (as a percentage of maxDamage) above which to begin emitting particles from the associated damageEmitter. Levels should be in order of increasing damage.






	
ParticleEmitterData VehicleData::dustEmitter


	Dust particle emitter.






	
float VehicleData::dustHeight


	Height above ground at which to emit particles from the dustEmitter.






	
SFXProfile VehicleData::exitingWater


	Sound to play when exiting the water.






	
float VehicleData::exitSplashSoundVelocity


	Minimum velocity when leaving the water for the exitingWater sound to play.






	
SFXProfile VehicleData::hardImpactSound


	Sound to play on a ‘hard’ impact. This sound is played if the impact speed gt = hardImpactSpeed.






	
float VehicleData::hardImpactSpeed


	Minimum collision speed for the hardImpactSound to be played.






	
float VehicleData::hardSplashSoundVelocity


	Minimum velocity when entering the water for the imapactWaterHard sound to play.






	
SFXProfile VehicleData::impactWaterEasy


	Sound to play when entering the water with speed gt = softSplashSoundVelocity and lt mediumSplashSoundVelocity.






	
SFXProfile VehicleData::impactWaterHard


	Sound to play when entering the water with speed gt = hardSplashSoundVelocity.






	
SFXProfile VehicleData::impactWaterMedium


	Sound to play when entering the water with speed gt = mediumSplashSoundVelocity and lt hardSplashSoundVelocity.






	
int VehicleData::integration


	Number of integration steps per tick. Increase this to improve simulation stability (also increases simulation processing time).






	
float VehicleData::jetEnergyDrain


	Energy amount to drain for each tick the vehicle is jetting. Once the vehicle’s energy level reaches 0, it will no longer be able to jet.






	
float VehicleData::jetForce


	Additional force applied to the vehicle when it is jetting. For WheeledVehicles, the force is applied in the forward direction. For FlyingVehicles, the force is applied in the thrust direction.






	
Point3F VehicleData::massBox


	Define the box used to estimate the vehicle’s moment of inertia. Currently only used by WheeledVehicle ; other vehicle types use a unit sphere to compute inertia.






	
Point3F VehicleData::massCenter


	Defines the vehicle’s center of mass (offset from the origin of the model).






	
float VehicleData::maxDrag


	Maximum drag coefficient. Currently unused.






	
float VehicleData::maxSteeringAngle


	Maximum yaw (horizontal) and pitch (vertical) steering angle in radians.






	
float VehicleData::mediumSplashSoundVelocity


	Minimum velocity when entering the water for the imapactWaterMedium sound to play.






	
float VehicleData::minDrag


	Minimum drag coefficient. Currently only used by FlyingVehicle .






	
float VehicleData::minImpactSpeed


	Minimum collision speed for the onImpact callback to be invoked.






	
float VehicleData::minJetEnergy


	Minimum vehicle energy level to begin jetting.






	
float VehicleData::minRollSpeed


	Unused.






	
float VehicleData::numDmgEmitterAreas


	Number of damageEmitterOffset values to use for each damageEmitter.






	
bool VehicleData::powerSteering


	If true, steering does not auto-centre while the vehicle is being steered by its driver.






	
SFXProfile VehicleData::softImpactSound


	Sound to play on a ‘soft’ impact. This sound is played if the impact speed is lt hardImpactSpeed and gt = softImpactSpeed.






	
float VehicleData::softImpactSpeed


	Minimum collision speed for the softImpactSound to be played.






	
float VehicleData::softSplashSoundVelocity


	Minimum velocity when entering the water for the imapactWaterEasy sound to play.






	
ParticleEmitterData VehicleData::splashEmitter[2]


	Array of particle emitters used to generate splash effects.






	
float VehicleData::splashFreqMod


	Number of splash particles to generate based on vehicle speed. This value is multiplied by the current speed to determine how many particles to generate each frame.






	
float VehicleData::splashVelEpsilon


	Minimum speed when moving through water to generate splash particles.






	
float VehicleData::steeringReturn


	Rate at which the vehicle’s steering returns to forwards when it is moving.






	
float VehicleData::steeringReturnSpeedScale


	Amount of effect the vehicle’s speed has on its rate of steering return.






	
float VehicleData::triggerDustHeight


	Maximum height above surface to emit dust particles. If the vehicle is less than triggerDustHeight above a static surface with a material that has ‘showDust’ set to true, the vehicle will emit particles from the dustEmitter.






	
SFXProfile VehicleData::waterWakeSound


	Looping sound to play while moving through the water.











          

      

      

    

  

    
      
          
            
  
WaterBlock

A block shaped water volume defined by a 3D scale and orientation.


	Inherit:

	WaterObject






Description

A block shaped water volume defined by a 3D scale and orientation.




Fields


	
float WaterBlock::gridElementSize


	Spacing between vertices in the WaterBlock mesh.






	
float WaterBlock::gridSize


	Duplicate of gridElementSize for backwards compatility.











          

      

      

    

  

    
      
          
            
  
WaterObject

Abstract base class for representing a body of water.


	Inherit:

	SceneObject






Description

Abstract base class for representing a body of water.

WaterObject is abstract and may not be created. It defines functionality shared by its derived classes.

WaterObject exposes many fields for controlling it visual quality.

WaterObject surface rendering has the following general features:

It will, however, look significantly different depending on the LightingManager that is active. With Basic Lighting, we do not have a prepass texture to lookup per-pixel depth and therefore cannot use our rendering techniques that depend on it.

In particular, the following field groups are not used under Basic Lighting:

WaterObject also defines several fields for gameplay use and objects that support buoyancy.




Fields


	
ColorI WaterObject::baseColor


	Changes color of water fog.






	
float WaterObject::clarity


	Relative opacity or transparency of the water surface.






	
string WaterObject::cubemap


	Cubemap used instead of reflection texture if fullReflect is off.






	
float WaterObject::density


	Affects buoyancy of an object, thus affecting the Z velocity of a player (jumping, falling, etc.






	
float WaterObject::depthGradientMax


	Depth in world units, the max range of the color gradient texture.






	
filename WaterObject::depthGradientTex


	1D texture defining the base water color by depth






	
float WaterObject::distortEndDist


	Max distance that distortion algorithm is performed. The lower, the more distorted the effect.






	
float WaterObject::distortFullDepth


	Determines the scaling down of distortion in shallow water.






	
float WaterObject::distortStartDist


	Determines start of distortion effect where water surface intersects the camera near plane.






	
bool WaterObject::emissive


	When true the water colors don’t react to changes to environment lighting.






	
float WaterObject::foamAmbientLerp


	




	
Point2F WaterObject::foamDir[2]


	




	
float WaterObject::foamMaxDepth


	




	
float WaterObject::foamOpacity[2]


	




	
float WaterObject::foamRippleInfluence


	




	
float WaterObject::foamSpeed[2]


	




	
filename WaterObject::foamTex


	Diffuse texture for foam in shallow water (advanced lighting only).






	
Point2F WaterObject::foamTexScale[2]


	applied to the surface.






	
float WaterObject::fresnelBias


	Extent of fresnel affecting reflection fogging.






	
float WaterObject::fresnelPower


	Measures intensity of affect on reflection based on fogging.






	
bool WaterObject::fullReflect


	Enables dynamic reflection rendering.






	
string WaterObject::liquidType


	Liquid type of WaterBlock , such as water, ocean, lava Currently only Water is defined and used.






	
float WaterObject::overallFoamOpacity


	




	
float WaterObject::overallRippleMagnitude


	Master variable affecting entire surface.






	
float WaterObject::overallWaveMagnitude


	Master variable affecting entire body of water’s undulation.






	
float WaterObject::reflectDetailAdjust


	scale up or down the detail level for objects rendered in a reflection






	
float WaterObject::reflectivity


	Overall scalar to the reflectivity of the water surface.






	
int WaterObject::reflectMaxRateMs


	Affects the sort time of reflected objects.






	
bool WaterObject::reflectNormalUp


	always use z up as the reflection normal






	
float WaterObject::reflectPriority


	Affects the sort order of reflected objects.






	
int WaterObject::reflectTexSize


	The texture size used for reflections (square).






	
Point2F WaterObject::rippleDir[3]


	Modifies the direction of ripples on the surface.






	
float WaterObject::rippleMagnitude[3]


	Intensifies the vertext modification of the surface.






	
float WaterObject::rippleSpeed[3]


	Modifies speed of surface ripples.






	
filename WaterObject::rippleTex


	Normal map used to simulate small surface ripples.






	
Point2F WaterObject::rippleTexScale[3]


	Intensifies the affect of the normal map applied to the surface.






	
SFXAmbience WaterObject::soundAmbience


	Ambient sound environment when listener is submerged.






	
ColorF WaterObject::specularColor


	Color used for specularity on the water surface ( sun only ).






	
float WaterObject::specularPower


	Power used for specularity on the water surface ( sun only ).






	
ColorI WaterObject::underwaterColor


	Changes the color shading of objects beneath the water surface.






	
bool WaterObject::useOcclusionQuery


	turn off reflection rendering when occluded (delayed).






	
float WaterObject::viscosity


	Affects drag force applied to an object submerged in this container.






	
float WaterObject::waterFogDensity


	Intensity of underwater fogging.






	
float WaterObject::waterFogDensityOffset


	Delta, or limit, applied to waterFogDensity.






	
Point2F WaterObject::waveDir[3]


	Direction waves flow toward shores.






	
float WaterObject::waveMagnitude[3]


	Height of water undulation.






	
float WaterObject::waveSpeed[3]


	Speed of water undulation.






	
float WaterObject::wetDarkening


	The refract color intensity scaled at wetDepth.






	
float WaterObject::wetDepth


	The depth in world units at which full darkening will be received, giving a wet look to objects underwater.











          

      

      

    

  

    
      
          
            
  
WaterPlane

Represents a large body of water stretching to the horizon in all directions.


	Inherit:

	WaterObject






Description

Represents a large body of water stretching to the horizon in all directions.

WaterPlane’s position is defined only height, the z element of position, it is infinite in xy and depth. WaterPlane is designed to represent the ocean on an island scene and viewed from ground level; other uses may not be appropriate and a WaterBlock may be used.

Limitations:

Because WaterPlane cannot be projected exactly to the far-clip distance, other objects nearing this distance can have noticible artifacts as they clip through first the WaterPlane and then the far plane.

To avoid this large objects should be positioned such that they will not line up with the far-clip from vantage points the player is expected to be. In particular, your TerrainBlock should be completely contained by the far-clip distance.

Viewing WaterPlane from a high altitude with a tight far-clip distance will accentuate this limitation. WaterPlane is primarily designed to be viewed from ground level.




Fields


	
float WaterPlane::gridElementSize


	Duplicate of gridElementSize for backwards compatility.






	
int WaterPlane::gridSize


	Spacing between vertices in the WaterBlock mesh.











          

      

      

    

  

    
      
          
            
  
WayPoint

Special type of marker, distinguished by a name and team ID number.


	Inherit:

	MissionMarker






Description

The original Torque engines were built from a multi-player game called Tribes. The Tribes series featured various team based game modes, such as capture the flag. The WayPoint class survived the conversion from game (Tribes) to game engine (Torque).

Essentially, this is a MissionMarker with the addition of two variables: markerName and team. Whenever a WayPoint is created, it is added to a unique global list called WayPointSet. You can iterate through this set, seeking out specific markers determined by their markerName and team ID. This avoids the overhead of constantly calling commandToClient and commandToServer to determine a WayPoint object’s name, unique ID, etc.

Example:

newWayPoint()
{
   team = "1";
   dataBlock = "WayPointMarker";
   position = "-0.0224786 1.53471 2.93219";
   rotation = "1 0 0 0";
   scale = "1 1 1";
   canSave = "1";
   canSaveDynamicFields = "1";
};








Fields


	
caseString WayPoint::markerName


	Unique name representing this waypoint.






	
WayPointTeam WayPoint::team


	Unique numerical ID assigned to this waypoint, or set of waypoints.











          

      

      

    

  

    
      
          
            
  
WheeledVehicle

A wheeled vehicle.


	Inherit:

	Vehicle






Description

A multi-wheeled vehicle.

The model used for the WheeledVehicle should contain the elements shown below. Only the collision mesh and hub nodes are actually required for the object to be added to the simulation, but the suspension will look strange if the spring animations are not present.


	Collision mesh

	A convex collision mesh at detail size -1.



	Hub nodes

	The model must contain a node for each wheel called hubN, where N is a an integer value starting from 0. For example, a four wheeled vehicle would have nodes: hub0, hub1, hub2, and hub3. The wheel model (specified by WheeledVehicleTire) is positioned at the hub node, and automatically rotated to the right orientation (whether on the left or right side of the vehicle).



	Spring animations

	To visualise the suspension action, the vehicle model should contain a non-cyclic animation sequence for each wheel that animates the appropriate hub node from t=0 (fully compressed to t=1 (fully extended). The sequences must be called springN, where N matches the wheel hub index.



	Steering animation

	Optional non-cyclic animation called ‘steering’ that animates from t=0 (full right) to t=0.5 (center) to t=1 (full left).”



	Brakelight animation

	Optional non-cyclic animation called ‘brakeLight’ that animates from t=0 (off) to t=1 (braking). This is usually a 2-frame animation controlling the visibility of a quad or mesh to represent each brake light.





The example below shows the datablocks required for a simple 4-wheeled vehicle. The script should be executed on the server, and the vehicle can then be added to the simulation programmatically from the level startup scripts, or by selecting the MyCar datablock from the World Editor (Library->ScriptedObjects->Vehicles).

Example:

datablock WheeledVehicleTire( MyCarTire )
{
   shapeFile = "art/shapes/wheel.dts";
   staticFriction = 4.2;
   kineticFriction = 1.0;

   lateralForce = 18000;
   lateralDamping = 6000;
   lateralRelaxation = 1;

   longitudinalForce = 18000;
   longitudinalDamping = 4000;
   longitudinalRelaxation = 1;
   radius = 0.61;
};

datablock WheeledVehicleSpring( MyCarSpring )
{
   length = 0.5;
   force = 2800;
   damping = 3600;
   antiSwayForce = 3;
};

datablock WheeledVehicleData( MyCar )
{
   category = "Vehicles";
   shapeFile = "art/shapes/car.dts";

   maxSteeringAngle = 0.585;

   // 3rd person camera settings
   cameraRoll = false;
   cameraMaxDist = 7.8;
   cameraOffset = 1.0;
   cameraLag = 0.3;
   cameraDecay = 1.25;

   useEyePoint = true;

   // Rigid Body
   mass = "400";
   massCenter = "0 -0.2 0";
   massBox = "0 0 0";

   drag = 0.6;
   bodyFriction = 0.6;
   bodyRestitution = 0.4;
   minImpactSpeed = 5;
   softImpactSpeed = 5;
   hardImpactSpeed = 15;
   integration = 8;
   collisionTol = 0.05;
   contactTol = 0.4;

   // Engine
   engineTorque = 4300;
   engineBrake = 5000;
   brakeTorque = 10000;
   maxWheelSpeed = 50;

   // Energy
   maxEnergy = 100;
   jetForce = 3000;
   minJetEnergy = 30;
   jetEnergyDrain = 2;

   // Sounds
   engineSound = CarEngineSnd;
   squealSound = CarSquealSnd;
   softImpactSound = SoftImpactSnd;
   hardImpactSound = HardImpactSnd;

   // Particles
   tireEmitter = "CarTireEmitter";
   dustEmitter = "CarTireEmitter";
   dustHeight = "1";
};

// This function is executed when the WheeledVehicle object is added to the// simulation.
function MyCar::onAdd( %this, %obj )
{
   Parent::onAdd( %this, %obj );

   // Setup the car with some tires & springsfor ( %i = %obj.getWheelCount() - 1; %i >= 0; %i-- )
   {
      %obj.setWheelTire( %i,MyCarTire );
      %obj.setWheelSpring( %i, MyCarSpring );
      %obj.setWheelPowered( %i, true );
   }

   // Steer with the front tires only
   %obj.setWheelSteering( 0, 1 );
   %obj.setWheelSteering( 1, 1 );
}








Methods


	
int WheeledVehicle::getWheelCount()


	Get the number of wheels on this vehicle.


	Returns

	the number of wheels (equal to the number of hub nodes defined in the model)










	
bool WheeledVehicle::setWheelPowered(int wheel, bool powered)


	Set whether the wheel is powered (has torque applied from the engine). A rear wheel drive car for example would set the front wheels to false, and the rear wheels to true.


	Parameters

	
	wheel – index of the wheel to set (hub node #)


	powered – flag indicating whether to power the wheel or not






	Returns

	true if successful, false if failed










	
bool WheeledVehicle::setWheelSpring(int wheel, WheeledVehicleSpring spring)


	Set the WheeledVehicleSpring datablock for this wheel.


	Parameters

	
	wheel – index of the wheel to set (hub node #)


	spring – WheeledVehicleSpring datablock






	Returns

	true if successful, false if failed





Example:

%obj.setWheelSpring( 0, FrontSpring );










	
bool WheeledVehicle::setWheelSteering(int wheel, float steering)


	Set how much the wheel is affected by steering. The steering factor controls how much the wheel is rotated by the vehicle steering. For example, most cars would have their front wheels set to 1.0, and their rear wheels set to 0 since only the front wheels should turn. Negative values will turn the wheel in the opposite direction to the steering angle.


	Parameters

	
	wheel – index of the wheel to set (hub node #)


	steering – steering factor from -1 (full inverse) to 1 (full)






	Returns

	true if successful, false if failed










	
bool WheeledVehicle::setWheelTire(int wheel, WheeledVehicleTire tire)


	Set the WheeledVehicleTire datablock for this wheel.


	Parameters

	
	wheel – index of the wheel to set (hub node #)


	tire – WheeledVehicleTire datablock






	Returns

	true if successful, false if failed





Example:

%obj.setWheelTire( 0, FrontTire );















          

      

      

    

  

    
      
          
            
  
WheeledVehicleData

Defines the properties of a WheeledVehicle.


	Inherit:

	VehicleData






Description

Defines the properties of a WheeledVehicle.




Fields


	
float WheeledVehicleData::brakeTorque


	Torque applied when braking. This controls how fast the vehicle will stop when the brakes are applied.






	
float WheeledVehicleData::engineBrake


	Braking torque applied by the engine when the throttle and brake are both 0. This controls how quickly the vehicle will coast to a stop.






	
SFXTrack WheeledVehicleData::engineSound


	Looping engine sound. The pitch is dynamically adjusted based on the current engine RPM






	
float WheeledVehicleData::engineTorque


	Torque available from the engine at 100% throttle. This controls vehicle acceleration. ie. how fast it will reach maximum speed.






	
SFXTrack WheeledVehicleData::jetSound


	Looping sound played when the vehicle is jetting.






	
float WheeledVehicleData::maxWheelSpeed


	Maximum linear velocity of each wheel. This caps the maximum speed of the vehicle.






	
SFXTrack WheeledVehicleData::squealSound


	Looping sound played while any of the wheels is slipping. The volume is dynamically adjusted based on how much the wheels are slipping.






	
ParticleEmitterData WheeledVehicleData::tireEmitter


	ParticleEmitterData datablock used to generate particles from each wheel when the vehicle is moving and the wheel is in contact with the ground.






	
SFXTrack WheeledVehicleData::WheelImpactSound


	Sound played when the wheels impact the ground. Currently unused.











          

      

      

    

  

    
      
          
            
  
WheeledVehicleSpring

Defines the properties of a WheeledVehicle spring.


	Inherit:

	SimDataBlock






Description

Defines the properties of a WheeledVehicle spring.




Fields


	
float WheeledVehicleSpring::antiSwayForce


	Force applied to equalize extension of the spring on the opposite wheel. This force helps to keep the suspension balanced when opposite wheels are at different heights.






	
float WheeledVehicleSpring::damping


	Force applied to slow changes to the extension of this spring. Increasing this makes the suspension stiffer which can help stabilise bouncy vehicles.






	
float WheeledVehicleSpring::force


	Maximum spring force (when compressed to minimum length, 0). Increasing this will make the vehicle suspension ride higher (for a given vehicle mass), and also make the vehicle more bouncy when landing jumps.






	
float WheeledVehicleSpring::length


	Maximum spring length. ie. how far the wheel can extend from the root hub position. This should be set to the vertical (Z) distance the hub travels in the associated spring animation.











          

      

      

    

  

    
      
          
            
  
WheeledVehicleTire

Defines the properties of a WheeledVehicle tire.


	Inherit:

	SimDataBlock






Description

Tires act as springs and generate lateral and longitudinal forces to move the vehicle. These distortion/spring forces are what convert wheel angular velocity into forces that act on the rigid body.




Fields


	
float WheeledVehicleTire::kineticFriction


	Tire friction when the wheel is slipping (no traction).






	
float WheeledVehicleTire::lateralDamping


	Damping force applied against lateral forces generated by the tire.






	
float WheeledVehicleTire::lateralForce


	Tire force perpendicular to the direction of movement. Lateral force can in simple terms be considered left/right steering force. WheeledVehicles are acted upon by forces generated by their tires and the lateralForce measures the magnitude of the force exerted on the vehicle when the tires are deformed along the x-axis. With real wheeled vehicles, tires are constantly being deformed and it is the interplay of deformation forces which determines how a vehicle moves. In Torque’s simulation of vehicle physics, tire deformation obviously can’t be handled with absolute realism, but the interplay of a vehicle’s velocity, its engine’s torque and braking forces, and its wheels’ friction, lateral deformation, lateralDamping, lateralRelaxation, longitudinal deformation, longitudinalDamping, and longitudinalRelaxation forces, along with its wheels’ angular velocity are combined to create a robust real-time physical simulation. For this field, the larger the value supplied for the lateralForce, the larger the effect steering maneuvers can have. In Torque tire forces are applied at a vehicle’s wheel hubs.






	
float WheeledVehicleTire::lateralRelaxation


	Relaxing force applied against lateral forces generated by the tire. The lateralRelaxation force measures how strongly the tire effectively un-deforms.






	
float WheeledVehicleTire::longitudinalDamping


	Damping force applied against longitudinal forces generated by the tire.






	
float WheeledVehicleTire::longitudinalForce


	Tire force in the direction of movement. Longitudinal force can in simple terms be considered forward/backward movement force. WheeledVehicles are acted upon by forces generated by their tires and the longitudinalForce measures the magnitude of the force exerted on the vehicle when the tires are deformed along the y-axis. For this field, the larger the value, the larger the effect acceleration/deceleration inputs have.






	
float WheeledVehicleTire::longitudinalRelaxation


	Relaxing force applied against longitudinal forces generated by the tire. The longitudinalRelaxation force measures how strongly the tire effectively un-deforms.






	
float WheeledVehicleTire::mass


	The mass of the wheel. Currently unused.






	
float WheeledVehicleTire::radius


	The radius of the wheel. The radius is determined from the bounding box of the shape provided in the shapefile field, and does not need to be specified in script. The tire should be built with its hub axis along the object’s Y-axis.






	
float WheeledVehicleTire::restitution


	Tire restitution. Currently unused.






	
filename WheeledVehicleTire::shapeFile


	The path to the shape to use for the wheel.






	
float WheeledVehicleTire::staticFriction


	Tire friction when the wheel is not slipping (has traction).











          

      

      

    

  

    
      
          
            
  
ZipObject

Provides access to a zip file.


	Inherit:

	SimObject






Description

A ZipObject add, delete and extract files that are within a zip archive. You may also read and write directly to the files within the archive by obtaining a StreamObject for the file.

Example:

// Open a zip archive, creating it if it doesn't exist
%archive = newZipObject();
%archive.openArchive("testArchive.zip", Write);

// Add a file to the archive with the given name
%archive.addFile("./water.png", "water.png");

// Close the archive to save the changes
%archive.closeArchive();








Methods


	
bool ZipObject::addFile(string filename, string pathInZip, bool replace)


	Add a file to the zip archive.


	Parameters

	
	filename – The path and name of the file to add to the zip archive.


	pathInZip – The path and name to be given to the file within the zip archive.


	replace – If a file already exists within the zip archive at the same location as this new file, this parameter indicates if it should be replaced. By default, it will be replaced.






	Returns

	True if the file was successfully added to the zip archive.










	
void ZipObject::closeArchive()


	Close an already opened zip archive.






	
void ZipObject::closeFile(SimObject stream)


	Close a previously opened file within the zip archive.


	Parameters

	stream – The StreamObject of a previously opened file within the zip archive.










	
bool ZipObject::deleteFile(string pathInZip)


	Deleted the given file from the zip archive.


	Parameters

	pathInZip – The path and name of the file to be deleted from the zip archive.



	Returns

	True of the file was successfully deleted.










	
bool ZipObject::extractFile(string pathInZip, string filename)


	Extact a file from the zip archive and save it to the requested location.


	Parameters

	
	pathInZip – The path and name of the file to be extracted within the zip archive.


	filename – The path and name to give the extracted file.






	Returns

	True if the file was successfully extracted.










	
String ZipObject::getFileEntry(int index)


	Get information on the requested file within the zip archive. This methods provides five different pieces of information for the requested file:


	filename - The path and name of the file within the zip archive


	uncompressed size


	compressed size


	compression method


	CRC32




Use getFileEntryCount() to obtain the total number of files within the archive.


	Parameters

	index – The index of the file within the zip archive. Use getFileEntryCount() to determine the number of files.



	Returns

	A tab delimited list of information on the requested file, or an empty string if the file could not be found.










	
int ZipObject::getFileEntryCount()


	Get the number of files within the zip archive. Use getFileEntry() to retrive information on each file within the archive.


	Returns

	The number of files within the zip archive.










	
bool ZipObject::openArchive(string filename, string accessMode)


	Open a zip archive for manipulation. Once a zip archive is opened use the various ZipObject methods for working with the files within the archive. Be sure to close the archive when you are done with it.


	Parameters

	
	filename – The path and file name of the zip archive to open.


	accessMode – One of read, write or readwrite






	Returns

	True is the archive was successfully opened.










	
SimObject ZipObject::openFileForRead(string filename)


	Open a file within the zip archive for reading. Be sure to close the file when you are done with it.


	Parameters

	filename – The path and name of the file to open within the zip archive.



	Returns

	is returned for working with the file.










	
SimObject ZipObject::openFileForWrite(string filename)


	Open a file within the zip archive for writing to. Be sure to close the file when you are done with it.


	Parameters

	filename – The path and name of the file to open within the zip archive.



	Returns

	is returned for working with the file.















          

      

      

    

  

    
      
          
            
  
Zone

An object that represents an interior space.


	Inherit:

	SceneObject






Description

A zone is an invisible volume that encloses an interior space. All objects that have their world space axis-aligned bounding boxes (AABBs) intersect the zone’s volume are assigned to the zone. This assignment happens automatically as objects are placed and transformed. Also, assignment is not exclusive meaning that an object can be assigned to many zones at the same time if it intersects all of them.

In itself, the volume of a zone is fully sealed off from the outside. This means that while viewing the scene from inside the volume, only objects assigned to the zone are rendered while when viewing the scene from outside the volume, objects exclusively only assigned the zone are not rendered.

Usually, you will want to connect zones to each other by means of portals. A portal overlapping with a zone

Example:

// Example declaration of a Zone.  This creates a box-shaped zone.newZone( TestZone )
{
   position = "3.61793 -1.01945 14.7442";
   rotation = "1 0 0 0";
   scale = "10 10 10";
};








Zone Groups

Normally, Zones will not connect to each other when they overlap. This means that if viewing the scene from one zone, the contents of the other zone will not be visible except when there is a portal connecting the zones. However, sometimes it is convenient to represent a single interior space through a combination of Zones so that when any of these zones is visible, all other zones that are part of the same interior space are visible. This is possible by employing “zone groups”.




Methods


	
void Zone::dumpZoneState(bool updateFirst)


	Dump a list of all objects assigned to the zone to the console as well as a list of all connected zone spaces.


	Parameters

	updateFirst – Whether to update the contents of the zone before dumping. Since zoning states of objects are updated on demand, the zone contents can be outdated.










	
int Zone::getZoneId()


	Get the unique numeric ID of the zone in its scene.


	Returns

	The ID of the zone.












Fields


	
ColorF Zone::ambientLightColor


	Color of ambient lighting in this zone. Only used if useAmbientLightColor is true.






	
string Zone::edge


	For internal use only.






	
string Zone::plane


	For internal use only.






	
string Zone::point


	For internal use only.






	
SFXAmbience Zone::soundAmbience


	Ambient sound environment for the space.






	
bool Zone::useAmbientLightColor


	Whether to use ambientLightColor for ambient lighting in this zone or the global ambient color.






	
int Zone::zoneGroup


	ID of group the zone is part of.











          

      

      

    

  

    
      
          
            
  
fxFoliageReplicator

An emitter to replicate fxFoliageItem objects across an area.


	Inherit:

	SceneObject






Description

An emitter to replicate fxFoliageItem objects across an area.




Fields


	
int fxFoliageReplicator::AllowedTerrainSlope


	Maximum surface angle allowed for foliage instances.






	
bool fxFoliageReplicator::AllowOnStatics


	Foliage will be placed on Static shapes when set.






	
bool fxFoliageReplicator::AllowOnTerrain


	Foliage will be placed on terrain when set.






	
bool fxFoliageReplicator::AllowOnWater


	Foliage will be placed on/under water when set.






	
bool fxFoliageReplicator::AllowWaterSurface


	Foliage will be placed on water when set. Requires AllowOnWater.






	
float fxFoliageReplicator::AlphaCutoff


	Minimum alpha value allowed on foliage instances.






	
int fxFoliageReplicator::CullResolution


	Minimum size of culling bins. Must be gt = 8 and lt = OuterRadius.






	
float fxFoliageReplicator::DebugBoxHeight


	Height multiplier for drawn culling bins.






	
float fxFoliageReplicator::FadeInRegion


	Region beyond ViewDistance where foliage fades in/out.






	
float fxFoliageReplicator::FadeOutRegion


	Region before ViewClosest where foliage fades in/out.






	
bool fxFoliageReplicator::FixAspectRatio


	Maintain aspect ratio of image if true. This option ignores MaxWidth.






	
bool fxFoliageReplicator::FixSizeToMax


	Use only MaxWidth and MaxHeight for billboard size. Ignores MinWidth and MinHeight.






	
int fxFoliageReplicator::FoliageCount


	Maximum foliage instance count.






	
filename fxFoliageReplicator::FoliageFile


	Image file for the foliage texture.






	
int fxFoliageReplicator::FoliageRetries


	Number of times to try placing a foliage instance before giving up.






	
float fxFoliageReplicator::GroundAlpha


	Alpha of the foliage at ground level. 0 = transparent, 1 = opaque.






	
bool fxFoliageReplicator::HideFoliage


	Foliage is hidden when set to true.






	
int fxFoliageReplicator::InnerRadiusX


	Placement area inner radius on the X axis.






	
int fxFoliageReplicator::InnerRadiusY


	Placement area inner radius on the Y axis.






	
bool fxFoliageReplicator::LightOn


	Foliage should be illuminated with changing lights when true.






	
bool fxFoliageReplicator::LightSync


	Foliage instances have the same lighting when set and LightOn is set.






	
float fxFoliageReplicator::lightTime


	Time before foliage illumination cycle repeats.






	
float fxFoliageReplicator::MaxHeight


	Maximum height of foliage billboards.






	
float fxFoliageReplicator::MaxLuminance


	Maximum luminance for foliage instances.






	
float fxFoliageReplicator::MaxSwayTime


	Maximum sway cycle time in seconds.






	
float fxFoliageReplicator::MaxWidth


	Maximum width of foliage billboards.






	
float fxFoliageReplicator::MinHeight


	Minimum height of foliage billboards.






	
float fxFoliageReplicator::MinLuminance


	Minimum luminance for foliage instances.






	
float fxFoliageReplicator::MinSwayTime


	Minumum sway cycle time in seconds.






	
float fxFoliageReplicator::MinWidth


	Minimum width of foliage billboards.






	
float fxFoliageReplicator::OffsetZ


	Offset billboards by this amount vertically.






	
int fxFoliageReplicator::OuterRadiusX


	Placement area outer radius on the X axis.






	
int fxFoliageReplicator::OuterRadiusY


	Placement area outer radius on the Y axis.






	
int fxFoliageReplicator::PlacementAreaHeight


	Height of the placement ring in world units.






	
ColorF fxFoliageReplicator::PlacementColour


	Color of the placement ring.






	
bool fxFoliageReplicator::RandomFlip


	Randomly flip billboards left-to-right.






	
int fxFoliageReplicator::seed


	Random seed for foliage placement.






	
bool fxFoliageReplicator::ShowPlacementArea


	Draw placement rings when set to true.






	
float fxFoliageReplicator::SwayMagFront


	Front-to-back sway magnitude.






	
float fxFoliageReplicator::SwayMagSide


	Left-to-right sway magnitude.






	
bool fxFoliageReplicator::SwayOn


	Foliage should sway randomly when true.






	
bool fxFoliageReplicator::SwaySync


	Foliage instances should sway together when true and SwayOn is enabled.






	
bool fxFoliageReplicator::UseCulling


	Use culling bins when enabled.






	
bool fxFoliageReplicator::UseDebugInfo


	Culling bins are drawn when set to true.






	
bool fxFoliageReplicator::useTrueBillboards


	Use camera facing billboards ( including the z axis ).






	
float fxFoliageReplicator::ViewClosest


	Minimum distance from camera where foliage appears.






	
float fxFoliageReplicator::ViewDistance


	Maximum distance from camera where foliage appears.











          

      

      

    

  

    
      
          
            
  
fxShapeReplicatedStatic

The object definition for shapes that will be replicated across an area using an fxShapeReplicator.


	Inherit:

	SceneObject






Description

The object definition for shapes that will be replicated across an area using an fxShapeReplicator.




Fields


	
bool fxShapeReplicatedStatic::allowPlayerStep


	Allow a Player to walk up sloping polygons in the TSStatic (based on the collisionType). When set to false, the slightest bump will stop the player from walking on top of the object.






	
TSMeshType fxShapeReplicatedStatic::collisionType


	The type of mesh data to use for collision queries.






	
TSMeshType fxShapeReplicatedStatic::decalType


	The type of mesh data used to clip decal polygons against.






	
int fxShapeReplicatedStatic::forceDetail


	Forces rendering to a particular detail level.






	
bool fxShapeReplicatedStatic::meshCulling


	Enables detailed culling of meshes within the TSStatic . Should only be used with large complex shapes like buildings which contain many submeshes.






	
bool fxShapeReplicatedStatic::originSort


	Enables translucent sorting of the TSStatic by its origin instead of the bounds.






	
bool fxShapeReplicatedStatic::playAmbient


	Enables automatic playing of the animation sequence named “ambient” (if it exists) when the TSStatic is loaded.






	
float fxShapeReplicatedStatic::renderNormals


	Debug rendering mode shows the normals for each point in the TSStatic’s mesh.






	
filename fxShapeReplicatedStatic::shapeName


	Path and filename of the model file (.DTS, .DAE) to use for this TSStatic .






	
string fxShapeReplicatedStatic::skin


	The skin applied to the shape. ‘Skinning’ the shape effectively renames the material targets, allowing different materials to be used on different instances of the same model. Any material targets that start with the old skin name have that part of the name replaced with the new skin name. The initial old skin name is “base”. For example, if a new skin of “blue” was applied to a model that had material targets base_body and face , the new targets would be blue_body and face . Note that face was not renamed since it did not start with the old skin name of “base”. To support models that do not use the default “base” naming convention, you can also specify the part of the name to replace in the skin field itself. For example, if a model had a material target called shapemat , we could apply a new skin “shape=blue”, and the material target would be renamed to bluemat (note “shape” has been replaced with “blue”). Multiple skin updates can also be applied at the same time by separating them with a semicolon. For example: “base=blue;face=happy_face”. Material targets are only renamed if an existing Material maps to that name, or if there is a diffuse texture in the model folder with the same name as the new target.











          

      

      

    

  

    
      
          
            
  
fxShapeReplicator

An emitter for objects to replicate across an area.


	Inherit:

	SceneObject






Description

An emitter for objects to replicate across an area.




Fields


	
bool fxShapeReplicator::AlignToTerrain


	Align shapes to surface normal when set.






	
int fxShapeReplicator::AllowedTerrainSlope


	Maximum surface angle allowed for shape instances.






	
bool fxShapeReplicator::AllowOnStatics


	Shapes will be placed on Static shapes when set.






	
bool fxShapeReplicator::AllowOnTerrain


	Shapes will be placed on terrain when set.






	
bool fxShapeReplicator::AllowOnWater


	Shapes will be placed on/under water when set.






	
bool fxShapeReplicator::AllowWaterSurface


	Shapes will be placed on water when set. Requires AllowOnWater.






	
bool fxShapeReplicator::HideReplications


	Replicated shapes are hidden when set to true.






	
int fxShapeReplicator::InnerRadiusX


	Placement area inner radius on the X axis.






	
int fxShapeReplicator::InnerRadiusY


	Placement area inner radius on the Y axis.






	
bool fxShapeReplicator::Interactions


	Allow physics interactions with shapes.






	
int fxShapeReplicator::OffsetZ


	Offset shapes by this amount vertically.






	
int fxShapeReplicator::OuterRadiusX


	Placement area outer radius on the X axis.






	
int fxShapeReplicator::OuterRadiusY


	Placement area outer radius on the Y axis.






	
int fxShapeReplicator::PlacementAreaHeight


	Height of the placement ring in world units.






	
ColorF fxShapeReplicator::PlacementColour


	Color of the placement ring.






	
int fxShapeReplicator::seed


	Random seed for shape placement.






	
int fxShapeReplicator::ShapeCount


	Maximum shape instance count.






	
filename fxShapeReplicator::shapeFile


	Filename of shape to replicate.






	
int fxShapeReplicator::ShapeRetries


	Number of times to try placing a shape instance before giving up.






	
Point3F fxShapeReplicator::ShapeRotateMax


	Maximum shape rotation angles.






	
Point3F fxShapeReplicator::ShapeRotateMin


	Minimum shape rotation angles.






	
Point3F fxShapeReplicator::ShapeScaleMax


	Maximum shape scale.






	
Point3F fxShapeReplicator::ShapeScaleMin


	Minimum shape scale.






	
bool fxShapeReplicator::ShowPlacementArea


	Draw placement rings when set to true.






	
Point3F fxShapeReplicator::TerrainAlignment


	Surface normals will be multiplied by these values when AlignToTerrain is enabled.











          

      

      

    

  

    
      
          
            
  
Array Manipulation

Arrays are data structures used to store consecutive values of the same data type. Arrays can be single-dimension or multidimensional:

$TestArray[n]   (Single-dimension)
$TestArray[m,n] (Multidimensional)
$TestArray[m_n] (Multidimensional)





If you have a list of similar variables you wish to store together, try using an array to save time and create cleaner code. The syntax displayed above uses the letters ‘n’ and ‘m’ to represent where you will input the number of elements in an array. The following example shows code that could benefit from an array:

$userNames[0] = "Heather";
$userNames[1] = "Nikki";
$userNames[2] = "Mich";

echo($userNames[0]);
echo($userNames[1]);
echo($userNames[2]);






Creating the Script

First, we need to create a new script:


	Navigate to your project’s game/scripts/client directory.


	Create a new script file called “arrays”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.


	Open your new script using a text editor or Torsion.




Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./arrays.cs");





This new script is going to work with two different arrays: $names and $board. $names is a single dimensional array containing strings. $board is a two dimensional array, also containing strings. The two are not related, but show off different uses of arrays. Let’s create the initialization function:

// Set up all of the arrays
// with default values
function initArrays()
{
   // Initialize single dimensional array
   // containing a list of names
   $names[0] = "Heather";
   $names[1] = "Nikki";
   $names[2] = "Mich";

   // Initialize two dimensional array
   // containing symbols for a
   // tic-tac-toe game

   // Row one values
   $board[0,0] = "_";
   $board[0,1] = "_";
   $board[0,2] = "_";

   // Row two values
   $board[1,0] = "_";
   $board[1,1] = "_";
   $board[1,2] = "_";

   // Row three values
   $board[2,0] = "_";
   $board[2,1] = "_";
   $board[2,2] = "_";
}





The above code defines the two arrays ($names and $board). $names is given three strings representing people’s names. $board is setup like a tic-tac-toe board. It will be making use of “X”s and “O”s, but for now the blank value is “_”.

Instead of manually calling this function every time the game is run, we can call the function on game initialization. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under this code:

exec("./arrays.cs");





Add the following:

initArrays();





Save the arrays.cs and init.cs scripts. Since there is nothing to see yet, create a function that will print out the values of $names:

// Print out all the values
// in the $names array
function printNames()
{
   // Print each name using
   // hard coded values (0,1,2)
   echo("0:" @ $names[0]);
   echo("1:" @ $names[1]);
   echo("2:" @ $names[2]);
}





To test your new script:


	Save the script


	Run your game


	Open the console by pressing the tilde (~) key


	Type the following, and press enter:

printNames();









The output is extremely basic. All you will see is the strings held by the array, by index:

0: Heather
1: Nikki
2: Mich





This is a good start, but what if the array has 1000 elements? An optimization for this function would be to make use of a looping structure. Modify the printNames() function to use the following code:

function printNames()
{
   // Iterate through the names
   // array and print the values
   for(%i = 0; %i < 3; %i++)
      echo(%i @ ": " @ $names[%i]);
}





Instead of having three (or 1000) echo statements, you only have to script two lines. The above code iterates through the elements of the $names array using a for(…) loop. To change an individual element, add the following function to your script:

// Change the value of an array item
// %id = index to change
// %name = the new value
function setNames(%id, %name)
{
   // Our array only contains three elements:
   // [0] [1] [2]
   // If anything other than 0, 1, or 2 is
   // passed in, inform the user of an error
   if(%id > 2 || %id < 0)
   {
      error("Index " @ %id @ " out of range");
      error("Please use 0 - 2 as the %id");
   }
   else
      $names[%id] = %name;
}





To use this function, run the game and open the console. The first variable determines which array index is changing, and the second variable is the new string (name) to use. Example usage:

setNames(0, "Brad");





If you try to pass in any other numbers besides 0, 1, or 2, you will get an error message letting you know you have tried to access outside of the array bounds. Moving on, the script needs functions for printing, manipulating, and testing the $board array.

To print out just the values in order, add the following function:

// Print out the the values
// in the $board array
function printBoardValues()
{
   // %i loops through rows
   for(%i = 0; %i < 3; %i++)
   {
      // %j loops through columns
      for(%j = 0; %j < 3; %j++)
      {
         // Print the value of the [%i,%j]
         echo("[" @ %i @ "," @ %j @ "]: " @ $board[%i, %j]);
      }
   }
}





The above code uses the concept of nested loops. Nested loops are simply loops within other loops. Notice there are two for(…) structures set up. This allows the iteration of each row and column, which is necessary with a two-dimensional array. Calling this function will result in the following output:

[0,0]: _
[0,1]: _
[0,2]: _
[1,0]: _
[1,1]: _
[1,2]: _
[2,0]: _
[2,1]: _
[2,2]: _





As you can see, the function prints the current index and the value it contains. Being a tic-tac-toe board, it might help to visualize the board based on value locations. The following function will print the values of $board in a relative format:

// Print tic-tac-toe board
// in a relative format
function printBoard()
{
   // Print out an entre row in 1 echo
   echo($board[0,0] @" "@ $board[0,1] @" "@ $board[0,2]);
   echo($board[1,0] @" "@ $board[1,1] @" "@ $board[1,2]);
   echo($board[2,0] @" "@ $board[2,1] @" "@ $board[2,2]);
}





The initial output without changing the values will look like this:

_ _ _
_ _ _
_ _ _





If you have never played tic-tac-toe, each player takes a turn putting an X or O in one of the board positions. When three X’s or O’s are lined up, a player wins. The alignment can be three in a row, three in a column, or three diagonally. We can simulate this game play, but we will only work with rows.

We are going to change this function a few times, but we will start with the shell:

// Set a specific value in the array
// to an X or O
function setBoardValue(%row, %column, %value)
{
   // Make sure "X" or "O" was passed in
   if(%value !$= "X" && %value !$= "O")
   {
      echo("Invalid entry:\nPlease use \'X\' or \'O\'");
      return;
   }
}





The user will input a row index (%row), a column index (%column), and a value (%value) represented by an “X” or “O” string. If anything other than a capital X or capital O are passed in, the function will throw an error message and exit. If the function gets past the check, the value is assigned:

// Set a specific value in the array
// to an X or O
function setBoardValue(%row, %column, %value)
{
   // Make sure "X" or "O" was passed in
   if(%value !$= "X" && %value !$= "O")
   {
      echo("Invalid entry:\nPlease use \'X\' or \'O\'");
      return;
   }

   // Set the board value
   $board[%row, %column] = %value;
}





Save the script and run. Call the following functions, in order, to see the results:

printBoard();
setBoardValue(0,0,"X");
setBoardValue(0,1,"O");
printBoard();





Your output should look like the following:

_ _ _
_ _ _
_ _ _

X O _
_ _ _
_ _ _





To reset back to the default values, you can create a function that iterates through the array:

// Set all values of $board
// array back to "nothing"
// In this case, nothing is _
function resetBoard()
{
   // %i loops through rows
   for(%i = 0; %i < 3; %i++)
   {
      // %j loops through columns
      for(%j = 0; %j < 3; %j++)
      {
         // Set value to _
         $board[%i, %j] = "_";
      }
   }
}





Now, any normal game will have a victory condition. Enable to win, a row must contain three of the same value. Creating a function for this is quite simple using array access and string comparisons:

// Compare the values of each array
// item in a row
// If row contains the same values
// Return true for a victory
// Return false if values are different
function checkForWin()
{
   // Make sure at least the first symbol is X or O
   // Then compare the three values of a row

   // Row 1
   if($board[0,0] !$= "_" && $board[0,0] $= $board[0,1] && $board[0,1] $= $board[0,2])
      return true;

   // Row 2
   if($board[1,0] !$= "_" && $board[1,0] $= $board[1,1] && $board[1,1] $= $board[1,2])
      return true;

   // Row 3
   if($board[2,0] !$= "_" && $board[2,0] $= $board[2,1] && $board[2,1] $= $board[2,2])
      return true;

   return false;
}





The checkForWin() function will return true if any of the three if(…) statements pass. If there is no win condition, the function will return false. In a previous guide, you learned about the $= operator. Alternatively, you can use a function to compare two strings: strcmp(…).

The strcmp(…) function takes in two string, compares the two, then return a 1 or 0 based on the comparison. If the two strings are the same, it will return a 0. If the two strings are different, it will return a 1.

Example:

%string1 = "Hello";
%string2 = "Hello";
%string3 = "World";

// Returns 0
strcmp(%string1, %string2);

// Returns 1
strcmp(%string1, %string3);





We can replace the $= operators in the checkForWin() function using a different set of operators. Comment out the first chunk of code, and replace it with the following:

function checkForWin()
{
   // Make sure at least the first symbol is X or O
   // Then compare the three values of a row
   //if($board[0,0] !$= "_" && $board[0,0] $= $board[0,1] && $board[0,1] $= $board[0,2])
      //return true;
      //
   //if($board[1,0] !$= "_" && $board[1,0] $= $board[1,1] && $board[1,1] $= $board[1,2])
      //return true;
      //
   //if($board[2,0] !$= "_" && $board[2,0] $= $board[2,1] && $board[2,1] $= $board[2,2])
      //return true;

   if($board[0,0] !$= "_" && !strcmp($board[0,0], $board[0,1]) && !strcmp($board[0,1], $board[0,2]))
      return true;

   if($board[0,0] !$= "_" && !strcmp($board[1,0], $board[1,1]) && !strcmp($board[1,1], $board[1,2]))
      return true;

   if($board[0,0] !$= "_" && !strcmp($board[2,0], $board[2,1]) && !strcmp($board[2,1], $board[2,2]))
      return true;

   return false;
}





Let’s break down the if(…) statements to see what is going on:

if($board[0,0] !$= "_" &&)





The first part checks to see if the row contains a blank entry (“_”). If this is true, then there is no point checking for anything else. The row does not have three similar values, so the function can move on to check the rest of the rows:

!strcmp($board[0,0], $board[0,1])





If the first check succeeds, the values of the row’s first and second column are compared. If they are the same, a 0 is returned. Instead of catching the return value in a variable and testing it, we can just use the logical NOT (!) operator.

If the first two columns are the same, we can just compare the third column to one of the others. There is no point in making three string comparisons:

&& !strcmp($board[0,1], $board[0,2])





There are most likely more optimized ways to check for this kind of situation, but the above code demonstrates multiple syntactical approaches and comparisons. We can now have a way to check for a victory condition. Go back into the setBoardValue(…) function and add the win check:

function setBoardValue(%row, %column, %value)
{
   // Make sure "X" or "O" was passed in
   if(%value !$= "X" && %value !$= "O")
   {
      echo("Invalid entry:\nPlease use \'X\' or \'O\'");
      return;
   }

   // Set the board value
   $board[%row, %column] = %value;

   // Check to see if we have the same
   // three values in a row
   if(checkForWin())
   {
      // Entire row matched
      // Print a victory message
      echo("\n**********************");
      echo("*    Win Condition!  *");
      echo("**********************\n");

      // Print the board
      printBoard();

      // Reset the game
      echo("\nResetting board");
      resetBoard();
   }
}





Remember, the checkForWin() functions returns a true if the game has been won. The first portion of the code prints a message about the victory. After that, the board is printed to show what row won, and then resets the game.

While this version of the game is very rudimentary, you should be able to expand it by checking for columns and diagonals. There is plenty of room for optimization and more functions to make the game easier. However, this is not necessary to learning a powerful game engine like Torque 3D.







          

      

      

    

  

    
      
          
            
  
Camera Modes





          

      

      

    

  

    
      
          
            
  
Echo

Start by running a Torque 3D project. Once the game is up, open the console by pressing the tilde (~) key. In the console, type the following:

echo("Hello World");

OUTPUT: Hello World





Now, let’s make use of the second parameter. Passing in a value for the second argument will append it to your text:

echo("Hello World", 3);

OUTPUT: Hello World3





Notice how there is no space between World and 3. The optional text is appended exactly how you type it. If you want, you can include your own white space to format the output:

echo("Hello World: ", 5);

OUTPUT: Hello World: 5





As you can see, the colon and space are included in the output. 5 is still appended, but does not ignore the whitespace. In addition to echo(…), there are two other output functions you will find useful. Their syntax and functionality are nearly identical to echo, but the output is different.

The two functions I’m referring to are warn(…) and error(…). You can post a message in the console and log the same way you echo:

warn("Be careful. Something bad might happen");

error("Something has gone horribly wrong");

OUTPUT:
Be careful. Something bad might happen (teal color)
Something has gone horribly wrong (red color)





You can use these functions to output multicolored text to the console, which will help you identify problems with your scripts.


Creating the Script

There is no real reason to have a script full of echo statements. You will want to use echo(…) while debugging your other functions. However, as an example, you can create a script consisting only of output statements.

First, we need to create a new script:


	Navigate to your project’s game/scripts/client directory.


	Create a new script file called “Output.cs”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs


	Open your new script using a text editor or Torsion.




Add the following code to the script:

//-----------------------------------------------------------------------------
// Torque 3D
// Copyright (C) GarageGames.com 2000 - 2009 All Rights Reserved
//-----------------------------------------------------------------------------

// Create a nice border effect around these echos, makes it easier to find
echo("************************************************************");
echo("************************************************************");

// Standard use
echo("Hello");
echo("World");
echo("Hello World");

// With escape commands
echo("H\ne\nl\nl\no\nW\no\nr\nl\nd\n");

// Appending
echo("Hello World", 1);
echo("Hello World ", 2);
echo("Hello World: ", 3);

// Warning
warn("Warning! Watch for teal text");

// Error
error("Something has gone horribly wrong");
echo("************************************************************");
echo("************************************************************");





Save the script now.




Testing the Script

Open game/scripts/client/init.cs and locate the initClient() function. At the end of that function, execute your new script by typing the following:

exec("./Output.cs");





Run your game, then open the console by pressing tilde (~). Look for the long string of asterisks (*), and you will find your echo statements. Note: you may need to scroll up to find the echo statements.







          

      

      

    

  

    
      
          
            
  
Engine to Script





          

      

      

    

  

    
      
          
            
  
Calling Functions

Once a function is written, you can call it from script or the console. You only need to know the name of the function and its parameters, if it has any. The echo function is the easiest method to start with. It is a stock ConsoleFunction which accepts up to 2 parameters:

// Print "Hello World" in the console
// Only passing in 1 argument
echo("Hello World");





The echo command can actually make use of 2 arguments, depending on your goal:

// Print "HelloWorld" in the console
// Passing in 2 arguments

%hello = "Hello";
%world = "World";

echo(%hello, %world);





If your function does not use arguments, you do not have to type anything in the parenthesis:

// Function declaration
function CreateLevels()
{
   echo("Levels Created");
}

// Calling the function
CreateLevels();





The last way to call a method is invoking a member function. You can call the member functions of an object, such as a Player, using a scoping symbol:

// Player function "doSomething"
// %this - The Player class/object
// %action - String to print out
function Player::doSomething(%this, %action)
{
   echo(%action);
}

// Create a player object
%myPlayer = new Player(){...};

// Call "doSomething" member function
%myPlayer.doSomething("Dance");






Creating the Script

Now that you know how to declare and call functions, we can create a few examples from scratch. First, we need to create a new script:


	Navigate to your project’s game/scripts/client directory.


	Create a new script file called “sampleFunctions”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs


	Open your new script using a text editor or Torsion.




Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./sampleFunctions.cs");





Now, let’s write an extremely simple function that prints a message to the console. The echo(…) function already performs this, but we are going to create a more intuitively named method to work with. Type the following in the script:

// Print a message to the console
// Kind of repetitiously redundant
// %message - The message to print
function printMessage(%message)
{
   echo(%message);
}





To test your new script:


	Save


	Run your game


	Open the console by pressing the tilde (~) key


	Type the following, pressing enter after each line:

printMessage("Of melodies pure and true,");
printMessage("Sayin, this is my message to you-ou-ou");









Fairly straight forward. From here on, it will be assumed you know how to save your script, run the game, and call functions in the console. Next, let’s create a function that takes multiple parameters. Write the following code in your script:

// Print two separate strings to the console
// Equally redundant in equality
// %part1 - First part of message
// %part2 - Second part of message
function printAdvancedMessage(%part1, %part2)
{
   echo(%part1, %part2);
}





Run the game and type the following in the console:

printAdvancedMessage("Singin: dont worry about a thing,", "\ncause every little thing gonna be all right");





In a single function call, the above code will write out two separate lyrics on different lines. Every game always has at least one initialization function. Some even have multiple inits. We can write a function that creates and initializes a few game specific variables. Note, that the variables used here are completely new and not used by stock Torque 3D projects:

// Change global game variables to default values
function resetGameVariables()
{
   // Game's name
   $GameName = "Blank";

   // Player's name
   $PlayerName = "Player";

   // Game play type
   $GameType = "Default";
}





The above code simply declares three global variables and sets them to default values. Every time this function is called, the same logic will execute. If you were to call this in the console, you will not see anything for output. Let’s add a function to do this:

// Print our game's information to the console
function printGameInformation()
{
   echo("Game Name: ", $GameName);
   echo("Player's Name: ", $PlayerName);
   echo("Game Type: ", %gameType);
}





Save your new script and run the game. In the console, you will need to call the init function before the print function. Invoke the functions in this order:

resetGameVariables();
printGameInformation();





Instead of manually setting each variable in the console, we can write a “set” function for our game variables. Add the following to your script:

// Set the global game variables
// %gameName - Game's name
// %playerName - Player's name
// %gameType - Game play type
function setGameVariables(%gameName, %playerName, %gameType)
{
   $GameName = %gameName;
   $PlayerName = %playerName;
   $GameType = %gameType;
}





Now, you can set your game variables to whatever you wish through a single function call:

setGameVariables("Ars Moriendi", "Mich", "Survival Horror");

printGameInformation();

resetGameVariables();

printGameInformation();





We will get into creating member functions in a later section of the script documentation. For now, you should know enough about functions to move on.







          

      

      

    

  

    
      
          
            
  
Looping Structures

There are two types of used in TorqueScript: for and while loops. A for loop repeats a statement or block of code for a set number of iterations. A while loop on the other hand repeats a statement or block of code as long as an expression given to the while loop remains true.

for Loop Syntax:

for(expression0; expression1; expression2)
{
    statement(s);
}





One way to label the expressions in this syntax are (startExpression; testExpression; countExpression). Each expression is separated by a semi-colon.

while Loop Syntax:

while(expression)
{
    statements;
}





As soon as the expression is met, the while loop will terminate.

Example For Loop:

for(%count = 0; %count < 3; %count++)
{
    echo(%count);
}

OUTPUT:
0
1
2





While Loop:

%countLimit = 0;

while(%countLimit <= 5)
{
   echo("Still in loop");
   %count++;
}
echo("Loop was terminated");

OUTPUT:
Still in loop
Still in loop
Still in loop
Still in loop
Still in loop
Loop was terminated






Creating the Script

First, we need to create a new script:


	Navigate to your project’s game/scripts/client directory.


	Create a new script file called “loops”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.


	Open your new script using a text editor or Torsion.




Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./loops.cs");





We will start with a very basic loop. Add the following to your script:

// Print 0 -> %count in the console
function printNumbers(%count)
{
   for(%i = 0; %i < %count; %i++)
   {
      echo(%i);
   }
}





The above function takes in a single argument (%count). The for(…) loop uses three expressions. The first is declaration expression. This is the setup for the loop. In this example, the iterator is defined. The iterator is the variable that will change each loop.

The second expression sets up the condition that will cause the loop to terminate. In the above code, when the iterator is no longer less than the %count variable, the loop will end. Finally, the third expression is the logic that occurs after each loop. In our example, we increment the count of our iterator.

The main logic is enclosed in brackets after the loop declaration. In above code, the iterator (%i) is printed to the console each loop. To test your new script:


	Save the script


	Run your game


	Open the console by pressing the tilde (~) key


	Type the following, and press enter:

printNumbers(10);









Your output should look like the following:

0
1
2
3
4
5
6
7
8
9





As expected, the iterator is printed to the console then incremented by 1. Notice that it stops when it gets to 9, even though 10 was passed in. Look at the second expression’s logic again:

%i < %count;





When %i reaches 10, then it is equal to the %count passed in which is also 10. 10 is not less than 10. As soon as that expression failed, the loop terminated. To get the full ten count, modify the function to use a different logic check:

function printNumbers(%count)
{
   for(%i = 0; %i <= %count; %i++)
   {
      echo(%i);
   }
}





Now, when you call the following code in the console:

printNumbers(10);





Your output should be:

0
1
2
3
4
5
6
7
8
9
10





You can apply different modifiers to your iterator. You do not always have to use an incremental counter. Add the following function to your script:

// Print %startCount -> 0 in the console
function countdown(%startCount)
{
   for(%i = %startCount; %i >= 0; %i--)
   {
      echo(%i);
   }
}





Save and run. Now you can see a countdown from a base number, as the following shows:

countdown(5);





Output:

5
4
3
2
1
0





An important keyword to remember when working with for(…) loops is continue. The continue keyword will cause a loop to immediately skip to the next iteration, similar to how the return keyword works in a function. Add the following function to see it work:

// Print 0 -> %count, except %skipNumber, in the console
function skipCount(%count, %skipNumber)
{
   for(%i = 0; %i <= %count; %i++)
   {
      if(%i == %skipNumber)
         continue;

      echo(%i);
   }
}





In the above code, when the iterator (%i) exactly matches the %skipNumber variable, the loop immediately goes to the next iteration. This ignores the echo(…) command on the next line. Try calling this in the console:

skipCount(5, 4);





The output should be:

0
1
2
3
5





Instead of terminating soon as the iterator reached 4, a continue keyword was used to skip to the next loop iteration. If a less complex loop is desired, the while(…) structure will be handy.

Add the following function to your script:

// Increase %count incrementally until it is no
// longer less than %breakNumber
function whileExample(%count, %breakNumber)
{
   // While the count is less than the breaknumber
   while(%count < %breakNumber)
   {
      // Print the count
      echo(%count);

      // Increase the count
      %count++;
   }
}





In this new function, the loop will check the expression in the parenthesis each time it completes an iteration. The body of the loop, contained in the brackets, simply prints the %count variable and then increases. You must be careful with loops, especially while(…) structures. The wrong use of variables can result in an infinite loop which will freeze your game.

Break is another keyword that affects looping structures. It will immediately terminate the loop. The following function shows proper use of a while loop avoiding infinite cycling:

// Increase %iterator until it is equal to
// %conditional. When it is, break out of
// the infinite loop
function breakOut(%iterator, %conditional)
{
   // If iterator is less than conditional
   // we will be stuck in an infinite loop
   // Error out and exit function.
   if(%iterator > %conditional)
   {
      error("Iterator is greater than conditional, try again");
      return;
   }

   // Loop infinitely until a condition is met
   while(true)
   {
      // Condition has been met, break out.
      if(%iterator == %conditional)
         break;

      echo(%iterator);

      %iterator++;
   }
}





Before the loop even starts, an if(…) check is made to make sure the variables used by the loop will insure a proper break. The goal of the loop is to continue iterating until the %iterator variable is equal to the %conditional.

The while(true) syntax creates the “infinite” loop. However, it will not loop infinitely since a break keyword is used. Once the %iterator is equal to the %conditional, a break is called. Otherwise, the %iterator is printed to the console and then increased.

To see the output, call the following in the console (pressing enter after each line):

breakOut(10,1);
breakOut(10,10);
breakOut(0, 10);





Output:

Iterator is greater than conditional, try again

0
1
2
3
4
5
6
7
8
9





The first call gives you the error message. The second call immediately causes the loop to terminate since the two variables are already equal. The last call provides the proper output of the function.

The last concept we will cover is nested loops. These are loops within other loops. For the next example, the terminology should be addressed first. The first loop is identical to the structures you have created in the past.

The nested loop is declared inside the first loop. Remember, it is important to be smart about your variable names. You can name your iterators anything you want, such as using %iterator instead of %i. If you go with the longer name, then it would make sense to name your second iterator something like “%iteratorTwo”.

The naming convention for loop iterators is preferential. The use of %i typically stands for iterator. In quite a few programming primers (such as the ones this writer has read), the second iterator is often named %j. For these simple examples, you can get away with this. In more complex or critical loops, you might want to name your iterators based on what the loop does.

Add the following function:

// Run a nested loop
// Print messages, color based on level
function nestedLoops()
{
   // Max iteration for first loop
   %firstCount = 10;

   // Execute first loop %firstCount times
   for(%i = 0; %i < %firstCount; %i++)
   {
      // Print in teal
      warn("Running main loop: " @ %i);
   }
}





Run the function in the console, and you should see the following printed in a teal color:

Running main loop: 0
Running main loop: 1
Running main loop: 2
Running main loop: 3
Running main loop: 4
Running main loop: 5
Running main loop: 6
Running main loop: 7
Running main loop: 8
Running main loop: 9





For the nested loop, we will stick with a pattern. A second count variable should be declared, and the nested loop should perform a similar operation. Modify the function to use this pattern:

// Run a nested loop
// Print messages, color based on level
function nestedLoops()
{
   // Max iteration for first loop
   %firstCount = 10;

   // Max iteration for nested loop
   %secondCount = 2;

   // Execute first loop %firstCount times
   for(%i = 0; %i < %firstCount; %i++)
   {
      // Execute nested loop %secondCount times
      for(%j = 0; %j < %secondCount; %j++)
      {
         // Print in red
         error("Running nested loop: " @ %j);
      }
      // Print in teal
      warn("Running main loop: " @ %i);
   }
}





Run this function again to see the new output:

Running nested loop: 0
Running nested loop: 1
Running main loop: 0
Running nested loop: 0
Running nested loop: 1
Running main loop: 1
Running nested loop: 0
Running nested loop: 1
Running main loop: 2
Running nested loop: 0
Running nested loop: 1
Running main loop: 3
Running nested loop: 0
Running nested loop: 1
Running main loop: 4
Running nested loop: 0
Running nested loop: 1
Running main loop: 5
Running nested loop: 0
Running nested loop: 1
Running main loop: 6
Running nested loop: 0
Running nested loop: 1
Running main loop: 7
Running nested loop: 0
Running nested loop: 1
Running main loop: 8
Running nested loop: 0
Running nested loop: 1
Running main loop: 9





Your console output will be color-coded. The main loop output should still be teal, and the nested loop output should be red. Here is the breakdown of the full loop:


	First loop starts


	Main iterator (%i) starts at 0


	Nested loop starts


	Second iterator (%j) starts at 0


	Print second iterator (0)


	Increment second iterator


	Print second iterator (1)


	End nested loop


	Print first iterator


	Increment first loop


	Go back to step 3, repeat until first loop ends




Based on the default values, the nested loop will execute 10 times. Its iterator will reset each time the first loop iterates. Try adjusting the %firstCount and %secondCount variables to see the varying outputs if you are still trying to understand the concept.







          

      

      

    

  

    
      
          
            
  
Math

There are two types of variables you can declare and use in TorqueScript: local and global. Both are created and referenced similarly:

%localVariable = 1;
$globalVariable = 2;





As you can see, local variable names are preceded by the percent sign (%). Global variables are preceded by the dollar sign ($). Both types can be used in the same manner: operations, functions, equations, etc. The main difference has to do with how they are scoped.

In programming, scoping refers to where in memory a variable exists during its life. A local variable is meant to only exist in specific blocks of code, and its value is discarded when you leave that block. Global variables are meant to exist and hold their value during your entire programs execution.


Creating the Script

First, we need to create a new script:


	Navigate to your project’s game/scripts/client directory.


	Create a new script file called “maths”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.


	Open your new script using a text editor or Torsion.




Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./maths.cs");





Standard arithmetic operators are the easiest to script. Start by adding this function to your new script:

// Print the sum of %a and %b
function addValues(%a, %b)
{
   %sum = %a + %b;

   echo("Sum of " @ %a @ " + " @ %b @ ": ", %sum);
}





This simple function takes in two numerical arguments. A new variable, %sum, holds the result of adding the two arguments together. Finally, an echo(…) statement is formatted to print the original values (%a and %b) and the sum (%sum of the two).

To test your new script:


	Save the script


	Run your game


	Open the console by pressing the tilde (~) key


	Type the following, pressing enter after each line:

addValues(1,1);
addValues(2,3);
addValues(-3,2);









Your console output should look like this:

Sum of 1 + 1: 2
Sum of 2 + 3: 5
Sum of -3 + 2: -1





As you can see, you can use positive or negative numbers. You can also use floating point (decimal) values if you wish. Add the following script code to test the other basic arithmetic operations:

// Print the difference between %a and %b
function subtractValues(%a, %b)
{
   %difference = %a - %b;

   echo("Difference between " @ %a @ " - " @ %b @ ": ", %difference);
}

// Print the product of %a and %b
function multiplyValues(%a, %b)
{
   %product = %a * %b;

   echo("Product of " @ %a @ " * " @ %b @ ": ", %product);
}

// Print the quotient of %a and %b
function divideValues(%a, %b)
{
   %quotient = %a / %b;

   echo("Quotient of " @ %a @ " / " @ %b @ ": ", %quotient);
}

// Print remainder of %a divided by %b
function moduloValue(%a, %b)
{
   %remainder = %a % %b;

   echo("Remainder of " @ %a @ " % " @ %b @ ": ", %remainder);
}





You will use the same process of scripting, saving, running the game, and calling the functions via the console that has been previously discussed above. Another way of manipulating values involves more complex operators. Standard additions, subtraction, etc, use two operators: assignment (=) and arithmetic (+, -, *, etc).

You can increase or decrease the value of a variable by using the auto-increment and auto-decrement operators. As soon as the operation completes, the variable is permanently changed. You do not need to use an assignment operator in this case. Use the following script code to test it out:

// Print the increment of %a
function incrementValue(%a)
{
   %original = %a;
   %a++;

   echo("Single increment of " @ %original @ ": ", %a);
}

// Print the decrement of %a
function decrementValue(%a)
{
   %original = %a;
   %a--;

   echo("Single decrement of " @ %original @ ": ", %a);
}





As you can see, the original value of %a had to be stored before the increment/decrement operation was applied. The ++ and – automatically adjust the variable for you. Another non-basic manipulation involves combining the assignment operator with an arithmetic operator:

// Print the result of a+=b
function addToValue(%a, %b)
{
   %original = %a;
   %a += %b;

   echo("Sum of " @ %original @ " += " @ %b @ ": ", %a);
}





In the above example, the + and = are combined together for a single operation. In simple terms, %a += %b can be verbalized as “A equals itself plus B.” Unlike the addValue(…) function written earlier, a third variable is not used in this equation. This operation can be applied to the other arithmetic operators.

The last topic we will cover in this guide is comparison operators. As the name implies, these operators will compare two values together and produce a boolean (1 or 0) based on the results. Add the following function to see the first example:

// Compare %a to %b, then print the relation
function compareValues(%a, %b)
{
   if(%a > %b)
      echo("A is greater than B");
}





The above code is very straight forward. The values of %a and %b are compared to each other to see which is higher. Test the comparison code in the console using the following:

compareValues(2,1);
compareValues(3,2);
compareValues(1,2);
compareValues(0,0);





The output should be the following:

A is greater than B
A is greater than B
<no output>
<no output>





The first two calls will prove the comparison as “true”, and print out the message. The comparison results to false on the last two calls, so nothing will be printed. The rest of the function showing off the comparison operators can be copied over what you currently have:

// Compare %a to %b, then print the relation
function compareValues(%a, %b)
{
   // Printing symbols just as a decorator
   // Makes it easier to isolate the print out
   echo("\n====================================");

   // Print out the value of %a and %b
   echo("\nValue of A: ", %a);
   echo("Value of B: ", %b);

   if(!%a)
      echo("\nA is a zero value\n");
   else
      echo("\nA is a non-zero value\n");

   if(!%b)
      echo("B is a zero value\n");
   else
      echo("B is a non-zero value\n");

   if(%a && %b)
      echo("Both A and B are non-zero values\n");

   if(%a || %b)
      echo("Either A or B is a non-zero value\n");

   if(%a == %b)
      echo("A is exactly equal to B\n");

   if(%a != %b)
      echo("A is not equal to B\n");

   if(%a < %b)
      echo("A is less than B");
   else if(%a <= %b)
      echo("A is less than or equal to B");

   if(%a > %b)
      echo("A is greater than B");
   else if(%a >= %b)
      echo("A is greater than or equal to B");

   // Printing symbols just as a decorator
   // Makes it easier to isolate the print out
   echo("\n====================================");
}





I have added “decorator text” to help separate console output and make the output easier to read. Notice that each operation uses an if(…) statement to compare. Remember, the if(…) code is based on checking for a 1 (true) or 0 (false) value. This is all a comparison operation will return.







          

      

      

    

  

    
      
          
            
  
Networking





          

      

      

    

  

    
      
          
            
  
Player Class





          

      

      

    

  

    
      
          
            
  
Player Datablock





          

      

      

    

  

    
      
          
            
  
Projectiles





          

      

      

    

  

    
      
          
            
  
Proximity Mines





          

      

      

    

  

    
      
          
            
  
RTS Prototype





          

      

      

    

  

    
      
          
            
  
Shapebase Class





          

      

      

    

  

    
      
          
            
  
String Manipulation

Text, such as names or phrases, are supported as strings. Numbers can also be stored in string format. Standard strings are stored in double-quotes:

"abcd"    (string)





Example:

$UserName = "Heather";





Strings with single quotes are called “tagged strings.”:

'abcd'  (tagged string)





Tagged strings are special in that they contain string data, but also have a special numeric tag associated with them. Tagged strings are used for sending string data across a network. The value of a tagged string is only sent once, regardless of how many times you actually do the sending.

On subsequent sends, only the tag value is sent. Tagged values must be de-tagged when printing. You will not need to use a tagged string often unless you are in need of sending strings across a network often, like a chat system.

There are special values you can use to concatenate strings and variables. Concatenation refers to the joining of multiple values into a single variable. The following is the basic syntax:

"string 1" operation "string 2"





You can use string operators similarly to how you use mathematical operators (=, +, -, *). You have four operators at your disposal:

@      (concatenates two strings)
TAB    (concatenation with tab)
SPC    (concatenation with space)
NL     (newline)






Creating the Script

First, we need to create a new script:


	Navigate to your project’s game/scripts/client directory.


	Create a new script file called “stringManip”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.


	Open your new script using a text editor or Torsion.




Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./stringManip.cs");





In the new script, define three global variables at the very top as shown in the following code:

$PlayerName = "Player";
$GameName = "Default";
$BattleCry = "Hello World";





These are the strings that will be manipulated in this script. To test one of the variables, write the following function:

// Print player name string
function printPlayerName()
{
   echo($PlayerName);
}





The printPlayerName() function simply prints out the string value held by $PlayerName to the console. To test your new script:


	Save the script


	Run your game


	Open the console by pressing the tilde (~) key


	Type the following, and press enter:

printPlayerName();









The output is extremely basic. All you will see is the string held by the variable. We can perform some string manipulation to print out something more descriptive. Change the function code to the following:

// Print player name string
function printPlayerName()
{
   // Concatenate "Player's Name" with the variable
   // Containing the name
   echo("Player's Name: " @ $PlayerName);
}





Now, when you call the function you will see the following output:

Player's Name: Default





This kind of string formatting and manipulation will make debugging and management a lot easier. Add the following code to achieve the same affect for the $GameName variable:

// Print game name string
function printGameName()
{
   // Concatenate "Game Name" with the variable
   // Containing the name
   echo("Game Name: " @ $GameName);
}





We will do something slightly different with the battle cry. You can store the result of a string manipulation in a variable before you use it. This will come in handy for saving permanent changes for strings and numbers. Use the following code to create a new function:

// Print battle cry string
function printBattleCry()
{
   // Concatenate the string in $PlayerName
   // with the static string yelled: "
   %message = $PlayerName @ " yelled: \"";

   // Concatenate the value of %message with
   // the string in $BattleCry and the " symbol
   // Store the results in the %message variable
   %message = %message @ $BattleCry @ "\"";

   // Print the new string after it
   // has been manipulated
   echo(%message);
}





The printBattleCry() function starts by defining a new local variable (%message) and assigning it the value of the $PlayerName concatenated with a static string. The second line concatenates the new %message variable with the contents of $BattleCry, and wraps the quotation mark around the actual phrase. In the same line, the %message variable is replaced with itself + the concatenated string.

Let’s go ahead and create a function to print all of the variables out with a little decoration. Add the following to your script:

// Print all the game strings using a single function
function printGameStrings()
{
   echo("\n***********************************");
   echo("*         GAME STATS              *");
   echo("***********************************\n");

   echo("Game Name: " @ $GameName);
   echo("Player's Name: " @ $PlayerName);
   echo($PlayerName @ " battle cry: \"" @ $BattleCry @ "\"");
}





When you call this function in the console, you will get the following output:

***********************************
*         GAME STATS              *
***********************************

Game Name: Default
Player's Name: Player
Player battle cry: "Hello World"





So far we have been concatenating and printing out strings. You can also assign string values using the assignment operator (=), and compare string values using the string equality operator ($=).

The following function uses the operators to adjust the game string variables:

// Set game strings with other strings
// %playerName will be assigned to $PlayerName
// %gameName will be assigned to $GameName
// %battleCry will be assigned to $BattleCry
function setGameStrings(%playerName, %gameName, %battleCry)
{
   // Check to see if the two strings are identical
   // If so, do nothing and print a message.
   // Otherwise, assign the new string
   if($PlayerName $= %playerName)
      echo("New player name is identical. Doing nothing");
   else
      $PlayerName = %playerName;
}





The above function takes in three variables containing strings, one of which is used initially. The first if(…) check compares $PlayerName to %playerName. If the two are identical, the assignment of a new value will not occur. A message will be printed to console instead.

You can also apply the logical NOT (!) operator to a comparison to achieve the opposite test:

// Check to see if the two strings are different
// If so, assign the new string
// Otherwise, do nothing and print a message.
if($GameName !$= %gameName)
   $GameName = %gameName;
else
   echo("Game name is identical. Doing nothing");





In this check, if the two strings are NOT the same, then the new value assignment will occur. Otherwise, a message is printed to the console. You can go ahead and add the last portion of the code handling the %battleCry assignment:

// Check to see if the two strings are identical
// If so, do nothing and print a message.
// Otherwise, assign the new string
if($BattleCry $= %battleCry)
  echo("Battle cry is identical. Doing nothing");
else
  $BattleCry = %battleCry;











          

      

      

    

  

    
      
          
            
  
Switch Statements

There are two types of switch statements used in TorqueScript. switch(…) is used to compare numerical values and switch$(…) is used to compare strings.

Standard switch statements use numerical values to determine which case to execute.

switch Syntax:

switch(<numeric expression>)
{
   case value0:
       statements;
   case value1:
       statements;
   case value3:
       statements;
   default:
       statements;
}





Switch statements requiring string comparison use the switch$ syntax.

switch$ Syntax:

switch$ (<string expression>)
{
   case "string value 0":
                statements;
   case "string value 1":
                statements;
...
   case "string value N":
                statements;
   default:
                statements;
}






Creating the Script

First, we need to create a new script:


	Navigate to your project’s game/scripts/client directory.


	Create a new script file called “switch”. In Torsion, right click on the directory, click the “New Script” option, then name your script. On Windows or OS X, create a new text file and change the extension to .cs.


	Open your new script using a text editor or Torsion.




Before writing any actual script code, we should go ahead and tell the game it should load the script. Open game/scripts/client/init.cs. Scroll down to the initClient function. Under the // Client scripts section, add the following:

Execute our new script:

exec("./switch.cs");





The first function we are going to write will take in a numerical argument. This number will be checked for a specific value, and a message will be printed based on the value comparison. Create the following function in your script:

// Print a message to a console based on
// the amount of ammo a weapon has
// %ammoCount - Ammo count (obviously)
function checkAmmoCount(%ammoCount)
{
   // If the ammo is at 0, we are out of ammo
   // If the ammo is at 1, we are at the end of the clip
   // If the ammo is at 100, we have a full clip
   // If the ammo is anything else, we do not care
   if(%ammoCount == 0)
      echo("Out of ammo, time to reload");
   else if(%ammoCount == 1)
      echo("Almost out of ammo, warn user");
   else if(%ammoCount == 100)
      echo("Full ammo count");
   else
      echo("Doing nothing");
}





To test your new script:


	Save the script


	Run your game


	Open the console by pressing the tilde (~) key


	Type the following, press enter after each line:

checkAmmoCount(0);
checkAmmoCount(1);
checkAmmoCount(100);
checkAmmoCount(44);









Your console output should be the following:

Out of ammo, time to reload

Almost out of ammo, warn user

Full ammo count

Do nothing





Instead of using four separate if/else checks, we can use a single switch statement to handle all of the cases. Change the checkAmmoCount(…) function to use the following code:

// Print a message to a console based on
// the amount of ammo a weapon has
// %ammoCount - Ammo count (obviously)
function checkAmmoCount(%ammoCount)
{
   // If the ammo is at 0, we are out of ammo
   // If the ammo is at 1, we are at the end of the clip
   // If the ammo is at 100, we have a full clip
   // If the ammo is anything else, we do not care
   switch(%ammoCount)
   {
      case 0:
         echo("Out of ammo, time to reload");
      case 1:
         echo("Almost out of ammo, warn user");
      case 100:
         echo("Full ammo count");
      default:
         echo("Doing nothing");
   }
}





The switch is declared using the switch(%ammoCount){…} syntax. The test value is kept in the parenthesis, and the cases are defined in the brackets. Each case you wish to check for is defined by the keyword case, the value, and a colon (case: 0).

You can write as few or as many lines of TorqueScript code between cases as you need to handle each numerical value. The default keyword is used when you want to handle a value that does not have a defined case. Without the default case, any other value besides was is defined as a case will be ignored.

If you test the function as you did previously, you should get the same result:

checkAmmoCount(0);
checkAmmoCount(1);
checkAmmoCount(100);
checkAmmoCount(44);





Result:

Out of ammo, time to reload

Almost out of ammo, warn user

Full ammo count

Do nothing





Testing strings in switch statements requires a small syntactical change. There are multiple ways to perform a string comparison. Write the following function in your script:

// Check to see if a person's name is
// a known user
// %userName - String containing person's name
function matchNames(%userName)
{
   if(!strcmp(%userName, "Heather"))
      echo("User Found: " @ %userName);
   else if(%userName $= "Mich")
      echo("User Found: " @ %userName);
   else if(%userName $= "Nikki")
      echo("User Found: " @ %userName);
   else
      echo("User " @ %userName @ " not found");
}





The above code defines a function which takes in a string as an argument, then performs three separate string comparison to find a result. The first if(…) check uses the strcmp function to check the %userName variable against a static string (“Heather”).

The two other checks use the basic $= string equality operator. Finally, an else statement exists to inform the system that no user was found. Run the script and type the following to test the function:

matchNames("Heather");
matchNames("Mich");
matchNames("Nikki");
matchNames("Brad");





Output:

User Found: Heather
User Found: Mich
User Found: Nikki
User Brad not found





Instead of four separate if/else string comparison statements, a single switch can clean the code up greatly. Replace the matchNames(…) function with the following:

// Check to see if a person's name is
// a known user
// %userName - String containing person's name
function matchNames(%userName)
{
   switch$(%userName)
   {
      case "Heather":
         echo("User Found: " @ %userName);
      case "Mich":
         echo("User Found: " @ %userName);
      case "Nikki":
         echo("User Found: " @ %userName);
      default:
         echo("User: " @ %userName @ " not found");
   }
}





Just like the switch statement used in the checkAmmoCount(…) function, the above code starts with the switch$ keyword. This is followed by the string we are testing, held in the parenthesis. Instead of numerical values, the case keywords are followed by a strings.

In the above example, the case statements are comparing the test (%userName) against string literals. String literals are raw text displayed in code between quotations. If you have variables that contain a string value to test against, you can use those instead.

As with a numerical switch statement, you can write your logic in between the case statements.







          

      

      

    

  

    
      
          
            
  
TShapeConstructor





          

      

      

    

  

    
      
          
            
  
Turrest





          

      

      

    

  

    
      
          
            
  
Weapons





          

      

      

    

  

    
      
          
            
  
Basic Clouds

Once you have decided on your level’s sky, whether it’s a Skybox or ScatterSky, you can continue to customize the scene with clouds. There are two cloud objects you can choose between: Basic and Advanced Clouds. This guide covers the Basic Clouds object.

The Basic Cloud system renders up to three textures to separate layers, at varying heights, detail levels, and speeds. Though basic and less memory intensive, you can build very detailed and realistic clouds for your level.


Adding a Basic Clouds Object

To add a Basic Clouds object: select the Library tab in the Scene Tree panel. Click on the Level tab and then double-click the Environment folder. Locate the Basic Clouds entry.

[image: ../_images/BasicCloudLibrary.jpg]
Double-click the Basic Clouds entry and a dialog will appear:

[image: ../_images/CreateBasicCloud.jpg]
Enter a name for your clouds object then click the Create New button. A Basic Clouds object will be added to your level. Three separate cloud layers will be rendering and moving across the sky slowly:

[image: ../_images/BasicCloudAdded.jpg]



Basic Cloud Properties

Additional properties can be changed with the Inspector pane. To change a Basic Clouds properties using the Inspector Pane click the Scene tab, then click the name of your new Basic Cloud object. The Inspector pane will update to display the current properties of your new sun.


Inspector


	name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.



	rotation

	MatrixOrientation. Object world orientation.



	scale

	Point3F. Object world scale.








BasicClouds


	layerEnabled

	TypeBool. Enable or disable rendering of this layer.



	texture

	TypeImageFilename. Texture for this layer.



	texScale

	TypeF32. Texture repeat for this layer.



	texDirection

	TypePoint2F. Direction texture scrolls for this layer.



	texSpeed

	TypeF32. Speed texture scrolls for this layer.



	texOffset

	TypePoint2F. UV offset for this layer.



	height

	TypeF32. Abstract number which controls the curvature and height of the dome mesh.








Editing


	isRenderEnabled

	TypeBool. Only render if true (and if class is render-enabled, too



	isSelectionEnabled

	TypeBool. Determine if the object may be selected from within the Tools.








Object


	internalName

	TypeString. Non-unique name used by child objects of a group.



	parentGroup

	TypeString. Group object belongs to.



	class

	TypeString. Links object to script class namespace.



	superClass

	TypeString. Links object to script super class (parent) namespace.










Cloud Layers

While editing your Basic Clouds object, you may discover the need to view and edit individual layers. Open the BasicClouds section of the Inspector pane. Under the Layers sub-section you will find three layers labeled by an index. Each index refers to a layer and determines rendering order. The layer[0] will be rendered first, layer[1] next, and finally layer[2]. In simpler terms:


	layer[0] is drawn on top of the sky


	layer[1] is drawn on top of layer[0]


	layer[2] is drawn on top of layer[1].




You can adjust the visibility of each layer by toggling the layerEnabled property. If all three layers are disabled the Basic Clouds object will not be visible at all:


[image: ../_images/DisableLayer0.jpg]
Layer 0 Disabled




[image: ../_images/DisableLayer1.jpg]
Layer 1 Disabled




[image: ../_images/DisableLayer2.jpg]
Layer 2 Disabled






Regarding Movement

Unfortunately, static images cannot properly show how the remaining fields affect the Basic Cloud layers, since they all pertain to the motion of the clouds. Clouds can only move horizontally, they can not move up and down. This horizontal movement is described in the texDirection property.

The texDirection property takes two values, separated by a space: “X Y”. Each value corresponds to the axis a texture should scroll on as well as the direction of movement on that axis.. The range of each value is -1.0 to 1.0. For example: A value of “1 0” will scroll the texture directly along the X axis in the positive direction with no movement along the Y axis.

A single property, texSpeed, controls how fast the cloud layer moves. If the property is set to 0, the cloud layer will not move. The higher the number, the faster your cloud texture will scroll across the sky.

With the texOffset property you can displace how the multiple textures line up or overlap with each based upon whatever looks visually best. For example, at the seam where the texture repeats, you might want that to be on the horizon rather than directly overhead. Adjusting the texOffset helps you visually adjust this. If you have a grasp of UV animation, this will come naturally.







          

      

      

    

  

    
      
          
            
  
Basic Sun

Proper global lighting can dramatically change the appearance of a level, as well as aid in certain game play aspects, such as providing a day and night cycle. The Sun object is used to control the global lighting settings in the level. The main settings include ambient coloring, azimuth, and elevation. The lighting effects produced by the Sun are 100% dynamic, which means as soon as you change a setting it is immediately reflected in the level. In short, the Sun lets you control the day/night cycle of your level.


Adding a Basic Sun

To add a Sun start by opening the Library tab in the Scene Tree dialog. Once the Library tab is active, click on Level sub-tab, then double-click the Environment subcategory.

[image: ../_images/EnvironmentObjects.jpg]
Double-clicking the Basic Sun object will open the Create Object Dialog. From here, you can change a few basic properties, such as the name, starting color, and location. Enter a name then click the Create New button.

[image: ../_images/AddSun.jpg]



Basic Sun Properties

Additional properties can be changed with the Inspector pane. To change the Sun properties using the Inspector Pane click the Scene tab, then click the name of your new sun object. The Inspector pane will update to display the current properties of your new sun.


Inspector


	name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.



	rotation

	MatrixOrientation. Object world orientation.



	scale

	Point3F. Object world scale.








Transform


	azimuth

	TypeF32. The horizontal angle of the sun measured clockwise from the positive Y world axis.



	elevation

	TypeF32. The elevation angle of the sun above or below the horizon.








Lighting


	color

	TypeColorF. Color shading applied to surfaces in direct contact with light source.



	ambient

	TypeColorF. Color shading applied to surfaces not  in direct contact with light source, such as in the shadows or interiors.



	brightness

	TypeF32. Adjust the global Sun contrast/intensity.



	castShadows

	TypeBool. Enables/disables shadows cast by objects due to Sun light.








Corona


	coronaEnabled

	TypeBool. Enable or disable rendering of the corona sprite.



	coronaMaterial

	TypeMaterialName. Material for the corona sprite.



	coronaScale

	TypeF32. Scale the rendered size of the corona (texture size * coronaScale = visible pixel dimensions).



	coronaTint

	TypeColorF. Modulates the corona sprite color (if coronaUseLightColor is false).



	coronaUseLightColor

	TypeBool. Modulate the corona sprite color by the color of the light (overrides coronaTint).








Misc


	flareType

	TypeLightFlareDataPtr. Datablock for the flare and corona produced by the Sun.



	flareScale

	TypeF32. Changes the size and intensity of the flare.








Advanced Lighting


	attenuationRatio

	TypePoint3F. The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.



	shadowType

	TypeEnum. The type of shadow to use on this light.



	cookie

	TypeStringFilename. A custom pattern texture which is projected from the light.



	texSize

	TypeS32. The texture size of the shadow map.



	overDarkFactor

	TypePoint4F. The ESM shadow darkening factor.



	shadowDistance

	TypeF32. The distance from the camera to extend the PSSM shadow.



	shadowSoftness

	TypeF32. Adjusts shadow edge clarity.



	numSplits

	TypeF32. The logrithmic PSSM split distance factor.



	logWeight

	TypeF32. The logrithmic PSSM split distance factor.



	fadeStartDistance

	TypeF32. Start fading shadows out at this distance.  0 equates to  auto calculate this distance.



	lastSplitTerrainOnly

	TypeBool. This toggles only terrain being rendered to the last split of a PSSM shadow map.








Advanced Lighting Lightmap


	representedInLightmap

	TypeBool. This light is represented in lightmaps (static light, default: false).



	shadowDarkenColor

	TypeColorF. The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if representedInLightmap is false).



	includeLightmappedGeometryInShadow

	TypeBool. This light should render lightmapped geometry during its shadow-map update (ignored if representedInLightmap is false).










Azimuth and Elevation

The Azimuth and Elevation fields are very important to determining the global position of the sun, which affects the lighting intensity and shadow casting for every object in your level. You cannot think of these two fields as numbers that simply move your sun or make it higher. Azimuth and Elevation are actually angles:


[image: ../_images/azimuth.jpg]
Azimuth



Elevation (El) is measured between 0 and 180 degrees. It refers to the vertical angle measured from the geometric horizon (0°) towards the zenith (+90°).


	0° will place the Sun at one end of the horizon as though it were just about to rise or set.


	90° will place the Sun directly over the level, shining straight down.


	180° will place the Sun at the opposite end of the horizon as though it were just about to rise or set.




Azimuth ranges between 0 and 360 degrees, and refers to a horizontal angle which determines the direction the Sun is facing in the level.


	0° is true North.


	90° is due east.


	180° is due south.


	270 is due west.




If you have a completely flat terrain with no objects, it will be difficult for you to visually measure the position of the Sun. You can use any object you want as a reference, but make sure you have your camera fixed on it to see the changes that you are making.




Adjusting Elevation

Go ahead and set the Azimuth and Elevation of the Sun to 0, which should give you a very dark level.

[image: ../_images/Elevation0.jpg]
At this point, the angle of the Sun matches the horizon of your level perfectly. By increasing the elevation to 45, and you will see the objects in your level begin to cast short shadows. If you dont see the shadows changing make sure that you do not have more than one sun in your scene. The World Builder allows more than one sun in a scene, which obviously will change the light and shadows within a level.

[image: ../_images/Elevation45.jpg]
Thinking back to angles, if 0° is parallel with the horizon, then 90° degrees will be directly overhead. Change the elevation to 90. You will see all of the shadows for the objects are directly below, just as in real life when the sun is sitting at zenith (straight overhead).

[image: ../_images/Elevation90.jpg]
Setting the elevation to 180 will place the Sun at the opposite end of the horizon, once again resulting in a dark level. If you really focus, there is a slight change in shadow direction than when the elevation was 0°.

[image: ../_images/Elevation180.jpg]



Adjusting Azimuth

The Azimuth of the Sun is measured clockwise from a fixed overhead perspective. To help you understand this rotation, we are going to adjust the Aazimuth of the Sun so that shadows of an object rotate like a sun dial or hands on a clock.

If you set the elevation to 45 and azimuth to 0, it will look like the shadow is pointing at 12 o’clock (if viewed from overhead).

[image: ../_images/Azimuth0.jpg]
Now, increase the azimuth by 45. At a sharp 45° angle, the shadow looks like it is pointing at 1 o’clock.

[image: ../_images/Azimuth45.jpg]
If you set the azimuth property to 90, you will notice a very familiar angle. The object and its shadow are forming a perfect right angle.

[image: ../_images/Azimuth90.jpg]
Half of a full rotation is 180°. After Setting the azimuth to this value, the shadow will now be pointing in the opposite direction from its original state.

[image: ../_images/Azimuth180.jpg]
Now, set the azimuth property to 270 and watch as the shadow points to 9 O’clock. The shadow should be pointing directly opposite from the 90° setting.

[image: ../_images/Azimuth270.jpg]
Finally, set the azimuth to 360. We have achieved full rotation. Careful examination will show that even though your shadows are pointing in the same direction as the 0° setting, they have been flipped.

[image: ../_images/Azimuth360.jpg]



Standard Lighting

The last topic we are going to touch on that is specific to the Sun object is standard lighting. Under the Lighting properties of the sun object there are three variables to adjust. Checking the castShadows box will cause surfaces to project shadows based on the direction of the sunlight. Removing the check will disable any shadows cast due to the Sun. If you uncheck that box you’ll see that the shadows you have been observing will not be displayed at all.

In addition to creating shadows, the light from the Sun will also affect the color shading of all surfaces in the level. There is a subtle, yet important difference between the color and ambient fields. If you want realistic lighting color, you will need to tweak both values.

The value of the color field will shade all surfaces that are in direct contact with the sunlight. A completely black color will make it seem like there is no light at all. Using the color picker to choose an orange hue will result in a sunset appearance for your level.

Ambient light is the available light in a space, whether from natural or mechanical sources. It is applied to everything in the world and also contributes to the direct lighting of the sun. The ambient field will lighten dark shadows and brighten well lit surfaces based on the color value.







          

      

      

    

  

    
      
          
            
  
Cloud Layer

Once you have decided on your level’s sky, whether it’s a Sky Box or Scatter Sky, you can continue to customize the scene with clouds. There are two cloud objects you can choose between. This guide covers the Cloud Layer object.

The Cloud Layer object uses the material system and procedurally generates clouds in the atmosphere. This cloud layer is extremely powerful and flexible. For the most realistic simulation of an atmosphere, the Cloud Layer is highly recommended.


Adding a Cloud Layer

To add a Cloud Layer object, select the Library tab in the Scene Tree panel. Click on the Level tab and double-click the Environment folder. Locate the Cloud Layer entry:

[image: ../_images/AdvCloudLibrary.jpg]
Double-click the Cloud Layer entry. The Create Object dialog box will appear:

[image: ../_images/CreateAdvCloud.jpg]
Enter a name for your Cloud Layer object then click the Create New button. A Cloud Layer object will be added to your level. The three procedural cloud layers generated by the Cloud Layer object will be rendering and moving across the sky slowly:

[image: ../_images/AdvCloudAdded.jpg]
At any time you can toggle the visibility of the cloud layer by locating the isRenderEnabled field under the Editing properties:

[image: ../_images/ToggleBasicCloudRender.jpg]
When you toggle this property, the clouds will render according to the status of the check box:

[image: ../_images/BCRenderDisable.jpg]



Cloud Layer Properties

Additional properties can be changed with the Inspector pane. To change a Cloud Layers properties using the Inspector Pane, click the Scene tab, and then click the name of your new Cloud Layer object. The Inspector pane will update to display the current properties of your new sun.


Inspector


	Name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.



	rotation

	MatrixOrientation. Object world orientation.



	scale

	Point3F. Object world scale.








CloudLayer


	texture

	TypeImageFilename. An RGBA texture which should contain normals and opacity/height.



	baseColor

	TypeColorF. Base cloud color.



	exposure

	Brightness scale so CloudLayer can be overblown if desired.



	coverage

	TypeF32. Fraction of sky covered by clouds 0 to 1.



	windSpeed

	Wind speed.



	height

	TypeF32. Abstract number which controls the curvature and height of the dome mesh.








Editing


	isRenderEnabled

	TypeBool. Toggle whether rendering of this object is enabled.



	isSelectionEnabled

	TypeBool. Toggle whether to allow selection in the editor.



	hidden

	TypeBool. Toggle whether this object is visible.



	locked

	TypeBool. Toggle whether this object can be changed.








Mounting


	mountPID

	Unique identifier of the mount.



	mountNode

	Node where the mount occurs.



	mountPos

	Offset for positioning the node.



	mountRot

	Rotation of this object in relation to the mount node.








Object


	internalName

	TypeString. Non-unique name used by child objects of a group.



	parentGroup

	TypeString. Group object belongs to.



	class

	TypeString. Links object to script class namespace.



	superClass

	TypeString. Links object to script super class (parent) namespace.








Persistence


	canSave

	TypeBool Toggle whether the object can be saved in the editor.



	canSaveDynamicFields

	TypeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.



	persistentId

	Unique ID of this object.










Cloud Layers

While editing your Cloud Layer object, you may discover the need to edit individual layers. Under the Textures property section you will find layers labeled by an index. Each index refers to a layer and determines rendering order. The layer[0] will be rendered first, layer[1] next, and finally layer[2]. In simpler terms:


	layer[0] is drawn on top of the sky.


	layer[1] is drawn on top of layer[0].


	layer[2] is drawn on top of layer[1].




Unlike the Basic Clouds object, you cannot toggle the visibility of each layer. All three work together for procedural generation.




Editing Cloud Texture

The very first visual modification you can make is selecting a texture. This is the first field under the CloudLayer properties. The stock Cloud Layer uses the following normal map:

[image: ../_images/clouds_normal_displacement.png]
Cloud Layer does not use a diffuse texture. Color is calculated per-pixel based on the normal map using the sun/ambient/fog colors. It is designed to work with the ScatterSky and TimeOfDay where simple/constant diffuseMap based color will not work. For the procedural layer to work, the texture needs to be 4-channel. RGB (red blue green) is a normal map and A (alpha) is the transparency.




Regarding Movement

Unfortunately, static images cannot properly show how the remaining fields affect the Cloud Layer since they all pertain to the motion of the clouds. Clouds can only move horizontally, they can not move up and down. This horizontal movement is described in the texDirection property.

The texDirection property takes two values, separated by a space: “X Y”. Each value corresponds to the axis a texture should scroll on as well as the direction of movement on that axis. The range of each value is -1.0 to 1.0. For example, a value of “1 0” will scroll the texture directly along the X axis in the positive direction with no movement along the Y axis.

Two properties control how fast the cloud layer moves: texSpeed and windSpeed. The windSpeed property is a global modifier, whereas texSpeed will affect a single layer. The two are added to each other to determine a layer’s final speed. If either is set to 0, the cloud layer will not move. The higher the number, the faster your cloud texture will scroll across the sky.







          

      

      

    

  

    
      
          
            
  
Ground Cover

The Ground Cover system allows you to spread many objects throughout your entire level. This object makes use of the Terrain Material system, applying textures or 3D objects on a per-layer basis. The most practical uses of Ground Cover include:


	Creating large fields of foliage (grass, wheat, etc.)


	Automatic placement of shapes and environmental textures on specific terrain types.


	Providing another layer of environmental realism when combined with Forest Editor and Replicators.





Adding Ground Cover

To add a ground Cover object to a level, select the Library tab in the Scene Tree panel. Click on the Level tab and double-click the Environment folder. Locate the Ground Cover entry.

[image: ../_images/GroundCoverLibrary.jpg]
Double-click the Ground Cover entry. The Create Object dialog will appear.

[image: ../_images/CreateGroundCover.jpg]
If you already have a material or shape you want to use, you can set them here. Materials are used to paint the ground with textures which can contain transparency so that the underlying ground shows through. A Shape File is used to replicate 3D objects on the ground. Enter a name for you Ground Cover object then click the Create New button. A new Ground Cover object will be added to your level. Without a material, the system will render a pattern on the ground with the default “No Material” texture:

[image: ../_images/GroundCoverAdded.jpg]
To change the No Material indicators to a real Material scroll through the Ground Cover properties until you get to the Ground Cover General section. In the Material field, click on the globe to open the Material Selector:


[image: ../_images/GCMaterialField.jpg]
Material Field



When the Material Selector appears, you have the option to pick an existing material or create a new one in the Material Editor.




Assigning Terrain Material

When you first add a Ground Cover object, it will place the material or shape on the entire terrain. To limit the placement of Ground Cover, you must set the terrain layer. To set the terrain layer with the Ground Cover selected, scroll down to the Ground Cover General set of fields. Find the Types sub-section.

[image: ../_images/GCLayers.jpg]
Types is an array with each entry controlling a section of the Ground Cover. If this is confusing, think of it like this as follows. The Ground Cover is a single object that is covering the entire terrain. The object itself is comprised of eight sections, Types[0] through Types[7]. Each section can be told what, where, and how to render a material or shape. You can feasibly have the Ground Cover object rendering simultaneously on eight different terrain layers.

With the above information in mind, you can assign the Ground Cover to terrain materials. Scroll through the properties until you get to Types[0]. Click on the box icon in the layer field. The Material Selector for terrains should appear. Select a material such as the dirt_grass shown here:

[image: ../_images/GCPickGrass.jpg]
After you click the Select button, the Ground Cover will stop placing billboards on the entire terrain. It should now only be placing the foliage on the specific terrain layer you chose.

[image: ../_images/GCCoverGrass.jpg]
If you are having a difficult seeing this change, locate the maxElements field and increase the value dramatically:

[image: ../_images/GCIncreaseCount.jpg]






          

      

      

    

  

    
      
          
            
  
Ground Plane

The Ground Plane object provides you with a solid piece of geometry that acts as floor for a level, while avoiding the use of a terrain object or big plane mesh. You can assign a material to the Ground Plane so that it has a unique appearance. Unlike terrain, a Ground Plane cannot be manipulated like a normal ground surface raising or lowering areas of it.

From a practical perspective, the Ground Plane object is most useful for creating prototype missions or experimenting with models or other objects. An example would be creating a demo to show a model or material, when you do not care about the surface you are displaying them on. This type of situation only requires a flat surface within the level to drop them on. A Ground Plane object is a perfect candidate to supply that surface. For actual game play levels, you will most likely want to use a TerrainBlock.


Adding a Ground Plane

To add a Ground Plane to a level, switch to the Object Editor tool and select the Library tab. Click on the Level tab. Double-click the Environment folder and locate the Ground Plane entry.

[image: ../_images/Library_GroundPlane.jpg]
Double-click the GroundPlane entry.

[image: ../_images/NewGroundPlane.jpg]
A new GroundPlane will automatically be added to your scene. A “no material” orange texture will be applied.

[image: ../_images/GroundPlaneAdded.jpg]



Ground Plane Properties

Properties can be changed with the Inspector pane. To change a Ground Planes properties using the Inspector Pane click the Scene tab, then click the name of your new Ground Plane object. The Inspector pane will update to display the current properties of your new Ground Plane.


Inspector


	Name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Plane


	squareSize

	F32. World units per grid cell edge.



	scaleU

	F32. Scale factor for U texture coordinates.



	scaleV

	F32. Scale factor for V texture coordinates.



	Material

	TypeMaterialName. Instantiated material based on given material name.








Editing


	isRenderEnabled

	TypeBool. Toggles whether the object is rendered.



	isSelectionEnabled

	TypeBool. Toggles whether the object is selectable in the editor.



	hidden

	TypeBool. Toggles whether the object is visible.



	locked

	TypeBool. Toggles whether the object is editable.








Mounting


	mountPID

	TypeName. PersistentID of the object we are mounted to.



	mountNode

	TypeName. Node object is mounted to.



	mountPos

	TypeName. Position in relation to the mounted node.



	mountRot

	TypeName. Rotation in relation to the mounted node.








Object


	internalName

	typeString. Non-unique name used by child objects of a group.



	parentGroup

	typeString. Group object belongs to.



	class

	TypeString. Links object to a script class namepsace.



	superClass

	TypeString. Links object to a script super class (parent) namespace.








Persistence


	canSave

	TypeName. Optional global name of this object.



	canSaveDynamicFields

	typeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.



	persistentId

	TypeName. Optional global name of this object.










Modifying Scale

The material currently displayed on the object is a general warning texture:

[image: ../_images/WarnMat.png]
You can change the way this material is tiled across the plane by adjusting the square size and UV scale. Scroll through the properties until you get to the Plane set.

[image: ../_images/GPPlaneProperties.jpg]
Start by observing the squareSize. At 256, you will notice that each tile is large and stretching the material further. We can push more tiles per meter with tighter UV scaling. Set the squareSize to 128, then set scaleU and scaleV to 2.

[image: ../_images/HigherUV.jpg]
The words on the material are much closer and appear to have been shrunken.

[image: ../_images/FinalUV.jpg]



Changing Material

The warning material is a bit of an eyesore, so we will change that now. Click on the Material property in the Plane section of properties to bring up a list of available materials.

[image: ../_images/MaterialMenu.jpg]
Select a material then click the Select button. Your GroundPlane will automatically be updated to use the new material you have selected.

[image: ../_images/NewMaterialAdded1.jpg]
That is the extent of your control over the material displayed on a GroundPlane. If you are using an extremely large texture, you could increase the squareSize and UV scale to make the tiling less blatant.







          

      

      

    

  

    
      
          
            
  
World Editor Interface

The default World Editor view consists of five main sections:


	File Menu

	Found at the very top of the World Editor window, you will find menus that controls the global functionality of the editor, such as opening/saving levels, toggling camera modes, opening settings dialogs, and so on.



	Tools Bar

	Located just below the File Menu, this bar contains shortcuts to all of the tools, their settings, and some options found in the File Menu.



	Tool Palette

	The Tool Palette changes based on what Tool you are currently using. For example, when using the Object Editor you will have icons for moving and rotating an object, wheras the Terrain will have icons for moving and rotating an object, whereas the Terrain Editor display icons for elevation tools.



	Scene Tree Panel

	While using the Object Editor, one of the floating panels available to you is the Scene Tree. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. The Library tab is what you will use to add new objects to your level after which they will appear in the Scene tab.



	Inspector Panel

	While using the Object Editor, a selected object’s properties will be shown in this panel. Most of your object editing will be performed here.






File Menu

File Menu allows you to: Create, save, open, and close levels; Open, import, and export level data to/from other tools; Run your level to test it and exit the World Editor.

[image: ../_images/WEFileMenu.jpg]
The Edit Menu allows you to: Control editor actions such as undo and redo; Cut, copy, paste, and delete objects you have selected; Select objects using a name pattern or by type filtering; Access dialogs to control various World Editor settings.

[image: ../_images/WEEditMenu1.jpg]
The View Menu: Opens the Visibility Layers dialog which toggles debug rendering modes; Toggle the visibility of other aspects of the editor.

[image: ../_images/WEViewMenu1.jpg]
The Object Menu allows you to: Manipulate a selected object’s settings by locking/unlocking it, hiding/showing the object, resetting its transforms, and so on.

[image: ../_images/WEObjectMenu1.jpg]
The Drop Location sub-menu selection informs the World Editor where it should place newly created objects.

[image: ../_images/WEDropLocationMenu1.jpg]
The Camera Menu allows you to choose your camera type, adjust its speed and motion, and drop it at certain locations.

[image: ../_images/WECameraMenu1.jpg]
The World Camera sub-menu allows you to change the way the camera moves.

[image: ../_images/WEWorldCameraMenu1.jpg]
The Player Camera sub-menu allows you to switch between perspectives while moving around as a player.

[image: ../_images/WEPlayerCamera1.jpg]
The Camera Speed sub-menu allows you to adjust how fast the camera moves.

[image: ../_images/WECameraSpeedMenu1.jpg]
The Editors Menu allows you to select which set of editing tools is currently active in the World Editor.

[image: ../_images/WEEditorsMenu1.jpg]
The Lighting Menu allows you to switch between Advanced and Basic lighting modes, as well as perform level relights.

[image: ../_images/WELightingMenu1.jpg]
Contains shortcuts to documentation and forums for Torque 3D.

[image: ../_images/WEHelpMenu1.jpg]



Tools Bar

The Tools Bar is the best way to switch between tools. It is made of two components: Tool Settings (top bar) and Tools Selector (bottom bar).

[image: ../_images/ShortToolbar.jpg]
Tool Settings is made of up three sub-sections: the editor selector, camera settings, and Object Editor. The editor selector and camera setting will always be displayed. The Object Editor will display available settings for the currently selected tool. The Tools Selector will always display the same shortcuts for selecting tools.

This section focuses on the elements of Tool Settings.

The first three icons switch between the editor’s operating modes. Each icon represents a different editing mode and only one mode can be active at any time. There are three modes: World Editor, GUI Editor, and Game Mode. The World Editor is represented by the mountain icon. The GUI Editor is represented by the boxes icon. The Game Mode is represented by the arrow icon.

[image: ../_images/EditorIcons1.jpg]
World Editor mode provides tools for manipulating the “world” of your game including terrain, creatures, and so on.

GUI Editor mode provides tools for manipulating the Graphical User Interface (GUI) of your game such as health meters, cursors, and so on.

Play Game Mode runs your game and lets you play through it.


Note

When you use this icon to play your game the World Editor actually closes completely. To return to the World Editor you must press F11 or exit the game and relaunch the World Editor from the Toolbox.



Next to the editor selector, you will find the camera and visibility settings.

[image: ../_images/CameraIcons1.jpg]
The camera icon will let you choose your camera type. The drop-down menu next to it will let you switch between camera speeds. The eye icon is the visualization settings which toggle debug rendering modes for various graphical modules, such as normal mapping, wireframe, specular shading, etc. The icon that looks like a camera in a box will move your camera to whatever object you have selected, filling up your view with its boundaries.

[image: ../_images/WorldSettingsIcons1.jpg]
The World Settings make up the rest of this bar when using the tools. The first icon lets you determine your snapping options (snapping to terrain, a bounding box of an object, which axis, etc.). The next icon toggles snapping to a grid. The magnet icon determines soft snapping to other objects. The numeric indicator determines the distance of the snap option.

The box icon with an arrow is a selection tool that allows you to select an object according to its bounding box. This makes selecting small, detailed objects much easier. The next icon that looks like a bullseye will change the selection target from the object center to the bounding box center. The small icon with arrows and mountains will change the object transform and the world transform.

The next two icons show descriptors in your scene. The first icon that looks like a box in a square will display object icons for the various objects in your scene. The second icon will show text descriptors for the objects in your scene.

The last two icons in the bar are prefab icons. The first icon lets you group selected items into a “prefab” (or prefabricated collection) of objects. The second icon will ungroup your prefab items.




Tool Selector and Palette


[image: ../_images/ObjectEditorTool1.jpg]
Object Editor




[image: ../_images/TerrainEditorTool1.jpg]
Terrain Editor




[image: ../_images/TerrainPainterTool1.jpg]
Terrain Painter




[image: ../_images/MaterialEditorTool1.jpg]
Material Editor




[image: ../_images/SketchTool1.jpg]
Sketch Tool




[image: ../_images/DatablockEditor2.jpg]
Datablock Editor




[image: ../_images/DecalEditorTool1.jpg]
Decal Editor




[image: ../_images/ForestEditorTool1.jpg]
Forest Editor




[image: ../_images/MeshRoadTool1.jpg]
Mesh Road Tool




[image: ../_images/ParticleEditorTool1.jpg]
Particle Editor




[image: ../_images/RiverTool1.jpg]
River Tool




[image: ../_images/DecalRoadTool1.jpg]
Decal Road Tool




[image: ../_images/ShapeEditorTool1.jpg]
Shape Editor






Scene Tree

The Scene Tree panel is available while using the Object Editor tool. It is composed of two tabs: Scene and Library. The Scene tab contains a list of objects currently in your level. You can select specific objects to modify them.

[image: ../_images/SceneTree_SceneTab.jpg]
Each object in the tree has an icon, unique ID, an object type, and a name. Whenever you click on an object in the tree, it is selected in the level and vice versa. Most of your objects can stand alone in the tree, but you can also use a SimGroup object to organize related entries.

At first glance, a SimGroup looks like a folder and acts much like one to help organize your tree. It does not physically exist in your level, but you can reference it by name or ID from script or the engine. This is handy for grouping several game objects you might need to iterate through and invoke an action on. Even if you do not use that feature, it is still a good idea to group similar objects under a SimGroup to help organize and better navigate your trees as some levels can grow to a large number of objects.




Library Tab

The Library tab is what you will use to add objects to your level. Once an object has been added to your level, it will appear in the Scene tab (described above). There are four sub-categories on the Library tab, which are separated as sub-tabs: Scripted, Meshes, Level, and Prefabs. Each category contains objects that serve very specific purposes.

[image: ../_images/SceneTree_LibraryTab1.jpg]

Scripted Tab

The first tab, Scripted, is automatically populated with game objects that have been created via script. For example, let’s say you have a ceiling fan object with an associated script which controls how and when the fan blades rotate. It would appear in the Scripted tab as follows:

[image: ../_images/ScriptedObject1.jpg]
A discussion of scripting and how to associate scripts with an object is beyond the scope of this document. See the TorqueScript Tutorial for more information.




Meshes Tab

When you simply wish to add a 3D art asset, you will use the Meshes Tab. You can browse the various folders containing assets in your project’s “art” directory. From here you can add DTS, COLLADA, and DIF files.

[image: ../_images/MeshObject1.jpg]



Level Tab

The Level Tab lists all the Torque 3D objects that can be used to populate your level. Objects are further divided into category folders. To view what is in a folder, double click it. To leave a folder and view the folder list, click the left pointing arrow icon. To move directly to another folder, select it from the drop down list.

[image: ../_images/LevelTab.jpg]
Each sub-category contains objects with similar themes:

[image: ../_images/LevelTab_Environment.jpg]

	The Environment sub-category contains most of the objects you will add to your level, such as Terrain, Sun, Clouds, Waterblocks, and similar objects.


	The ExampleObjects sub-category contains example rendering classes created in C++.


	The Level sub-category contains objects that manage Time of Day, level boundaries, and similar objects.


	The System sub-category contains engine-level objects such as SimGroups.







Prefabs Tab

The prefab system allows you to group multiple objects together and combine them into a single file. This new object can then be repeatedly placed into your level as a whole, making it easier for you to add complex groups of objects with only a few mouse clicks. When you create a prefab from multiple selections, you will save it to a *.prefab file using the group prefab icon. The World Editor will automatically load these files in the Prefabs tab.

[image: ../_images/PrefabsTab1.jpg]





Inspector

Whenever you add an object to a level, you will most likely start modifying them immediately. You can use the Inspector Panel to change the properties of an object

[image: ../_images/WEInspectorPanel1.jpg]
While there are a few shared property sections, most object types will have a unique set of properties. Editing is as simple as selecting an object in the level, locating a field that you want to change, such as “className” or “media”, then either editing the existing value or entering a value if no default value is given. There are different types of values such as strings, numbers, check boxes, vectors, and even values that require the use of a file browser or color picker.




Options

The Options dialog is used to change your current session’s audio and video properties as well as mouse and keyboard control bindings. The Options dialog is accessed from the main menu by selecting Edit > Game Options…

[image: ../_images/OptionsDlg.jpg]
You will use the Graphics tab to adjust your game resolution, screen mode, detail levels, and so on. The Audio tab allows you to adjust your current game’s volume, both globally and channel specific.




World Editor Settings

The World Editor Setting dialog is important to editing.

[image: ../_images/WorldEditorSettings.jpg]
Through this dialog, you can change various aspects of how your tools render and function. The top left section will control what is rendered on your object, such as its text (name/ID), handle, and selection box. You can also adjust the rendering of the editing plane in relation to the object.

The bottom left section contains the control settings for your manipulators (Translate, Rotate, and Scale tools). You can tweak the sensitivity of the manipulators for more precise or dramatic modifications.

Both sections on the right have settings that adjust visibility and selection methods for your gizmos. The Visible Distance is also an important value, as that adjusts how far into the distance you can see while editing the level.




PostFX Manager

The PostFX Manager GUI allows level editors to control various post-processing effects. Select the Enable PostFX checkbox to toggle PostFX on and off.

[image: ../_images/postfx_toggle_off1.png]
Use the effect tabs to access the effect settings.

[image: ../_images/postfx_tabs_ssao1.png]
PostFX settings can be saved to file and and loaded automatically with the level. To achieve this, simply save the settings with the same name as the level file. For example, for Burg.mis, save the PostFX settings in a file called Burg.postfxpreset.cs in the same folder as the level file.

[image: ../_images/postfx_footer1.png]

SSAO

Screen space ambient occlusion (SSAO) is an approximation of true Ambient Occlusion. Enabling the effect will darken creases and surfaces that are close together. Outdoor areas with brighter ambient light will show the effect better.

[image: ../_images/postfx_ssao_general1.png]

	Quality

	Controls the number of ambient occlusion samples taken; higher quality is more expensive to compute.



	Overall Strength

	Controls the overall intensity/darkness of the effect (applied on top of near/far strength).



	Blur (Softness)

	Blur depth tolerance.



	Blur (Normal Maps)

	Blur normal tolerance.





[image: ../_images/postfx_ssao_near1.png]
SSAO parameters for pixels near to the camera (small depth values).


	Radius

	Occlusion radius.



	Strength

	Occlusion intensity/darkness.



	Depth min

	Minimum screen depth at which to apply effect.



	Depth max

	Maximum screen depth at which to apply effect.



	Tolerance

	Unused



	Power

	Unused





[image: ../_images/postfx_ssao_far1.png]
SSAO parameters for pixels far away from the camera (large depth values).


	Radius

	Occlusion radius.



	Strength

	Occlusion intensity/darkness.



	Depth min

	Minimum screen depth at which to apply effect.



	Depth max

	Maximum screen depth at which to apply effect.



	Tolerance

	Unused



	Power

	Unused








HDR

Control several High Dynamic Range (HDR) effects including Bloom and Tone mapping.

[image: ../_images/postfx_hdr_bright1.png]

	Tone Mapping Contrast

	Amount of interpolation between the scene and the tone mapped scene.



	Key Value

	The tone mapping middle grey or exposure value used to adjust the overall “balance” of the image.



	Minimum Luminence

	The minimum luninace value to allow when tone mapping the scene. Is particularly useful if your scene very dark or has a black ambient color in places.



	White Cutoff

	The lowest luminance value which is mapped to white. This is usually set to the highest visible luminance in your scene. By setting this to smaller values you get a contrast enhancement.



	Brightness Adapt Rate

	The rate of adaptation from the previous and new average scene luminance.





[image: ../_images/postfx_hdr_bloom1.png]

	Bright Pass Threshold

	The threshold luminace value for pixels which are considered “bright” and need to be bloomed.



	Blur multiplier/mean/Std Dev

	These control the gaussian blur of the bright pass for the bloom effect.





[image: ../_images/postfx_hdr_effects1.png]

	Enable color shift

	Enables a scene tinting/blue shift based on the selected color, for a cinematic desaturated night effect.








Light Rays

This effect creates radial light scattering (also known as god rays). It works best when the scene contains a very bright light, but even in the example above you should be able to see some scattering occuring around the crystal.

[image: ../_images/postfx_rays1.png]

	Brightness

	Intensity of the light ray effect.








DOF

Depth of Field (DOF) simulates a camera lens, and blurs pixels based on depth from the focal point. DOF is commonly used when zooming in with a weapon.

[image: ../_images/postfx_dof_general1.png]

	Enable DOF

	Enable/disable the DOF effect.



	Enable Auto Focus

	Determines how the focal depth is calculated. When auto-focus is disabled, focal depth is set manually by calling DOFPostEffect::setFocalDist. When auto-focus is enabled, focal depth is calculated automatically by performing a raycast at the screen-center.





[image: ../_images/postfx_dof_focus1.png]

	Near/Far Blur Max

	Sets maximum blur for pixels closer/further than the focal distance.



	Focus Range (Min/Max)

	The min and max range parameters control how much area around the focal distance is completely in focus.



	Blur Curve Near/Far

	Controls the gradient of the near/far blurring curve. A small number causes bluriness to increase gradually at distances closer/further than the focal distance. A large number causes bluriness to increase quickly.








Sharpness

[image: ../_images/postfx_sharpness1.png]



Nightvision

[image: ../_images/postfx_night_bright1.png]
[image: ../_images/postfx_night_distort1.png]





Manipulators

The last World Editor visual we will describe is the gizmo. A gizmo is a three dimensional rendering of an object’s transforms. While using the Object Editor tool, you can use a gizmo to adjust an object’s location, rotation, and scale without having to manually input number values in the Inspector Panel.

Each gizmo has a unique appearance to notify you of what you are adjusting based upon the tool that you are using.


Move Tool Gizmo

When you wish to move an object from one place to another, you will use the Move Tool. This is represented by a gizmo with arrows pointing toward different axes.

You can grab an arrow to move the object along an axis, or grab a space between two arrows to move it in both directions.

[image: ../_images/TranslateGizmo1.jpg]
If you look carefully, you should see letters at the end of each arrow. These correspond to Torque 3D’s world coordinate system. The engine utilizes the right-handed (or positive) Cartesian coordinate system, where Z is up (top), X is side (right), and Y is front (forward). This applies to the rest of the gizmos.




Scaling Tool Gizmo

The Scaling Tool is represented by a gizmo that looks similar to the Translate gizmo. Instead of arrows, there are blocks at the end of the gizmo lines. Dragging one of the boxes in a direction will shrink or grow your object, depending on which direction you move.

[image: ../_images/ScaleGizmo1.jpg]



Rotation Tool Gizmo

While using the Rotation Tool, the orientation gizmo will be rendered. This gizmo looks and acts much differently than the previous two. Instead of straight lines, multiple circles will surround your object.

[image: ../_images/RotateGizmo1.jpg]
Dragging the red circle in a direction will rotate the object along the X-Axis. Green rotates around the Y-Axis. Blue rotates around the Z-axis. The off color circles allow you to rotate an object along multiple axes.









          

      

      

    

  

    
      
          
            
  
Level objects



	Meshes

	Terrain Block

	Ground Cover

	Basic Sun

	Sky Box

	Scatter Sky

	Basic Clouds

	Cloud Layer

	Water Block

	Water Plane

	Precipitation

	Lightning

	Wind Emitter

	Point Light

	Spot Light

	Particle Emitter

	Sound Emitter

	Ground Plane









          

      

      

    

  

    
      
          
            
  
Lightning

TODO


Adding Lightning

TODO




Lightning Properties

TODO







          

      

      

    

  

    
      
          
            
  
Meshes

Meshes, referred to as shapes in these tutorials, make up most of the objects in your game. This includes players, items, weapons, vehicles, props, buildings, and so on. Currently Torque 3D supports two model formats: DTS and COLLADA.


	DTS

	Short for Dynamix Three Space, this is a proprietary format first developed by a company called Dynamix for its game named Tribes. This has been the primary format used by Torque Technology for importing and rendering 3D model information. The format is binary, which means it is not in a human readable format.



	COLLADA

	Short for COLLAborative Design Activity. COLLADA is emerging as the format for interchanging models between DCC (Digital-Content-Creation) applications. The file extension used to identify COLLADA files is .dae which stand for “digital asset exchange”. The COLLADA format has several key benefits: all of the geometry and texture information is readily available in a single file; nearly every major 3D modeling application is able to export directly to the COLLADA format; and the data is stored in an open standard XML schema, which means it can be read and tweaked manually, if need be, in any text editor rather than requiring a specific application.






Adding A DTS Model

Before you can add a DTS model to World Builder so that it can be placed in a game level, it must be created with an appropriate application. It must then be placed in a folder where the World Builder can find it. When the World Editor is started it searches the game directories for objects and automatically loads any that it finds into the appropriate sub-tabs of the Library based upon the folders they were found in. Placing a model into the /game/core/art/shapes folder of your game project, or any sub-folder that you create, will allow the World Builder to find it and list it in the Library on start-up.

If you’ve added files or folders after starting World Builder those new entries will not appear until you have navigated out of a folder, or parent folder, and back in again.

Once a model is listed in the Library it is ready to be added to your game level. To add a model to your game level, select the Object Editor tool. Click the Library tab in the Scene Tree panel. Finally, select the Meshes sub-tab. Once the Meshes tab is open, select the entry from the drop down list. This list represents the directory containing your .dts model.

[image: ../_images/AddDTS1.jpg]
Click on the entry that contains your DTS model name. Hovering over the entry will display information about the model. Double-click the shape to automatically add it to your scene. The file should load extremely fast but you may not be able to see it right away. Where an object is placed in the scene depends upon the current drop location selection which can be set the menus Object > Drop Location command. Move your camera from its current location until the shape is in view.

[image: ../_images/PlayerShapeAdded.jpg]



Adding A COLLADA Model

Torque 3D also has the ability to load and render COLLADA models (.dae) . The process of adding a COLLADA shape is identical to adding a DTS. You will first need to create the COLLADA file and place it where the World Editor can find it then you may place it in a level.

Open the Library > Meshes tab. Navigate to the directory containing your COLLADA model (.dae). If you hover over the item, you will get a brief file description.

[image: ../_images/AddCollada1.jpg]
Double clicking an object will open the COLLADA import dialog. For the purpose of this example, you can just click OK to load the mesh.

[image: ../_images/ColladaImportDialog.png]
The file should load extremely fast, but you may not be able to see it right away. Where an object is placed in the scene depends upon the current drop location selection which can be set the menus Object > Drop Location command. Pull your camera up and away from its current location until the shape is in view.

[image: ../_images/MBAdded1.jpg]



Shape Properties

Each shape in a scene has properties which can be set like any other object using the Object Editor. Clicking a shape in the scene or selecting it from the Scene Tree will update the Inspector pane with information about that object. Shapes have their own unique set of properties.


Inspector


	Name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	Position

	TypeMatrixPosition. Object world position.



	Rotation

	TypeMatrixRotation. Object world orientation.



	Scale

	TypePoint3F. Object world scale.








Media


	shapeName

	TypeFilename. Name and path of model file.








Rendering


	playAmbient

	TypeBool. Play the ambient animation. Animation itself must be named ambient.



	meshCulling

	TypeBool. Enables detailed culling of meshes.



	originSort

	TypeBool. Enables sorting by origin rather than bounds.








Collision


	collisionType

	TypeBool. TypeEnum. The type of mesh data to use for collision queries.



	decalType

	TypeEnum. The type of mesh data to return for decal generation.



	allowPlayerStep

	TypeBool. Allow a player to qalk up sloping polygons on collision.








Debug


	renderNormals

	TypeF32. Debug rendering mode which highlights shape normals.



	forceDetail

	TypeS32. For rendering at a particular detail for debugging.








Editing


	isRenderEnabled

	TypeBool. Only render if true (and if class is render-enabled, too).



	isSelectionEnabled

	TypeBool. Disables editor selection of this object.



	hidden

	TypeBool. Toggle visibility of this object.



	locked

	TypeBool. Toggle whether this object can be edited.








Mounting


	mountPID

	TypeBool. TypePID. PersistentID of the object this one is mounted to.



	mountNode

	TypeS32. Node this object is mounted to.



	mountPos

	TypeBool. Position where this object is mounted.



	mountRot

	TypeBool. Rotation of this object in relation to the mount node.








Object


	internalName

	TypeString. Optional name that may be used to lookup this object within a SimSet.



	parentGroup

	TypeSimObjectPtr. Group hierarchy parent of the object.



	class

	TypeString. Script class of this object.



	superClass

	TypeString. Script superClass of this object.








Persistence


	canSave

	TypeBool. Whether this object can be saved.



	canSaveDynamicFields

	TypeBool. True if dynamic fields added at runtime should be saved. Defaults to true.



	persistentID

	TypePID. Unique identifier for this object.








Dynamic Fields

N/A - None by default.









          

      

      

    

  

    
      
          
            
  
Overview of World Editor

The World Editor is used to build and edit game levels. This includes adding and modifying terrains, buildings, foliage, cloud layers, vehicles, environmental effects, lighting effects, and much more. Aside from the Toolbox, the World Editor is the first (and most important) tool a new user should learn.

A sample game level as seen inside the World Editor:

[image: ../_images/WorldEditorIntroImage1.jpg]
The World Editor is not a tool for creating game objects. Objects must be created using applications appropriate for the object type (i.e., 3DS Max to create a 3D model). However, once an object is loaded it can be modified by the World Editor in a variety of ways. The simplest modification would be a change in scale (size), but more complex modifications are also possible. For example, the Torque Material Editor can be used to alter (or completely replace) textures on a 3D object or add shader effects.

A typical World Editor workflow might go as follows (in very simplified terms):


	Create a 3D model in an application like 3DS Max, Maya, or Blender.


	Save that model to a sub folder inside your game/art directory.


	Launch World Editor (which will automatically find that model if step 2 was done correctly).


	Add the model to your level; position, scale, rotate, and adjust its materials as desired.


	Test your changes in-game with the push of a single button.


	Return to the World Editor and continue to tweak your level.




Of course, there is a lot more to the World Editor than positioning 3D models. You will also be working with 2D assets like grey scale height-maps to create terrains, as well as specialized tools for creating rivers, forests, and roads.

Finally, it is worth noting that Torque 3D includes numerous art assets for you to play with… so you can skip steps 1 and 2 above and start building game levels right away!


Using the World Editor Documentation

The World Editor documentation follows a logical progression. Those who wish may work through it in a methodical way. Others may choose to skip difficult sections and jump directly to the tutorials at the end or to focus on only the features of interest.

Everyone learns differently, but we’ve found that a good way for new users to get started quickly is to follow these three steps:


	Continue reading this document (“Overview”) in its entirety. It covers: how to launch the World Editor, how to look and move around in a game level, and it offers a few important tips for new (and experienced) users.


	With the World Editor open, quickly skim the next document, “Interface”. You should only spend five-to-ten minutes getting an initial feel for the basic layout of the interface. Do not try to learn any features in detail.


	Try to add moving clouds to your level by following the Basic Cloud Layer instructions. Whether you are successful or not, spend no more than five minutes on this task.




Do not be concerned if you have trouble completing Step 3. Its purpose is to give you a specific task that requires direct interaction with the interface. That small exposure to the interface will go a long way towards making the remainder of the documentation more meaningful and easy to follow.

Once you’ve completed the three steps above, how you proceed is up to you. For those who prefer to jump around, we recommend you start by carefully reviewing the Interface document.




How to Launch the World Editor

While your game is running, you can open or close the World Editor at any time using hot key combinations:


	On Windows and Linux, to open or close the World Editor, press the F11 key.


	On Mac OS X, to open or close the World Editor, press CMD+FN+F11.





Note

When you first launch the World Editor, it is likely you will do so from the Toolbox. However, after you have modified your level, if you decide to test it out by clicking the Play Game button (as described in the “Interface” document ), you will need to use the F11 hotkey to get back to the World Editor. Otherwise, you would be forced to quit your game and relaunch the World Editor from the Toolbox.






Looking and Moving Around

While working in the World Editor, you will need to move and look around to inspect your level.


	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD keys can also be used). If you have a mouse-wheel, it can be used to move forward or backward.


	Look Left/Right/Up/Down by holding the right mouse button down while moving the mouse.


	Pan Left/Right/Up/Down by holding down the middle mouse button (Mouse 3) while moving the mouse. On most mice with a scroll wheel, this is achieved by depressing (not scrolling) the mouse wheel.





Note

There are a number of Camera options, discussed further in the Interface document, which in some cases may alter the behavior of these controls in minor ways.



When play testing your game outside of the World Editor, default control is typical of most First Person Shooters and can be remapped by pressing Ctrl-O (Windows) to bring up an options dialog. A few important controls are listed below:


	Forward/Back/Left/Right movement is controlled by the corresponding arrow keys on your keyboard (the WASD key can also be used).


	Look around by moving the mouse.


	Fire/Alt Fire are triggered by the left and right mouse buttons.


	Jump is activated by the Space Bar.


	First/Third person view is toggled by pressing TAB.


	Change weapons by scrolling the mouse wheel (or press Q key).


	Exit vehicles by pressing Control-F.


	Return to World Editor by using the F11 hotkey (as discussed above).







Tips

The following is a general list of knowledge you should keep in mind while editing a level in your game:


	Try to design your levels outside of the editor first. Sometimes it is helpful to have a simple verbal or visual design ready before you actually start editing. Even if it is a simple blueprint on a napkin, a level editor/artist with a reference to work from will cover ground much more quickly.


	Prioritize your object placement. It makes sense to polish certain aspects of a level before others. For example, try to finish your Sky, Sun, and Terrain before you move on to adding rivers, foliage, and other objects. Performing major adjustments to a terrain with hundreds of objects already placed could be tedious and counterproductive.


	Play your level regularly. After you reach a major milestone, try actually doing the things in your level as a player would. There is a big difference between the experience of a player in a game and that of a designer with a free-floating camera in the World Editor.


	Do not forget to optimize. Some specific World Editor objects are more appropriate than others. Use Ground Cover instead of a 3D model with lots of grass or trees attached. As much as possible, use the Sun rather than numerous point lights to handle ambient lighting. There are other such optimizations which will become apparent towards the end of development.


	SAVE AND SAVE OFTEN. This cannot be stressed enough. Computers crash, power goes out, cats jump on keyboards, and in rare circumstances you may encounter a yet undiscovered issue which causes data corruption. Any number of accidents can result in hours of work being lost. We recommend you save as often as you can.










          

      

      

    

  

    
      
          
            
  
Particle Emitter

TODO


Adding Particle Emitter

TODO




Particle Emitter Properties

TODO







          

      

      

    

  

    
      
          
            
  
Point Light

TODO


Adding Point Light

TODO




Point Light Properties

TODO







          

      

      

    

  

    
      
          
            
  
Precipitation

The Torque 3D World Editor allows you to quickly add different types of precipitation to your level. However, Precipitation is used as a general term meaning any type of particle moving downward. The ability to quickly add rain, snow, or even a sandstorm to your level is built into the editor.


Adding Precipitation

To add Precipitation to a level, switch to the Library tab in the Scene Tree panel. Click on the Level tab amd double-click the Environment folder. Locate the Precipitation entry.

[image: ../_images/PrecipLibrary.jpg]
Double-click the Precipitation entry.The Create Object dialog will appear.

[image: ../_images/NamePrecipRain.jpg]
Enter a name for your Precipitation object. The Precipitation data field allows you to choose a datablock to start with as the basis for your new object. Click the drop down box for a list of available datablocks.

[image: ../_images/UseHeavyRainDB.jpg]
For the Full template, your only choice is HeavyRain so select it then click Create New. Your new Precipitation object will be added to your level, and rain will start falling automatically. The stock datablock for HeavyRain simulates a light shower, so you may not see much rain falling:

[image: ../_images/PrecipAdded.jpg]
The HeavyRain datablock is located in the game/art/datablocks/environment.cs file. Its initial data contains the following:

datablock PrecipitationData(HeavyRain)
{
   soundProfile = "HeavyRainSound";

   dropTexture = "art/environment/precipitation/rain";
   splashTexture = "art/environment/precipitation/water_splash";
   dropSize = 0.35;
   splashSize = 0.1;
   useTrueBillboards = false;
   splashMS = 500;
};





We will get into manipulating the datablock later.




Precipitation Properties

Additional properties can be changed with the Inspector pane. To change a Precipitation objects properties using the Inspector Pane click the Scene tab, then click the name of your new Precipitation object. The Inspector pane will update to display the current properties of your new sun.


Inspector


	name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.



	rotation

	MatrixOrientation. Object world orientation.



	scale

	Point3F. Object world scale.








Precipitation


	numDrops

	TypeS32. Number of drops allowed to exists in the precipitation box at any one time.



	boxWidth

	TypeF32. Width of precipitation box.



	boxHeight

	TypeF32. Height of precipitation box.








Rendering


	dropSize

	TypeF32. Size of each drop of precipitation. This will scale the texture.



	splashSize

	TypeF32. Size of each splash animation for when a drop collides.



	splashMS

	TypeS32. Life of splashes in milliseconds.



	animateSplashes

	TypeS32. Check to enable splash animation on collision.



	dropAnimateMS

	TypeS32. If greater than zero, will animate the drops from the frames in the texture.



	fadeDist

	TypeF32. The distance at which fading of the drops begins.



	fadeDistEnd

	TypeF32. The distance at which fading of the particles ends.



	useTrueBillboards

	TypeBool. Check to make drops true (non axis-aligned) billboards.



	useLighting

	TypeBool. Check to enable shading of the drops and splashes by the sun color.



	glowIntensity

	TypeColorF. Set to 0 to disable the glow or or use it to control the intensity of each channel.



	reflect

	TypeBool. This enables the precipitation to be rendered during reflection passes. This is expensive.



	rotateWithCamVel

	TypeBool. Enables drops to rotate to face camera.








Collision


	doCollision

	TypeBool. Allow collision with world objects.



	hitPlayers

	TypeBool. Allow collision on player objects.



	hitVehicles

	TypeBool. Allow collision on vechiles.








Movement


	followCam

	TypeBool. Enables system to follow the camera or stay where it is placed.



	useWind

	TypeBool. Check to have the Sky property windSpeed affect precipitation.



	minSpeed

	TypeF32. Minimum speed that a drop will fall.



	maxSpeed

	TypeF32. Maximum speed that a drop will fall.



	minMass

	TypeF32. Minimum mass of a drop.



	mMaxMass

	TypeF32. Maximum mass of a drop.








Turbulence


	useTurbulence

	TypeBool. Check to enable turubulence. This causes precipitation drops to spiral while falling.



	maxTurbulence

	TypeF32. Radius at which precipitation drops spiral when turbulence is enabled.



	turbulenceSpeed

	TypeF32. Speed at which precipitation drops spiral when turbulence is enabled.








Game


	dataBlock

	TypeGameBaseData. Script datablock used for game objects.













          

      

      

    

  

    
      
          
            
  
Scatter Sky

Torque 3D includes an object called a Scatter Sky which uses a dynamic sky coloring system to create more vibrant varying skies than the simple Skybox object.

As the name implies, the Scatter Sky object produces the sky. Additionally, it includes level lighting, sun positioning, and a hook for time of day manipulation. This can be used for a fully functioning day/night system.


Adding a Scatter Sky

Every new mission starts with both Sky Box and Sun objects. Since the Scatter Sky object contains the functionality of those two objects embedded within it they must be removed in order to use a Scatter Sky in the level.

To create a new Scatter Sky, change to the Library tab in the Scene Tree panel. Click on the Level tab and select the Level folder. Locate the Scatter Sky entry and double-click it.

[image: ../_images/AddScatterSky.jpg]
The Create Object dialog will appear. The Object Name is what you want your Scatter Sky to be named. It will appear in the Mission Group of the Scene Tree. Enter theSky as the name, leave the rest of the values at their defaults, then click Create New.

[image: ../_images/NameScatterSky.jpg]
A new Scatter Sky object will be created and automatically added to your level. Therefore, it will once again have a sky. Since the Scatter Sky supplies a sun, the level should now be lit.

[image: ../_images/ScatterSkyAdded.jpg]



Scatter Sky Properties

Additional properties can be changed with the Inspector pane. To change the Scatter Sky properties using the Inspector Pane, click the Scene tab. Then click the name of your new Scatter Sky object. The Inspector pane will update to display the current properties of your new Scatter Sky.


Inspector


	name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.



	rotation

	MatrixOrientation. Object world orientation.



	scale

	Point3F. Object world scale.








Scatter Sky


	skyBrightness

	TypeF32. Global brightness and intensity applied to the sky and objects in the level.



	sunSize

	TypeF32. Affects the size of the sun’s disc.



	colorizeAmount

	TypeF32. Controls how much the the alpha component of colorize brigthens the sky. Setting to 0 returns default behavior.



	colorize

	TypeColorF.     Tints the sky the color specified, the alpha controls the brigthness. The brightness is multipled by the value of colorizeAmount.



	rayleighScattering

	TypeF32. Controls how blue the atmosphere is during the day.



	sunScale

	TypeColorF. The color shading applied to objects in direct sun light.



	ambientScale

	TypeColorF. The color shading applied to objects not in direct sun light, such as in the shadows.



	fogScale

	TypeColorF.     Modulates the fog color. Note that this overrides the LevelInfo.fogColor property, so you should not use LevelInfo.fogColor if the level contains a ScatterSky object.



	exposure

	TypeF32. Controls the contrast of the sky and sun.








Orbit


	azimuth

	TypeF32. The horizontal angle of the sun measured clockwise from the positive Y world axis.



	elevation

	TypeF32. The elevation angle of the sun above or below the horizon.



	moonAzimuth

	TypeF32. The horizontal angle of the moon measured clockwise from the positive Y world axis.



	moonElevation

	TypeF32. The elevation angle of the moon above or below the horizon.








Lighting


	castShadows

	TypeBool. Enables/disables shadows cast by objects due to Sun light.



	brightness

	TypeF32. Adjust the global Sun contrast/intensity.








Misc


	flareType

	TypeLightFlareDataPtr. Datablock for the flare and corona produced by the Sun.



	flareScale

	TypeF32. Changes the size and intensity of the flare.








Night


	nightColor

	TypeColorF.     The ambient color during night. Also used for the sky color if useNightCubemap is false.



	nightFogColor

	TypeColorF. Color shading of fog present during night scenes.



	moonEnabled

	TypeBool. Toggles rendering of moon image during night.



	moonMat

	TypeMaterialName. Material for the moon sprite.



	moonScale

	TypeF32. Controls size the moon sprite renders, specified as a fractional amount of the screen height.



	moonLightColor

	TypeColorF. Color of light cast by the directional light during night.



	useNightCubemap

	TypeBool. Toggles rendering of star cubemap during night scenes, similar to Sky Box.



	nightCubemap

	TypeCubemapName. Cube map used to render stars in the sky during night scene.








Advanced Lighting


	attenuationRatio

	TypePoint3F. The proportions of constant, linear, and quadratic attenuation to use for the falloff for point and spot lights.



	shadowType

	TypeEnum. The type of shadow to use on this light.



	cookie

	TypeStringFilename. A custom pattern texture which is projected from the light.



	texSize

	TypeS32. The texture size of the shadow map.



	overDarkFactor

	TypePoint4F. The ESM shadow darkening factor.



	shadowDistance

	TypeF32. The distance from the camera to extend the PSSM shadow.



	shadowSoftness

	TypeF32. Adjusts shadow edge clarity.



	numSplits

	TypeF32. The logrithmic PSSM split distance factor.



	logWeight

	TypeF32. The logrithmic PSSM split distance factor.



	fadeStartDistance

	TypeF32. Start fading shadows out at this distance.  0 equates to  auto calculate this distance.



	lastSplitTerrainOnly

	TypeBool. This toggles only terrain being rendered to the last split of a PSSM shadow map.








Advanced Lighting Lightmap


	representedInLightmap

	TypeBool. This light is represented in lightmaps (static light, default: false).



	shadowDarkenColor

	TypeColorF. The color that should be used to multiply-blend dynamic shadows onto lightmapped geometry (ignored if representedInLightmap is false).



	includeLightmappedGeometryInShadow

	TypeBool. This light should render lightmapped geometry during its shadow-map update (ignored if representedInLightmap is false).










Modifying Brightness

Remember to refer back to the properties as you proceed through the rest of this guide. It is time to modify some of the more important fields of the current ScatterSky object. After each change is demonstrated, you will be reverting back to the stock values to show how these modifications affect the object.

Now will start with adjusting the brightness of the sky and atmosphere. Under the ScatterSky section of the properties, look for the skyBrightness field. The default value is 25.

[image: ../_images/DefaultBrightScene.jpg]
The skyBrightness field acts a global modifier of your brightness in the scene. Changing this value is similar to adjusting the contrast of a camera or monitor. Reduce the value to 5. This reduction will dramatically change the appearance of your level.

[image: ../_images/5BrightScene.jpg]
Now, greatly increase the value of skyBrightness to around 85. The view of your level should be extremely bright, as if the scene takes place in a desert at high noon.

[image: ../_images/85BrightScene.jpg]
If you have not already done so, revert your default brightness back to 25. You should change each value back to the default in this manner between each section of the remaining guide to see the effects of the next property.




Modifying Scattering

The scientific concept of scattering and how it affects your level is somewhat complex. The rayleighScattering and mieScattering values are extremely sensitive, and it is important that you have an understanding of how they work. The simplest way to explain scattering is to answer a question children often ask: “Why is the sky blue?”

In reality, beyond the atmosphere of the sky is blank space, that is, blackness. When you look up at the night sky, you can see the black of space and the stars it contains. However, during the day you see a blue sky. The blue color is due to the light rays from the sun being scattered by the molecules of the atmosphere as it passes through. Light appears to be white but it is actually composed of many different colors. The sky is usually blue because blue light scatters more easily than the other colors due to its physical properties.

The sky at the zenith is a darker blue than the sky near the horizon for two reasons. First, the atmosphere at this altitude is composed of much smaller particles, which is only capable of scattering the darker shades of blue light. Second, the light has had less opportunity to be scattered since it has not passed through as much atmosphere yet. The more times the same light is scattered, the paler the blue will become.

However, blue is not the only color that is scattered by the atmosphere, it is just the most common. Other colors, such as the reds at sunset, are due to how much atmosphere the light has passed through to get to your eyes. In this case, reds and blues are both being scattered but blue has been dissipated so much that it is no longer visible. The result is a red sky.

The scientific term for this light scattering effect is called Rayleigh Scattering, thus the rayleighScattering property of Torque 3D controls the color and darkness of the ScatterSky object.

The size and composition of particles in the atmosphere, such as dust and water, also has an effect on how light appears. Larger particles tend to scatter all colors of light approximately the same. This effect makes clouds, which are made of water vapour, appear to be white or grey. This is because the colors of the light are being scattered the same so that what you see resembles the original white form.

This type of scattering is also responsible for the clarity of a bright object and how the light rays are projected from it. The scientific term for this type of scattering is Mie Scattering, thus the mieScattering property of Torque 3D controls the clarity of light from bright objects such as the sun.

In summary, the scattering properties in Torque 3D are used to emulate the affects of nature. The mieScattering property affects the appearance of how light waves are projected from the sun object and the rayleighScattering property affects the color of the sky including how blue it will be.

Proceed to see the adjustment of these properties in action. Reduce the mieScattering field to a small value, such as 0.0005. You should notice that the scattering of the light around the sun object has been drastically reduced, resulting in a smaller and smoother sun.

[image: ../_images/LessMieScene.jpg]
Reset the mieScattering back to the default value (approximately 0.0045). Lower the rayleighScattering field to 0.0006.

The atmosphere of the sky should now be a darker shade of blue. Reducing the rayleighScattering value simulates two things. First, it simulates an atmosphere which reduces the colors of light that will be scattered limiting it to the darker blues. Second, it simulates an atmosphere that has had less opportunity to dissipate the light leaving the darker shade of blue intact:

[image: ../_images/LessRayleighScene.jpg]
At some point, you can reduce the value only so far before you hit a shade of blue that is almost completely black. This does not mean you are actually seeing the black of space, rather you are seeing the darkest shade of blue light which has not been dissipated at all.

Go in the opposite direction. Begin increasing the rayleighScattering until you hit a value of 0.008. This simulates two things. First, it simulates an atmosphere which allows more colors of light to be scattered. Second, it simulates an atmosphere that has had less opportunity to dissipate the light leaving paler shades of the light. The result in your level is a broader range of colors in your sky.

[image: ../_images/MoreRayleighScene.jpg]
If you go too high with the value, your sky will eventually become black. This is due to the allowance of all wave lengths to interact with the atmosphere. The effect is known as the subtractive rule of colors: white is the complete lack of color (light interaction) and black is the presence of all colors. In other words, the atmosphere is absorbing all colors so you see black.

If you have become confused, there are quite a few resources in your local library and on the Internet you can look up to learn more. If you have gotten this far, but wish to keep it simple, remember the following:


	mieScattering

	Higher equals bigger and more scattered Sun. Lower equals smaller, smoother Sun.



	rayleighScattering

	Higher equals less blue sky. Too high equals black sky. Lower equals more blue sky. Too low equals black sky.








Modifying Colors

Move on to simpler concepts and property adjustments. The nightColor is a conditional property, as it only affects the scene during certain lighting conditions. As explained in the Sun documentation, modifying the azimuth and elevation will change the “time of day” for your level.

Go ahead and set the Elevation property in the Orbit section to 200, which will place the sun below the horizon. When the sun is no longer shining on your level, it is night time.

[image: ../_images/200ElevationScene.jpg]
Scroll to the Night section in the Inspector Pane. Instead of manually guessing color values, click on the colored box next to the nightColor property. This action will open the Color Picker dialog. The dialog allows you to visually adjust the shade of your night time color. For an intense effect, go with an unnatural color such as red.

[image: ../_images/RedColorPicker.jpg]
Click the select button when you are ready. Your level should immediately reflect the nightColor change you have made. Very creepy…

[image: ../_images/RedScatterSky.jpg]
Definitely change the value back to something more suitable, such as deep blue/black color. Change the Elevation property in the Orbit section back to a number between 0 and 90 such as 45 to bring the sun back above the horizon and relight your scene.




Modifying Shadows and Light Intensity

There are two fields under the Lighting section that strongly influence how your scene appears. The first property, castShadows, can be toggled on or off. Clicking on the property to toggle it off will result in a blank box. With castShadows disabled, nothing in your scene will cast a shadow: objects, terrain, etc.

[image: ../_images/NoShadowsScene.jpg]
You can re-enable the shadows in your scene by clicking the box again, which will produce a check mark informing you that it has been enabled.

If you are using Advanced Lighting, the objects in your level will immediately begin casting shadows. If you are using Basic Lighting, you will need to relight the scene. Either way, the shadows will update according to the position of the sun.

[image: ../_images/ShadowsEnabledScene.jpg]
The brightness field under the Lighting section is completely separate from the skyBrightness property in the ScatterSky section. Unlike skyBrightness, which changes the contrast of your entire scene (particularly the sky itself), the brightness property under Lighting directly affects your objects in the scene.

You can see how this property functions by adjusting the value. Increase the brightness to 1. The lighting in your scene should be much brighter. Additionally, the shadows in your scene will be much darker and more defined.

[image: ../_images/1BrightnessScene.jpg]
Notice how your atmosphere (sky and sun) did not change. Every other object in your scene should be better lit. You can remove the additional brightness by setting the value of the property to 0. The result is the additional, global brightness factor has been completely removed. Your lighting should now be minimal, and your shadows nearly invisible.

[image: ../_images/0BrightnessScene.jpg]






          

      

      

    

  

    
      
          
            
  
Sky Box

Torque 3D uses a cubemap to produce the appearance of a sky in a level. The cubemap method will allow you to create realistic looking skies that provide a sense of depth to your mission.


Adding a Sky Box

To add a new Sky Box to a level change to the Library tab in the Scene Tree panel and double-click the Environment folder, locate the Sky Box entry then double-click it.

[image: ../_images/AddSkyBox.jpg]
The Object Name is what you want your Sky Box to be called and will be displayed in the Scene Tree after it is created. The Material box allows you to select the starting material to use when creating the object.

[image: ../_images/NameSkybox.jpg]



Sky Box Properties

Additional properties can be changed with the Inspector pane. To change the Skybox properties using the Inspector Pane, click the Scene tab, then click the name of your new Sky Box object. The Inspector pane will update to display the current properties of your new Sky Box.


Inspector


	name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.



	rotation

	MatrixOrientation. Object world orientation.



	scale

	Point3F. Object world scale.








Sky Box


	material

	TypeMaterialName. The name of a cubemap material for the sky box.



	drawBottom

	TypeBool. If false the bottom of the skybox is not rendered.



	fogBandHeight

	TypeF32. The height (0-1) of the fog band from the horizon to the top of the SkyBox.













          

      

      

    

  

    
      
          
            
  
Sound Emitter

TODO


Adding Sound Emitter

TODO




Sound Emitter Properties

TODO







          

      

      

    

  

    
      
          
            
  
Spot Light

TODO


Adding Spot Light

TODO




Spot Light Properties

TODO







          

      

      

    

  

    
      
          
            
  
Terrain Block

Terrain simulates a land mass in your game which can be occupied, traversed, or flown over by objects in your game world. Terrain is represented in a game level by a Terrain Block. There are three methods to add a Terrain Block to a level: Create a blank terrain, add an existing .ter file or import a heightmap.


Creating Blank Terrain

To create a new blank terrain start from the menu by selecting File>Create Blank Terrain.

[image: ../_images/CreateBlankTerrain.jpg]
After you click the menu entry, a Create New Terrain Dialog will appear.

[image: ../_images/NewTerrainDialog.jpg]
The Name field allows you to specify a name for your Terrain Block. This name will appear in the Scene Tree and can be used to reselect your terrain later for editing. Enter a name for the terrain in the text box, in this example theterrain.

The Material for the terrain, that is the texture that will be displayed to depict the ground cover, is selected using a drop-down list. This list is populated by the World builder with all the existing materials created specifically for terrains.

[image: ../_images/TerrainMaterialMenu.jpg]
The Resolution that you select from that drop-down list determines the size of the terrain that will be created. The size of the terrain that you choose is largely dependent on the design of your game. You will have to experiment to find the right size that works for each game you create and some combinations of options are not very practical. For example, selecting a terrain size of 256 and using the Noise option will result in a terrain that is so drastically contoured that it will not be of much use.

The radio buttons to the right of the Resolution dropdown determine the smoothness of the terrain that is generated. Selecting Flat will create a relatively smooth terrain and selecting Noise will generate a bumpy terrain.




Creating a Flat Terrain

To create a flat terrain: from the main menu select File > Create Blank Terrain; enter a name; select a material; select a size such as 256; and select the Noise radio button, then click the Create New button. A contoured Terrain Block will be generated and automatically loaded into the scene.

[image: ../_images/NewTerrainAdded.jpg]
A Flat terrain is a great place to start, but is more suitable for terrains that will remain relatively flat. Using a flat terrain requires you to create all the terrain details yourself using the Terrain Editor.




Creating a Bumpy Terrain

To create a bumpy terrain: from the main menu select File>Create Blank Terrain; enter a name; select a material; select a larger size such as 1024; and select the Noise radio button, then click the Create New button.

[image: ../_images/CreateNoisyTerrain.jpg]
Terrain Block loaded into the scene. A contoured extremely mountainous terrain will be generated and automatically loaded into your scene. The noise algorithm randomly generated the hills and valleys for you.

[image: ../_images/NoisyTerrainAdded.jpg]
Starting with a contoured terrain this is a decent method of starting from scratch with a little randomness thrown in.




Adding an Existing Terrain File

To add an existing terrain file to a level start by selecting the Object Editor tool. Locate your Library panel and click it. Click on the Level tab then select the Environment folder. Once that is open, locate the Terrain Block entry, and double-click it.

[image: ../_images/LibraryTerrainBlock.jpg]
The new terrain dialog will open.

[image: ../_images/LoadTerrainDialog.jpg]
The Object Name field allows you to specify a name for your Terrain Block. This name will appear in the Scene Tree and can be used to reselect your terrain later for editing. Enter a name for the terrain in the text box, in this example theterrain.

The Terrain file box indicates the information file which holds the data describing the terrain to be loaded. Clicking the box loads the OS file browser.

Terrain files are named with a .ter extension. The .ter file type is a proprietary format that contains terrain data understood by Torque 3D. Locating a .ter file then clicking Open/OK will cause it to be selected as the Terrain file to be loaded.

[image: ../_images/OpenTerFile.jpg]
Leave the square size in the dialog set to its default value then click OK. The .ter file will be immediately imported into your scene with both geometry and textures. The sample shown here is a very simple and low detailed terrain file.

[image: ../_images/TerFileAdded.jpg]



Importing a Terrain

The most recommended and effective method to add a Terrain Block to a level is to import the terrain from external data files. However, this method requires the skill and the third-party tools to create those data files. Very high-quality and professional-looking terrain can be created with tools such as L3DT [http://www.garagegames.com/products/l3dt] and GeoControl [http://www.geocontrol2.com/e_index.htm]. These tools allow you to generate extremely detailed heightmaps that can be imported by Torque 3D and to generate terrain data.

There are several types of asset required to import and use a terrain in Torque 3D using this method:


	a heightmap


	an opacity map and layers


	texture files.





Heightmaps

The primary asset required is a heightmap. A heightmap is a standard image file which is used to store elevation data rather than a visible picture. This elevation data is then rendered in 3D by the Torque engine to depict the terrain. The heightmap itself needs to be in a 16-bit greyscale image format, the size of which is a power of two, and must be square. The lighter an area of a heightmap is, the higher the elevation will be in that terrain location.


[image: ../_images/HeightMapExample.jpg]
Example Heightmap






Opacity Maps

An opacity map acts as a mask, which is designed to assign opacity layers. Opacity layers need to match the dimensions of the heightmap. For example, a 512x512 heightmap can only use a 512x512 opacity map.

If the opacity map is a RGBA image, four opacity layers will be used for the detailing (one for each channel). If you use an 8-bit greyscale image, only a single channel. You can then assign materials to the layers. This allows us to have up to 255 layers with a single ID texture map, saving memory which we can apply to more painting resolution.

Notice that the following example Opacity Map resembles the original heightmap.


[image: ../_images/ExampleOpacityMask.jpg]
Example Opacity Map






Texture Files

Texture files “paint” the terrain giving it the appearance of real ground materials. When creating a terrain from scratch textures can be manually applied to it using the Terrain Painter, which is built into the World Editor, but that is a time and effort intensive method. Instead of hand painting them, the opacity layer will automatically assign textures to the terrain based upon what channel they are loaded into.

For each type of terrain to be rendered you will want to have three textures: (1) a base texture, also referred to as a diffuse texture, (2) a normal map, and (3) a detail mask.


[image: ../_images/ExampleBaseTex.jpg]
Diffuse




[image: ../_images/ExampleNormalMap.jpg]
Normal




[image: ../_images/ExampleDetailTex.jpg]
Detail



The base represents the color and flat detail of the texture. The normal map is used to render the bumpiness or depth of the texture, even though the image itself is physically flat. Finally, the detail map provides up-close detail, but it absorbs most of the colors of the base map.






Importing a Heightmap

To import a heightmap for terrain start the World Editor, then from the menu select File > Import Terrain Heightmap:

[image: ../_images/ImportTerrainHeightmap.jpg]
The Import Terrain heightmap dialog will appear.

[image: ../_images/ImportHeightMapDialog.jpg]

	Name

	If you specify the name of an existing Terrain Block in the dialog it will update that existing Terrain Block and its associated .ter file. Otherwise, a new Terrain Block will be created.



	Meters Per Pixel

	What was the Terrain Block SquareSize (meters per pixel of the heightmap), which is a floating point value. It does not require power of 2 values.



	Height Scale

	The height in meters that you want pure white areas of the heightmap to present.



	Height Map Image

	File path and name of a .png or .bmp file which is the heightmap itself. Remember, this needs to be a 16-bit greyscale image, the size of which is a power of two, and it must be square.



	Texture Map

	This list specifies the opacity layers, which need to match the dimensions of the heightmap image. If you add an RGBA image it will add 4 opacity layers to the list, one for each channel. If you add an 8-bit greyscale image, it will be added as a single channel.You can then assign materials to the layers. If you do not add any layers or do not add materials to the layers, the terrain will be created with just the Warning Material texture.





Click the browse button to the right of the Height Map Image box to open a file browser dialog. Navigate to where your terrain files are located, select the desired heightmap PNG file, then click Open. The selected heightmap file will be entered in the Height Map Image box.

[image: ../_images/ChooseHeightmap.jpg]
Click on the + button next to Texture Map to open another file browser. This is where you add opacity layers. Start by locating the masks. If you have the right assets, it should resemble something like this:

[image: ../_images/ChoosePrairieMask.jpg]
Do not worry if you do not see the detail. The mask is supposed to be solid white. Repeat the process until you have imported all your opacity layers.

Now that our opacity layers have been added, you should assign a material to each one. You can do so by clicking on one of the layers, then clicking the edit button in the bottom right. You will now see the Terrain Materials Editor.

[image: ../_images/TerrainMaterialEditor.jpg]
Click the New button, found at the top next to the garbage bin, to add a new material. Type in a name then click the Edit button next to the Diffuse preview box. Again, a file browser will pop up allowing you to open the base texture file for the material. Alternatively, you can click the preview box itself, which is a checkerboard image until you add a texture.

[image: ../_images/ChoosePrairieBase.jpg]
Once you have added the base texture, the preview box will update to show you what you opened. Set the Diffuse size which controls the physical size in meters of the base texture.

Click on the Edit button next to the Detail Preview box. Using the file browser, load the detail map.

[image: ../_images/ChoosePrairieDetail.jpg]
Next, click on the Edit button next to the Normal Preview box. Use the file browser to open the normal map.

[image: ../_images/ChoosePrairieNormal.jpg]
Your final material properties should look like the following:

[image: ../_images/FinalPrairieMaterials.jpg]
Repeat this process until each opacity layer has a material assigned to it. Back in the Import Terrain Height Map dialog, click on the import button. It will take a few moments for Torque 3D to generate the terrain data from our various assets. When the import process is complete, the new Terrain Block will be added to your scene (you might need to move your camera back to see it).

[image: ../_images/HeightmapTerrainAdded.jpg]
If you zoom in close to where materials overlap, you can notice the high quality detail and smooth blending that occurs.

[image: ../_images/DetailBlending.jpg]



Terrain Block Properties

A Terrain Block has properties which can be set like any other object using the Object Editor. Clicking a Terrain Block in the scene or selecting it from the Scene Tree will update the Inspector pane with information about it. Terrain Blocks have their own unique set of properties.


Inspector


	name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.



	rotation

	MatrixOrientation. Object world orientation.








Media


	terrainFile

	TypeStringFilename. The source terrain data file.








Misc


	castShadows

	TypeBool. Allows the terraint to cast shadows onto itself and other objects.



	squareSize

	TypeF32. Indicates the spacing between points on the XY plane on the terrain.



	baseTexSize

	TypeS32. Size of base texture size per meter.



	lightMapSize

	TypeS32. Lightmap dimensions in pixels.



	screenError

	TypeS32. Not yet implemented.













          

      

      

    

  

    
      
          
            
  
Water Block

The Water Block object can add a lot of realism to your level’s environment. Primarily, you should use a WaterBlock to simulate isolated bodies of water with a limited size. They do not necessarily need to be small, but a WaterPlane can simulate a massive/endless body of water.


Adding a Water Block

To add a water block, switch to the Object Editor tool. Locate the Library panel and click it. Click on the Level tab and then double-click the Environment folder. Locate the Water Block entry.

[image: ../_images/LibraryWaterblock1.jpg]
Double-click on the Water Block entry. A dialog box will appear:

[image: ../_images/AddWater1.jpg]
Enter a name for your Water Block then click the Create New button. A square body of water will be added to the scene. This is your Water Block. Like any other object, you can manipulate its transform using the gizmos.

[image: ../_images/WaterblockAdded1.jpg]



Water Block Properties

Additional properties can be accessed with the Inspector pane. To change a Water Blocks properties using the Inspector Pane click the Scene tab, then click the name of your new Water Block object. The Inspector pane will update to display the current properties of your new sun.


Inspector


	Name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.








WaterBlock


	gridSize

	TypeF32. Duplicate of gridElementSize for backwards compatibility.



	gridElementSize

	TypeF32. Spacing between vertices in the WaterBlock.








WaterObject


	density

	TypeF32. Affects buoyancy of an object, thus affecting the Z velocity of a player (jumping, falling, etc).



	viscosity

	TypeF32. Affects drag force applied to an object submerged in this container.



	liquidType

	TypeRealString. Liquid type of WaterBlock, such as water, ocean, lava. Currently only Water is defined and used.



	baseColor

	TypeColorI. Changes color of water fog, which is what gives the water its color appearance.



	fresnelBias

	TypeF32. Extent of fresnel affecting reflection fogging.



	fresnelPower

	TypeF32. Measures intensity of affect on reflection based on fogging.



	specularPower

	TypeName. Power used for specularity on the water surface (sun only).



	specularColor

	TypeColorF. Color used for specularity on the water surface (sun only).



	emissive

	TypeBool. When true, the water colors do not react to changes in environmental lighting.








Waves (vertex undulation)


	overallWaveMagnitude

	TypeF32. Master variable affecting entire body of water undulation.



	rippleTex

	TypeImageFilename. Normal map used to simulate small surface ripples.








Ripples (texture undulation)


	overallRippleMagnitude

	TypeF32. Master variable affecting the entire surface of the WaterBlock.



	foamTex

	TypeImage Filename. Diffuse texture for foam in shallow water (advanced lighting only).








Foam


	overalFoamOpacity

	TypeF32. Opacity of foam texture.



	foamMaxDepth

	TypeF32. Maximum depth for foam texture display.



	foamAmbientLerp

	TypeF32. Interpolation for foam settings.



	foamRippleInfluence

	TypeF32. Intensity of the ripples.








Reflect


	cubemap

	TypeCubemapName. Cubemap is used instead of reflection texture if fullReflect is off.



	fullReflect

	TypeBool. Enables dynamic reflection rendering.



	reflectivity

	TypeF32. Overall reflectivity of the water surface.



	reflectPriority

	TypeF32. Affects the sort order of reflected objects.



	reflectMaxRateMs

	TypeF32. Affects the sort time of reflected objects.



	reflectDetailAdjust

	TypeF32. Scale up or down the detail level for objects rendered in a reflection.



	reflectNormalUp

	TypeBool. Always use Z up as the reflection normal.



	useOcclusionQuery

	TypeBool. Turn off reflection rendering when occluded (delayed).



	reflectTexSize

	TypeF32. Texure size used for reflections (square).








Underwater Fogging


	waterFogDensity

	TypeF32. Intensity of underwater fogging.



	waterFogDensityOffset

	TypeF32. Delta, or limit, applied to waterFogDensity.



	wetDepth

	TypeF32. The depth in world units at which full darkening will be received giving a wet appearance.



	wetDarkening

	TypeF32. The refract color intensity scaled at wetDepth.








Misc


	depthGradientTex

	TypeImage filename. 1D texture defining the base water color.



	depthGradientMax

	TypeF32. Depth in world units, the max range of the color gradient texture.








Distortion


	distortStartDist

	TypeF32. Determines start of distortion effect where water surface intersects.



	distortEndDist

	TypeF32. Max distance that distortion algorithm is performed.



	distortFullDepth

	TypeF32. Determines the scaling down of distortion in shallow water.








Basic Lighting


	clarity

	TypeF32. Relative opacity or transparency of the water surface.



	underwaterColor

	TypeColor. Changes the color shading of objects beneath the water surface.








Sound


	soundAmbience

	TypeSFXAmbienceName. Ambient sound environment when listener is active.








Editing


	isRenderEnabled

	TypeBool. Toggles whether the object is rendered.



	isSelectionEnabled

	TypeBool. Toggle whether this object can be selected in the editor.



	hidden

	TypeBool.Toggle visibility in editor.



	locked

	TypeBool. Toggle whether the object can be edited.








Mounting


	mountPID

	TypePID. Unique identifier of the mount.



	mountNode

	TypeS32. Node where the mount occurs.



	mountPos

	TypeS32. Offset for positioning the node.



	mountRot

	TypeS32. Rotation of this object in relation to the mount node.








Object


	internalName

	TypeString. Non-unique name used by child objects of a group.



	parentGroup

	TypeString. Group object belongs to.



	class

	TypeString. Links object to script class namespace.



	superClass

	TypeString. Links object to script super class (parent) namespace.








Persistence


	canSave

	TypeBool. Toggle whether the object can be saved in the editor.



	canSaveDynamicFields

	TypeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.













          

      

      

    

  

    
      
          
            
  
Water Plane

Like a Water Block, the Water Plane object can add realism to the environment of your level. However, the Water Plane is an infinite body of water with an adjustable height. The moment you add this object to your scene, everything below the height of the Water Plane will be submerged, similarly to a Water Block, but the Water Plane has no edges.


Adding a Water Plane

To add a Water Plane, select the Library tab in the Scene Tree Panel. Select the Level tab and double-click the Environment folder. Locate the WaterPlane object.

[image: ../_images/WPLibrary.jpg]
Double-click the WaterPlane entry. the Create Object dialog window will appear.

[image: ../_images/AddWaterPlane.jpg]
Enter a name for your Water Plane, then click the Create New button. A new Water Plane will be added to your scene. If your entire screen fills up with a dark blue or black color, this means the WaterPlane was placed above your camera so that your camera is underwater. Just move your camera up to get out of the water.

[image: ../_images/WaterPlaneAdded.jpg]
This is typical if your objects are set to drop at or above your camera in the Object > Drop Location sub-menu.




Water Plane Properties

Additional properties can be changed with the Inspector pane and are identical to what you will find in a WaterBlock. To change a Water Planes properties using the Inspector Pane, click the Scene tab, then click the name of your new Water Plane object. The Inspector pane will update to display the current properties of your new Water Plane.


Inspector


	Name

	TypeName. Optional global name of this object.



	id

	TypeCaseString. SimObjectId of this object. Read Only.



	Source Class

	TypeCaseString. Source code class of this object. Read Only.








Transform


	position

	MatrixPosition. Object world position.








WaterPlane


	gridSize

	TypeF32. Duplicate of gridElementSize for backwards compatibility.



	gridElementSize

	TypeF32. Spacing between vertices in the WaterPlane.








WaterObject


	density

	TypeF32. Affects buoyancy of an object, thus affecting the Z velocity of a player (jumping, falling, etc).



	viscosity

	TypeF32. Affects drag force applied to an object submerged in this container.



	liquidType

	TypeRealString. Liquid type of WaterPlane, such as water, ocean, lava. Currently only Water is defined and used.



	baseColor

	TypeColorI. Changes color of water fog, which is what gives the water its color appearance.



	fresnelBias

	TypeF32. Extent of fresnel affecting reflection fogging.



	fresnelPower

	TypeF32. Measures intensity of affect on reflection based on fogging.



	specularPower

	TypeName. Power used for specularity on the water surface (sun only).



	specularColor

	TypeColorF. Color used for specularity on the water surface (sun only).



	emissive

	TypeBool. When true, the water colors do not react to changes in environmental lighting.








Waves (vertex undulation)


	overallWaveMagnitude

	TypeF32. Master variable affecting entire body of water undulation.



	rippleTex

	TypeImageFilename. Normal map used to simulate small surface ripples.








Ripples (texture undulation)


	overallRippleMagnitude

	TypeF32. Master variable affecting the entire surface of the waterplane.



	foamTex

	TypeImage Filename. Diffuse texture for foam in shallow water (advanced lighting only).








Foam


	overalFoamOpacity

	TypeF32. Opacity of foam texture.



	foamMaxDepth

	TypeF32. Maximum depth for foam texture display.



	foamAmbientLerp

	TypeF32. Interpolation for foam settings.



	foamRippleInfluence

	TypeF32. Intensity of the ripples.








Reflect


	cubemap

	TypeCubemapName. Cubemap is used instead of reflection texture if fullReflect is off.



	fullReflect

	TypeBool. Enables dynamic reflection rendering.



	reflectivity

	TypeF32. Overall reflectivity of the water surface.



	reflectPriority

	TypeF32. Affects the sort order of reflected objects.



	reflectMaxRateMs

	TypeF32. Affects the sort time of reflected objects.



	reflectDetailAdjust

	TypeF32. Scale up or down the detail level for objects rendered in a reflection.



	reflectNormalUp

	TypeBool. Always use Z up as the reflection normal.



	useOcclusionQuery

	TypeBool. Turn off reflection rendering when occluded (delayed).



	reflectTexSize

	TypeF32. Texure size used for reflections (square).








Underwater Fogging


	waterFogDensity

	TypeF32. Intensity of underwater fogging.



	waterFogDensityOffset

	TypeF32. Delta, or limit, applied to waterFogDensity.



	wetDepth

	TypeF32. The depth in world units at which full darkening will be received giving a wet appearance.



	wetDarkening

	TypeF32. The refract color intensity scaled at wetDepth.








Misc


	depthGradientTex

	TypeImage filename. 1D texture defining the base water color.



	depthGradientMax

	TypeF32. Depth in world units, the max range of the color gradient texture.








Distortion


	distortStartDist

	TypeF32. Determines start of distortion effect where water surface intersects.



	distortEndDist

	TypeF32. Max distance that distortion algorithm is performed.



	distortFullDepth

	TypeF32. Determines the scaling down of distortion in shallow water.








Basic Lighting


	clarity

	TypeF32. Relative opacity or transparency of the water surface.



	underwaterColor

	TypeColor. Changes the color shading of objects beneath the water surface.








Sound


	soundAmbience

	TypeSFXAmbienceName. Ambient sound environment when listener is active.








Editing


	isRenderEnabled

	TypeBool. Toggles whether the object is rendered.



	isSelectionEnabled

	TypeBool. Toggle whether this object can be selected in the editor.



	hidden

	TypeBool.Toggle visibility in editor.



	locked

	TypeBool. Toggle whether the object can be edited.








Mounting


	mountPID

	TypePID. Unique identifier of the mount.



	mountNode

	TypeS32. Node where the mount occurs.



	mountPos

	TypeS32. Offset for positioning the node.



	mountRot

	TypeS32. Rotation of this object in relation to the mount node.








Object


	internalName

	TypeString. Non-unique name used by child objects of a group.



	parentGroup

	TypeString. Group object belongs to.



	class

	TypeString. Links object to script class namespace.



	superClass

	TypeString. Links object to script super class (parent) namespace.








Persistence


	canSave

	TypeBool. Toggle whether the object can be saved in the editor.



	canSaveDynamicFields

	TypeBool. True if dynamic fields (added at runtime) should be saved, defaults to true.













          

      

      

    

  

    
      
          
            
  
Wind Emitter

TODO


Adding Wind Emitter

TODO




Wind Emitter Properties

TODO







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Torque 3D
        


        		
          What is Torque3D?
          
            		
              What is Torque 3D?
            


            		
              System Requirements
            


            		
              The Engine
            


            		
              TorqueScript
            


            		
              Editors
            


            		
              The Asset Pipeline
            


          


        


        		
          Directory Tour - TODO
          
            		
              Introduction
            


            		
              SDK Tour - TODO
            


            		
              Torque 3D Project Tour - TODO
            


            		
              File Descriptions
            


            		
              Conclusion
            


          


        


        		
          Features
          
            		
              Teleporters
            


            		
              Weapon Clip System
            


            		
              Per-Player Weapon Cycling
            


            		
              Multiple Projectiles Per Shot
            


            		
              New Damage Reporting
            


            		
              The Asset Pipeline
            


          


        


        		
          Assets
          
            		
              Modules
            


            		
              Assets
            


          


        


        		
          Overview - TODO
          
            		
              New Users, Scripters, and Artists
            


            		
              Programmers
            


          


        


        		
          Required Downloads - TODO
          
            		
              Download Torque 3D
            


            		
              Download The Required SDK files
            


          


        


        		
          Installing DirectX SDK - TODO
          
            		
              Download and Install DirectX SDK
            


          


        


        		
          Install Visual Studio 2015 - TODO
        


        		
          Setup Visual Studio 2015 - TODO
        


        		
          Your First Project - TODO
          
            		
              Working with a T3D Project
            


            		
              Create a new project
            


            		
              Your new Project
            


            		
              The Source code
            


            		
              The Project
            


            		
              Your First Compile
            


            		
              The Project Build
            


            		
              Run your project
            


            		
              Summary
            


          


        


        		
          Basics
          
            		
              Overview
              
                		
                  Purpose
                


                		
                  Using the World Editor Documentation
                


                		
                  How to Launch the World Editor
                


                		
                  Launching from Within a Running Game
                


                		
                  Looking and Moving Around
                


                		
                  Tips
                


                		
                  Conclusion
                


              


            


            		
              Interface
              
                		
                  File Menu
                


                		
                  Tools Bar
                


                		
                  Tool Selector and Palette
                


                		
                  Scene Tree
                


                		
                  Library Tab
                


                		
                  Inspector
                


                		
                  Options
                


                		
                  World Editor Settings
                


                		
                  PostFX Manager
                


                		
                  Manipulators
                


              


            


          


        


        		
          Adding Objects
          
            		
              Overview
              
                		
                  Purpose
                


                		
                  Using the World Editor Documentation
                


                		
                  How to Launch the World Editor
                


                		
                  Launching from Within a Running Game
                


                		
                  Looking and Moving Around
                


                		
                  Tips
                


                		
                  Conclusion
                


              


            


            		
              Interface
              
                		
                  File Menu
                


                		
                  Tools Bar
                


                		
                  Tool Selector and Palette
                


                		
                  Scene Tree
                


                		
                  Library Tab
                


                		
                  Inspector
                


                		
                  Options
                


                		
                  World Editor Settings
                


                		
                  PostFX Manager
                


                		
                  Manipulators
                


              


            


          


        


        		
          Editors
          
            		
              Overview
              
                		
                  Purpose
                


                		
                  Using the World Editor Documentation
                


                		
                  How to Launch the World Editor
                


                		
                  Launching from Within a Running Game
                


                		
                  Looking and Moving Around
                


                		
                  Tips
                


                		
                  Conclusion
                


              


            


            		
              Interface
              
                		
                  File Menu
                


                		
                  Tools Bar
                


                		
                  Tool Selector and Palette
                


                		
                  Scene Tree
                


                		
                  Library Tab
                


                		
                  Inspector
                


                		
                  Options
                


                		
                  World Editor Settings
                


                		
                  PostFX Manager
                


                		
                  Manipulators
                


              


            


            		
              Terrain Editor
              
                		
                  Interface
                


                		
                  Brush Settings
                


                		
                  Grab Terrain Tool
                


                		
                  Raise Height Tool
                


                		
                  Lower Height Tool
                


                		
                  Smooth Tool
                


                		
                  Paint Noise Tool
                


                		
                  Flatten Tool
                


                		
                  Set Height Tool
                


                		
                  Clear Terrain Tool
                


                		
                  Restore Terrain Tool
                


              


            


            		
              Terrain Painter
              
                		
                  Interface
                


                		
                  The Brush
                


                		
                  Terrain Materials Editor
                


                		
                  Painting
                


              


            


            		
              Material Editor
              
                		
                  Interface
                


                		
                  Editing an Existing Material
                


                		
                  Creating a New Material
                


              


            


            		
              Sketch Tool
              
                		
                  Interface
                


                		
                  Creating a Convex Shape
                


                		
                  Editing a Convex Shape
                


                		
                  Object Manipulation
                


              


            


            		
              Datablock Editor
              
                		
                  Interface
                


                		
                  Creating a new Datablock
                


                		
                  Saving a Datablock
                


                		
                  Deleting a Datablock
                


              


            


            		
              Decal Editor
              
                		
                  Interface
                


                		
                  Adding a New Decal Datablock to the Library
                


                		
                  Naming a New Decal Datablock
                


                		
                  Removing Decal Datablock from the Library
                


                		
                  Missing Decals
                


                		
                  Editing Tools
                


                		
                  Properties
                


              


            


            		
              Forest Editor
              
                		
                  Interface
                


                		
                  Creating a Forest Mesh
                


                		
                  Using a Brush
                


                		
                  Adjusting Properties
                


                		
                  Editor Settings
                


              


            


            		
              Mesh Road Editor
              
                		
                  Interface
                


                		
                  Adding a Mesh Road
                


                		
                  Editing a Mesh Road
                


                		
                  Properties
                


              


            


            		
              Particle Editor
              
                		
                  Interface
                


                		
                  Emitter Properties
                


                		
                  Particle Properties
                


              


            


            		
              River Editor
              
                		
                  Interface
                


                		
                  Adding a River
                


                		
                  Editing a River
                


                		
                  Properties
                


              


            


            		
              Decal Road Editor
              
                		
                  Interface
                


                		
                  Adding a Decal Road
                


                		
                  Editing a Decal Road
                


                		
                  Properties
                


              


            


            		
              Shape Editor
              
                		
                  Interface
                


                		
                  Shape Selection
                


                		
                  Shape Hints
                


                		
                  Shape View
                


                		
                  Properties Window
                


                		
                  Advanced Properties Window
                


                		
                  Shape Editor Settings
                


                		
                  Saving Changes
                


              


            


          


        


        		
          Tutorials
          
            		
              Building Terrains
              
                		
                  Introduction
                


                		
                  Setup
                


                		
                  Heightmap, Opacity Layer, Terrain Textures
                


                		
                  Importing A Heightmap
                


                		
                  Conclusion
                


              


            


            		
              Creating a Sky
              
                		
                  Introduction
                


                		
                  Setup
                


                		
                  Delete Existing Objects
                


                		
                  A New Sun
                


                		
                  Adding A Skybox
                


                		
                  Changing Skybox Material
                


                		
                  Adding Clouds
                


                		
                  Conclusion
                


              


            


            		
              Adding Lakes
              
                		
                  Introduction
                


                		
                  Setup
                


                		
                  Adding a WaterBlock
                


                		
                  Color and Fog
                


                		
                  Calming the Water
                


                		
                  Conclusion
                


              


            


            		
              Adding Foliage
              
                		
                  Introduction
                


                		
                  Setup
                


                		
                  Adding GroundCover
                


                		
                  Creating GroundCover Material
                


                		
                  Assigning Terrain Material
                


                		
                  Basic Modifications
                


                		
                  3D Shapes
                


                		
                  Advanced Modifications
                


                		
                  Conclusion
                


              


            


          


        


        		
          Overview of GUI Editor
        


        		
          Tutorials
          
            		
              Creating a New GUI - TODO
              
                		
                  Introduction
                


                		
                  Setting Up
                


                		
                  Our First GUI
                


                		
                  First Control
                


                		
                  Text Control
                


                		
                  Dynamic Text
                


                		
                  Conclusion
                


              


            


            		
              Adding Controls - TODO
              
                		
                  Introduction
                


                		
                  Setting Up
                


                		
                  Adding Controls
                


                		
                  Bring the GUI to Life
                


                		
                  A New Window
                


                		
                  Load GUI From Key Press
                


                		
                  Conclusion
                


              


            


            		
              Mini Console - TODO
              
                		
                  Introduction
                


                		
                  Setting Up
                


                		
                  Add the Controls
                


                		
                  The GuiTextEdit Control
                


                		
                  Commanding the Console
                


                		
                  Activating the Console
                


                		
                  Conclusion
                


              


            


            		
              Simple HUD
              
                		
                  Introduction
                


                		
                  Setting Up
                


                		
                  Adding Text Controls
                


                		
                  Configuring Text Output
                


                		
                  Conclusion
                


              


            


            		
              Advanced Dialogs
              
                		
                  Introduction
                


                		
                  Setting Up
                


                		
                  Adding Controls
                


                		
                  Adding Functionality
                


                		
                  Scripting Hooks
                


                		
                  Conclusion
                


              


            


            		
              Simple Inventory GUI
              
                		
                  Introduction
                


                		
                  Setting Up
                


                		
                  Bitmap Controls
                


                		
                  GUI Profile
                


                		
                  More Visual Editing
                


                		
                  Bitmap Buttons
                


                		
                  Adding Functionality
                


                		
                  Scripting Hooks
                


                		
                  Conclusion
                


              


            


          


        


        		
          Primer
          
            		
              Torque Art Primer - TODO
              
                		
                  Introduction
                


                		
                  3-Space Features
                


                		
                  Animation Concepts
                


                		
                  Materials
                


                		
                  Conclusion
                


              


            


            		
              Torque Character Primer
              
                		
                  Introduction
                


                		
                  Conclusion
                


              


            


          


        


        		
          Formats
          
            		
              COLLADA - TODO
              
                		
                  Introduction
                


                		
                  COLLADA for Torque 3D
                


                		
                  Troubleshooting
                


                		
                  Appendix 1: Material Settings
                


                		
                  Appendix 2: Supported Extensions
                


                		
                  Appendix 3: Supported COLLADA Elements
                


              


            


            		
              DTS Format - TODO
              
                		
                  Introduction
                


                		
                  DTS Format
                


                		
                  Sequences
                


                		
                  Bitsets
                


                		
                  Data Buffers
                


                		
                  Meshes
                


              


            


            		
              DSQ Format - TODO
              
                		
                  Introduction
                


                		
                  DSQ Format
                


                		
                  Sequences
                


                		
                  Bitsets
                


              


            


            		
              Texture Compression - TODO
              
                		
                  Introduction
                


                		
                  The DDS Image Format
                


                		
                  Soldier Imperial Sample
                


                		
                  GarageGames Logo Sample
                


                		
                  DDS Compression Guidelines
                


                		
                  How to Convert to DDS
                


                		
                  References and Further Reading
                


                		
                  Conclusion
                


              


            


          


        


        		
          Exporters
          
            		
              DAE to DTS
              
                		
                  Examples
                


                		
                  Materias
                


                		
                  Futher Reading
                


              


            


            		
              Milkshape - TODO
              
                		
                  Introduction
                


                		
                  Main Dialog
                


                		
                  Meshes
                


                		
                  Materials
                


                		
                  Sequences
                


                		
                  Comment Strings
                


                		
                  Additional Information
                


                		
                  Change Log
                


              


            


          


        


        		
          Tutorials
          
            		
              Adding Objects to level
              
                		
                  Introduction
                


                		
                  Adding A COLLADA Model
                


                		
                  Shape Properties
                


                		
                  Conclusion
                


              


            


            		
              Adding A New Player - TODO
              
                		
                  Introduction
                


                		
                  Setup
                


                		
                  The Datablock Editor
                


                		
                  Player Properties
                


                		
                  Spawning
                


                		
                  Customizing our Character
                


                		
                  Conclusion
                


              


            


            		
              Terrain - TODO
              
                		
                  Introduction
                


                		
                  Setup
                


                		
                  Heightmap, Opacity Layer, Terrain Textures
                


                		
                  Importing A Heightmap
                


                		
                  Conclusion
                


              


            


            		
              Adding Wind effects
              
                		
                  Introduction
                


                		
                  Vertex Painting Your Model
                


                		
                  Exporting Your Mesh
                


                		
                  Setting Up A Mesh In Torque 3D
                


                		
                  Setting the View Distance of Wind Effects
                


                		
                  Conclusion
                


              


            


            		
              Destructible Objects MAX - TODO
              
                		
                  Introduction to Destructible Objects
                


                		
                  Setting Up Collision
                


                		
                  Hierarchy For Meshes With Multiple LODs
                


                		
                  Aligning the Pivot Points
                


                		
                  Zero Transforms
                


                		
                  Setting up the physicsShape.cs file
                


                		
                  Building a destructible object with more than one damage states
                


                		
                  Null LODs
                


                		
                  Conclusion
                


              


            


            		
              Destructible Objects XSI - TODO
              
                		
                  Introduction to Destructible Objects
                


                		
                  Setting Up Collision
                


                		
                  Exporting from Softimage
                


                		
                  Hierarchy For Meshes With Multiple LODs
                


                		
                  Aligning the Pivot Points
                


                		
                  Freeze Transforms
                


                		
                  Setting up the physicsShape.cs file
                


                		
                  Building a destructible object with more than one damage states
                


                		
                  Null LODs
                


                		
                  Conclusion
                


              


            


            		
              PostFX Color Correction - TODO
              
                		
                  Required Knowledge
                


                		
                  Color Correction
                


                		
                  Workflow
                


              


            


          


        


        		
          Importing Assets
          
            		
              Introduction
            


          


        


        		
          Overview
          
            		
              Introduction to TorqueScript
              
                		
                  What is TorqueScript?
                


                		
                  Basic Usage
                


                		
                  Scripting vs Engine Programming
                


                		
                  Getting Started
                


              


            


            		
              TorqueScript Editors - TODO
              
                		
                  On Windows
                


                		
                  On OS X
                


                		
                  Cross-platform
                


              


            


            		
              Torsion TorqueScript IDE - TODO
            


            		
              Syntax Guide
              
                		
                  The Basics
                


                		
                  Variables
                


                		
                  Data Types
                


                		
                  Operators
                


                		
                  Control Statements
                


                		
                  Loops
                


                		
                  Functions
                


                		
                  Console Methods
                


                		
                  Console Functions
                


                		
                  Objects
                


                		
                  Conclusion
                


              


            


            		
              Quick Reference - TODO
              
                		
                  Language Features
                


                		
                  Variable Names
                


                		
                  Constants
                


                		
                  Operators
                


              


            


          


        


        		
          Simple
          
            		
              Echo Examples
              
                		
                  Syntax Review
                


                		
                  Example
                


                		
                  Creating the Script
                


                		
                  Testing the Script
                


                		
                  Conclusion
                


              


            


            		
              Creating Functions
              
                		
                  Syntax Review
                


                		
                  Calling Functions
                


                		
                  Creating the Script
                


                		
                  Conclusion
                


              


            


            		
              Math Examples
              
                		
                  Syntax Review
                


                		
                  Creating the Script
                


                		
                  Conclusion
                


              


            


            		
              String Manipulation
              
                		
                  Syntax Review
                


                		
                  Creating the Script
                


                		
                  Conclusion
                


              


            


            		
              Looping Structures
              
                		
                  Syntax Review
                


                		
                  Example
                


                		
                  Creating the Script
                


                		
                  Conclusion
                


              


            


            		
              Array Manipulation
              
                		
                  Syntax Review
                


                		
                  Example
                


                		
                  Creating the Script
                


                		
                  Conclusion
                


              


            


            		
              Switch Statements
              
                		
                  Syntax Review
                


                		
                  Creating the Script
                


                		
                  Conclusion
                


              


            


            		
              Vectors - TODO
            


          


        


        		
          Advanced
          
            		
              Player Class
              
                		
                  Detailed Description
                


                		
                  Movement
                


                		
                  Dismounting
                


                		
                  Triggering a Mounted Object
                


                		
                  The Character Model
                


              


            


            		
              Player Datablock
              
                		
                  Detailed Description
                


                		
                  Member Function Documentation
                


                		
                  Member Data Documentation
                


              


            


            		
              Shapebase Class - TODO
              
                		
                  Detailed Description
                


                		
                  Control Object
                


                		
                  Energy/Damage
                


                		
                  Member Function Documentation
                


                		
                  Member Data Documentation
                


              


            


            		
              Turrets - TODO
              
                		
                  Detailed Description
                


                		
                  Overview
                


                		
                  Deployable Turret
                


                		
                  Example State Machine
                


                		
                  Shape File Nodes
                


                		
                  Ignore List
                


                		
                  Member Function Documentation
                


                		
                  AITurretShapeData and Member Data Documentation
                


              


            


            		
              Triggers - TODO
              
                		
                  Introduction
                


                		
                  Creating Triggers
                


                		
                  Using Triggers to Cause Events
                


                		
                  Using Trigger Callbacks to Cause Events
                


                		
                  Conclusion
                


              


            


            		
              Weapons - TODO
              
                		
                  Detailed Description
                


                		
                  Weapon Shape Nodes
                


                		
                  Weapon Muzzle Flash
                


                		
                  First Person Shape (optional)
                


                		
                  Animation Sequence Transitions
                


                		
                  Animation Sequence Selection
                


                		
                  eyeMount Node (optional)
                


                		
                  Special State Triggers
                


                		
                  Special States
                


                		
                  Member Function Documentation
                


                		
                  Member Data Documentation
                


              


            


            		
              Proximity Mines
              
                		
                  Detailed Description
                


                		
                  Member Function Documentation
                


              


            


            		
              Camara Modes - TODO
              
                		
                  Introduction
                


                		
                  Camera Modes
                


                		
                  Toggling Basic Camera Modes
                


                		
                  Toggling Special Camera Modes
                


                		
                  Camera Options
                


                		
                  Conclusion
                


              


            


            		
              RTS Prototype - TODO
              
                		
                  Introduction
                


                		
                  Create A New Project
                


                		
                  Camera Setup
                


                		
                  Mouse Setup
                


                		
                  Mouse-Driven Input
                


                		
                  Destination Markers
                


                		
                  Camera Modes
                


                		
                  Going More Real-Time Strategy
                


                		
                  Conclusion
                


              


            


            		
              Adventure Prototype - TODO
              
                		
                  Introduction
                


                		
                  Building A Level
                


                		
                  Hooking Up The Triggers
                


                		
                  Conclusion
                


              


            


            		
              Mission Triggers - TODO
              
                		
                  Introduction
                


                		
                  Setting Up
                


                		
                  Create the New Trigger Datablock
                


                		
                  The onEnterTrigger() Callback and Other Support Scripts
                


                		
                  Putting It All Together
                


                		
                  Conclusion
                


              


            


            		
              TSShapeConstructor - TODO
              
                		
                  Introduction
                


                		
                  Terminology
                


                		
                  Example 1: Adding a Collision Mesh To an Existing Shape
                


                		
                  Example 2: Adding a Mesh From an Existing DTS File
                


                		
                  Example 3: Auto-loading animations
                


                		
                  Example 4: Splitting COLLADA animations
                


                		
                  Example 5: Rigid-body Player Character
                


                		
                  TSShapeConstructor Commands
                


                		
                  Conclusion
                


              


            


            		
              Engine To Script
              
                		
                  Introduction
                


                		
                  Creating Call-in Points
                


                		
                  Creating Call-out Points
                


                		
                  Creating Types
                


                		
                  Documentation
                


                		
                  Important Notes
                


                		
                  Conclusion
                


              


            


            		
              Projectiles
              
                		
                  Introduction
                


                		
                  Projectiles
                


                		
                  Conclusion
                


              


            


            		
              Networking
              
                		
                  Introduction
                


                		
                  The Client/Server Concept
                


                		
                  Datablocks in Networking
                


                		
                  Network Connection Classes ? Linking Client and Server
                


                		
                  Sending Commands in Torqueâ��s Client/Server Model
                


                		
                  Making Your Own Commands
                


                		
                  Further Reading
                


              


            


          


        


        		
          Audio
          
            		
              Overview
              
                		
                  Introduction
                


                		
                  Two Playback Types
                


                		
                  3D Sound
                


                		
                  Playback Virtualization
                


                		
                  Supported Audio Formats
                


                		
                  Supported Sound APIs
                


                		
                  Conclusion
                


              


            


            		
              Interface
              
                		
                  Overview
                


                		
                  Channels
                


                		
                  Descriptions
                


                		
                  Configuring 3D Playback
                


                		
                  Script Classes
                


                		
                  Script Functions
                


                		
                  Conclusion
                


              


            


            		
              Internals
              
                		
                  SFXBuffer
                


                		
                  SFXVoice
                


                		
                  SFXStream
                


                		
                  SFXFileStream
                


                		
                  SFXResource
                


                		
                  SFXDevice
                


                		
                  SFXProvider
                


                		
                  SFXSystem
                


                		
                  Conclusion
                


              


            


            		
              Conclusion
              
                		
                  How Do Iâ�¦
                


                		
                  Troubleshooting
                


                		
                  Best Practices
                


                		
                  Conclusion
                


              


            


          


        


        		
          Lighting
          
            		
              Lighting Overview
              
                		
                  Introduction
                


                		
                  Basic Light Manager
                


                		
                  Advanced Light Manager
                


                		
                  The LightInfo Class
                


                		
                  The LightInfoEx Class
                


                		
                  SceneLightingInterface
                


                		
                  AvailableSLInterfaces
                


                		
                  The ShadowManager Base Class
                


                		
                  The ShadowMapManager Class
                


              


            


            		
              Lighting Source Code Tour
              
                		
                  Introduction
                


                		
                  The Lighting Core
                


                		
                  Basic Lighting
                


                		
                  Advanced Lighting
                


                		
                  Common Lighting Classes
                


                		
                  Shadow Maps
                


              


            


            		
              Using the LightManager Class
              
                		
                  Introduction
                


                		
                  Example Uses
                


                		
                  Compatibility
                


                		
                  Activating and Deactivating the LightManager
                


                		
                  Using the Active LightManager
                


                		
                  AdvancedLightManager
                


                		
                  BasicLightManager
                


              


            


            		
              LightManager
            


            		
              BasicLightManager
            


            		
              AdvancedLightManager
            


            		
              ShadowManager
            


            		
              ShadowMapManager
            


            		
              LightInfo
            


          


        


        		
          Rendering
          
            		
              Overview
              
                		
                  Introduction
                


                		
                  High Level Features
                


                		
                  Platform Support
                


                		
                  Key Concepts
                


                		
                  Important Links
                


                		
                  Conclusion
                


              


            


            		
              Source Code Tour
              
                		
                  Introduction
                


                		
                  GFX Core
                


                		
                  DirectX (D3D, D3D9)
                


                		
                  OpenGL (gl and ggl)
                


                		
                  Null
                


                		
                  Sim
                


                		
                  Test
                


                		
                  RenderInstance
                


                		
                  Conclusion
                


              


            


            		
              Render Management
              
                		
                  Introduction
                


                		
                  RenderInst
                


                		
                  ObjectRenderInst
                


                		
                  MeshRenderInst
                


                		
                  RenderBinManager
                


                		
                  RenderPassManager
                


                		
                  Sub-Managers
                


                		
                  Conclusion
                


              


            


            		
              RenderDelegate
              
                		
                  Concept
                


                		
                  SkyBox Example
                


                		
                  RenderObjectExample
                


                		
                  RenderDelegate vs Other Render Methods
                


                		
                  Conclusion
                


              


            


            		
              Stateblocks
              
                		
                  Concept
                


                		
                  Technical Description
                


                		
                  Source Code
                


                		
                  GFXSamplerStateDesc
                


                		
                  GFXStateBlockDesc
                


                		
                  GFXStateBlock
                


                		
                  GFXStateBlockData
                


                		
                  Engine Example
                


                		
                  Script Example
                


                		
                  Conclusion
                


              


            


            		
              Shader Constant Buffers
              
                		
                  Concept
                


                		
                  Technical Description
                


                		
                  Source Code
                


                		
                  Engine Example
                


                		
                  Script Example
                


                		
                  Conclusion
                


              


            


            		
              Interface
              
                		
                  Introduction
                


                		
                  Core Global Variables
                


                		
                  Script Classes
                


                		
                  Conclusion
                


              


            


          


        


      


    
  

_images/GCAdjustSize1.jpg
sizelin






_images/GCAlphaThreshold.jpg
~ Advanced (all layers)

LerpAlpha _~ | (JTransparency

Oransparent Z-Wiite

Ipha Threshold ETH
ast Shadows_(JDoube Sided






_images/GCAdjustSize2.jpg
sizelin
sizel

|08
|2





_images/GCCoverGrass.jpg
A Torgue 202008 - T






_images/GCCountIncreased.jpg
°ma






_images/GCCoverSand.jpg
2 5






_images/GCCoverGrass1.jpg





_images/GCEverywhere.jpg
2 5






_images/GCEditDiffuse.jpg
Material Properties
FECIRCE]

P —
I — )

Layer 0
v Basic Texture liaps
Diffuse Map

corefartiwarnivat

[ cobr 8






_images/GCFinal.jpg





_images/FinalSnowMaterials.jpg
Terrain Miterials Edtor

Bl orasst
B rockst

B3 cresstiry

3 at_orass

3 arherrains Testint_orass
3 arterrainsrestirass 1
3 arherrans Testiockst
B Pravie

3 Rocival

@ 1

Wiateril Properiies

vuse (2 )6
None
[ )see

0] Use Side Projection

Detai Gl

None

Size

rength Distance.

Wormat(2at ) 5

None

0 Jparallax Scale






_images/FinalRockWallMaterials.jpg
Terrain Materials Editor *

2 gasst Wiateril Properiies

B3 grasst-dry Diffuse []
3 dirt_grass. Lo

2 atterains Testnt_rass

(0] Use S Projection
3 atterains Testirass1

B3 Praie

Size

3 artherransTestrockst . o 8

Distance.

Wormal [t | O

None

<@ T [0 Jparalax Scale






_images/FinalUnderwater.jpg





_images/FinalUV.jpg





_images/FlattenBefore.jpg
AT
Torn oGt Uiy P

© | 0, cems ot G315] @, | i (@] O | = (5 T5) | o o 1 5]\ | i

A/0®Basanass|






_images/FlattenAfter2.jpg
e

® |, comen o 2515 @ | snmserss [© 0] | 2e 5 D>

L/O0®mesAaanss






_images/ForestEditorTool1.jpg





_images/ForestEditorTool.jpg





_images/FresnelBefore.jpg





_images/FresnelAfter.jpg
D, comene e






_images/LibraryTerrainBlock.jpg
Scene Tree

Scene | Lirary

Scripted [ Meshes [ Level | Prefabs

(¢ [Envionment

O pomuat

Y

b recptaon 7%

retab =

Scatersy
‘Shape Replicator
SiyBox

- Sounaemiter

® swettin

T 1

Terrain Block

er Block
TerranBlock

Wind Enitter






_images/LevelTab_Environment.png
Scene Tree

Scene [ Lirary |

Seritea Hieehes | Leve | Prefabs

O [Enwroment

[ e
BasicSun (" Sound Emitter
CoudLayesr ) Spetlit

- GrowdCover A TerrainBicl
Grountpane 5 Volmetic Fog
Utnng 7% Water Boch
Paricte e [ Water Flane
Poirt Light & windEniter
recitatin

Fiten






_images/LibraryWaterblock1.jpg
Scene Tree.

Scene | Lirary

Scrpled eshes | Lovel | Frsiabs
[ —
Light /n Terrain Block
ptation 7 Water Block

N o WetrBiock
Rersty & wnagmer

e Replcator

Box

p—

e

: —






_images/LibraryWaterblock.jpg
Scene Tree.

[Satd [Vieshes | Leve | Fisiabs
e —
Lignt n Terrain Block
Jptation 7 Water Block

lter sty £ Wndentter

< | —






_images/LoadTerrainDialog.jpg
New Window

Terrain fle

Square size.






_images/Library_GroundPlane.jpg
Scene Tree

Scene | Lirary

Scrptea Weshes | Leve | pefae

O [Ervromen

BasicCouts ot Ligt
Basic sun 0 Preciptaton
Cloud Layer W Prefab

Folage Replcator  <§/ Scatter Sky
GrounaCover  (©) Shape Repicator
Grounapiane | @ iy Box
Lting - Soun Eniter

GroundPlane
Particle Emiter ) Spot Light

Pl (— >






_images/MBAdded.jpg





_images/LowerFogDensity.jpg
~ Underwater Fogaing
waterFogDensiy
waterFogDensityOffset
wetDepth
wetDarkening

o0

15
03






_images/MatSpecOff.jpg





_images/MBAdded1.jpg
[E]






_images/LevelTab_Environment.jpg
Scene Tree

Scene | Lirary

Seriea  Heshes | Leve | refabs

) [Envromment

S Bascoows  Q PartLign,
55 Basic Sun 0 preciptat
& Cowdlayer W Prefab

(@ Folage Replcstor <5 Scater S
V Gromdcover @ Shape e
Grounapane @ SiyBox
X Ligtning - Sounatm
Yo ParicleEmiter  § Spot Light

Pi — y






_images/ImportTerrainHeightmap.jpg
Edit Camera Object Tools Lighting

New Level
Open Level ctio
Save Level cuis
Save Level As

CenteBank Teain
e
i

Play Level 1
Close Editor BsC
Bit





_images/IncreasePrairieDetailDistance.jpg
Terrain Materials Editor *

2 gasst Wiateril Properiies

B3 orasst-dry Diffuse 8
3 cint_grass None

2 Rociwal

0] Use Side Projection

vean 8
3 arterrains Testiiit_orass Size

3 anterrains Testirass 1
3 anherrans Testrockst

Distance.

Hormal Gl

None
i [E— [0 Jaratax scale

08 [ sew [ s |






_images/ImportTerrainHeightmap1.jpg
Edit View Temain Physics
New Level
Open Level,
Save Level

Save Level As.
Open Project in Torsion
Open Level ile in Torsion

Create Blank Terrain
Import Terrain Heightmap
Export Terrain Heightmap

ExportInteriors To Collada.
Export To Collada.

‘Add FMOD Designer Audio.

Play Level
Bt Level

Quit

Camera

o
culs

1

A4





_images/InitialFoliageMat.jpg





_images/IncreasePrairieRepeat.jpg
Terrain Materials Editor

Terrain tersls [ ew | [ Delte ] | tame: [Prae
3 atteransiTestrocts Beschap  Delilvap  Normatiap
3 arterrainsrestirass1
3 arherrains Testit_orass
3 grasst
2 Biacivat
B3 grasst
B3 rocktest Oetai Repeat: [258_[]
B3 grasst-ary Detail Srength:[10°['z]
3 ait_orass
Detai Distance: [0

3 warning_materal
(0] Use S Projection

Paraax Scale: 050 ]






_images/LessRayleighScene.jpg
& Torue 30200 - ot






_images/LessMieScene.jpg





_images/LevelTab.png
Scene Tree

Scene | Lhbrary
| Seripted [ Meshes [ Level | Prefabs |

0]

0 Enronmen

5] Examplobiects
53 Lever
5 Navigation

50 System






_images/LevelTab.jpg
Scene Tree.

Scene | Lirary

| Scripted | Weshes [ Level | Prefabs |

(O] E—

1 Envronment
5] Exampiopiects
53 Lever

0 System






_images/ImportHeightMapDialog1.jpg
Import Terrain Height Map.

Nane ters er Pixe it Scae
[inTeran o =]
Heigt ip Inage

i N [Erowse. |
Texture Map Channeis

Edt






_images/ImportHeightMapDialog.jpg
Import Terrain Height Map.

Nane ters er Pixe it Scae
[inTeran o =]
Heigt ip Inage

i N [Erowse. |
Texture Map Channeis

Edt






_images/MissionEditorTool.jpg
WA R N ENEIE PR RN






_images/MeshRoadTool1.jpg
a





_images/NameMaterialGrass.jpg
Material Properties *
afdd|~28

GroundCover
N e — )






_images/MoreRayleighScene.jpg





_images/NameScatterSky.jpg
Create Object

Object Name: [thesiy

Rayleigh Scattering [0.0035

Wi Scattering (00045
Sun Brghtress [25






_images/NamePrecipRain.jpg
Create Object: Precipiation
Object Name: [TheRain

precptatincta | ]






_images/NameSkybox.jpg
Create Object: SkyBox

Object Name: [theSiyBox
Materia Name ()






_images/NameSkyCubemap.jpg
Create Cubemap

L o —






_images/NewGroundPlane.jpg
Create Object: GroundPlane

ObiectName: [Testpine]
Witerial Name ()






_images/NavEditorTool.jpg





_images/MatSpecOn.jpg





_images/MaterialEditorTool.jpg





_images/MaterialEditor.jpg
File Edt View Object Camera Edtors Lighting Help
[&] 1 ® | o, coneraspess 5 5] @

P NI

v 1, 40 8 0 E )| & g2 ][] % 3
aawsHs R

roperties

ad [%]5]
Vet [Baninnte |
Target whte
Tayer0 T
v Basic Texture Maps i
Diftuse Map.
coreratiwtite
Cleoor (Ea) 8
ormai Map
None
)8
SpeeMap
None
[=ms)

> Advanced Texture liaps
 Lighting Properties

Dpecuar [] 0 on
Specrengh 0 [1 ]~
Demssve Dolow

[ ol

(DAnisotropic fitering

Move selecton, SHIT whie cragaing duplicates objects, CTRL o toggle soft snap. ALTtotoggle gric snap. 0 objects selected [ [Sandard camera <]






_images/MaterialMenu.jpg
Material Selector x

s sas 0] (oo
Topes [T
s GECAL Focl DECAL_scae OefDcaF Dfaondy efaFoad cefnTie i
o103 iy
meepeare) || NI i INO)
— el 2
Getee. aeaATes 1 detautee ooy crsta pac

portals_portal op
tera Tags

12 Blue GrdS12_Fore GraS12_Fore Grist2_Gree GriS2_Grey Grids12_0rey
12 Orar GHUSIZ_Ore GraSI2 e, gude  NewLeveSty poshape Nos

NO NO T

Poshapetext_ noshapete_ Octahedrerhl potls_porta porta_poral [portal_pora

R

Srucire i Stuctue pla Stucture_we uctyHeathke  Underwter

= W ST [ soea J[conca ]

Smecorett






_images/MaterialEditorTool1.jpg





_images/MaterialSwapAfter.jpg
) @ | smsemn [ ] | soe 6 o] | Svoam unls 5] v(am o] | e 5

sA[ A2 8S

=





_images/MaterialSelector.jpg
e






_images/MeshObject1.jpg
O [atishapesbarrels <

& rorent [y

FBarreiDl dis
Size: 20371 KB

Date Createc: SMS2009 11:54:13 AM
Last Modifiec: 5172009 1:30.-27 PM






_images/MeshObject.jpg
O [atishapesbarrels <

& rorent [y

FBarreiDl dis
Size: 20371 KB

Date Createc: SMS2009 11:54:13 AM
Last Modifiec: 5172009 1:30.-27 PM






_images/MeshRoadTool.jpg
a





_images/WEDropLocationMenu.jpg
Drop Location

Make Selection Prefab.
Explode Selected Prefab

Mount Selection A to B

Unmount Selected Object

2t Origin
ot Camera

2t Camera w/Rotation
Below Camera

Screen Center

at Centroid

to Terain

Below Selection






_images/WECameraSpeedMenu1.jpg
Speed

Slowest
Siow
Slower
Normal
Faster
Fast
Fastest

Ctl-Shift 1
Crt-shift2
ct-shift3
Crlshift
clshifts
Clshift6
ctshift7






_images/GEHelpMenu.jpg
Help.

Online Documentation.
Offline Documentation.

Torque 3 Forums.

AltFL






_images/WEEditMenu.jpg
Edit] View Object Camera Editors Lighting Help

Undo
Redo

a
Copy
Paste
Delete

Deselect
Select

Audio Parameters
Editor Settings.
Snap Options.

Game Options.
PostEffect Manager

cnz
Y

cix
cic
v
Delete

x

w

®

a B =





_images/GEFileMenu.jpg
File] Edit Layout Move Snap Help
New Gui N
Open, o
Save culs
Save As. Ctrl -shift S
Save Selected As. Ctr-shift S
Revert Gui
‘Add Gui From Fie,

Close Editor 0
Quit culQ






_images/WEDropLocationMenu1.jpg
Drop Location

Make Selection Prefab.
Explode Selected Prefab

Mount Selection A to B

Unmount Selected Object

2t Origin
ot Camera

2t Camera w/Rotation
Below Camera

Screen Center

at Centroid

to Terain

Below Selection






_images/GELayoutMenu.jpg
File Edit [Layout| Move Snap Help

Align Left Ctr Left
Center Horizontally

Align Right Ctrl Right
Align Top CtrlUp.

Center Vertically
Align Bottom Ctrl Down

Space Vertically
Space Horizontally

Fitinto Parent(s)
Fit Width to Parent(s)
Fit Height to Parent(s)

Bring to Front
Send to Back






_images/WEEditorsMenu.jpg
Editors | Lighting Help

©  Object Edtor
Terrin Editor
Terrain Painter
Materil Edtor
Sketch Tool
Datablock Edtor
Decal Editor
Forest Editor
Mesh Road Editor
Mission Area Editor
Particle Editor
River Edtor
Road and Path Editor
Shape Editor





_images/GEInspector.jpg
u 143
Source Class Guindowct

< Genera

esizanian

resizetegt

cantiove 4
canClose [
minsize 050
coseCommand Canvas popt
Eagesnap o

et options
Docting —s
argin CTTT
Padding 0000
AnchorTop

‘AnchorBottom (=]

name (TypeName)Optional gobl name of

tis object.





_images/WEEditMenu1.jpg
Edit] View Object Camera Editors Lighting Help

Undo
Redo

a
Copy
Paste
Delete

Deselect
Select

Audio Parameters
Editor Settings.
Snap Options.

Game Options.
PostEffect Manager

cnz
Y

cix
cic
v
Delete

x

w

®

a B =





_images/GEProfileEditor.jpg
GUL_[ Profies | & B[] B

CenterprintTextProfie (1217)
chathudAindowProfie (1138)
ConsoleScrolProfie (1205)
ConsoleTextEditProfie (1206)
EdtorTabPage (1175)
GuiAutoSizeTextrofie (1151)
GuBigTextProfi (1153)
GuBlackCortertProfie (141)
GuBreadcrumbsitenuProfie (121
GuButtonTabProfie (1174)
GuicheckBoxListFipecProfie (11
GuicheckBoxListProfe (1177)






_images/WEFileMenu.jpg
Edit View Object Camera Editors

New Level
Open Level, o
Save Level cuis
Save Level As.

Open Project in Torsion

Open Level ile in Torsion

Create Blank Terrain
Import Terrain Heightmap.
Export Terrain Heightmap

ExportInteriors To Collada.
Export To Collada.

‘Add FMOD Designer Audio.

Play Level 1
Bt Level
Quit AltFa

Lighting Help

o, | o

w

*





_images/GEMoveMenu.jpg
File Edit Layout Snap Help
Nudge Left
Nudge Right
Nudge Up

Nudge Down

Big Nudge Left
Big Nudge Right
Big Nudge Up

Big Nudge Down

Left
Right

Up

Down
Shift Left
Shift Right

Shift Up
Shift Down





_images/WEEditorsMenu1.jpg
Editors | Lighting Help

©  Object Edtor
Terrin Editor
Terrain Painter
Materil Edtor
Sketch Tool
Datablock Edtor
Decal Editor
Forest Editor
Mesh Road Editor
Mission Area Editor
Particle Editor
River Edtor
Road and Path Editor
Shape Editor





_images/GCTreesAdded.jpg
Pt D i






_images/WECameraMenu1.jpg
Editors _Lighting Help
©  WorldCamera

Player Camera

Toggle Camera A
Place Camera at Selection culQ
Place Camera at Player ARQ
Place Player at Camera AW
Fit View to Selection F
Fit View To Selection and Orbit ARF
Speed

View

Add Bookmark. B
Manage Bookmarks. Ctr-shift B

Jump to Bookmark






_images/GCTreeDae.jpg
< shapes » trees b defaulttree  ~ | 3 | [Scarch

o e Name Datemodified  Type Size

defaultree.cached.dts

) Documents Torque 3 Shape

B Deskiop 300KB
Computer defaulttree. DAE
DAE File
B Pictures Bl N
i defaultre daeimposterds
(B Recently Changed DDS Document
682KB

B sesrches
e defouttree.daeimposter.no.
L HE DDS Document

6828

defaultree_bark_diffuse.dds
DDS Document
131M8

EAEAENE, - 3

Folders S

Fie name:  defautiree. DAE -






_images/WECameraMenu.jpg
Editors _Lighting Help
©  WorldCamera

Player Camera

Toggle Camera A
Place Camera at Selection culQ
Place Camera at Player ARQ
Place Player at Camera AW
Fit View to Selection F
Fit View To Selection and Orbit ARF
Speed

View

Add Bookmark. B
Manage Bookmarks. Ctr-shift B

Jump to Bookmark






_images/GECateExpanded.jpg
Control Palette. x

Comman Categorized

al
33 3

~ Butons
GuiBtmapBLtonCil
GuBimaputtonTextcil
GuBorderButonCir
GuButtorBaseCtl
GuButtoncirl
GuicheckBoxCtl
GuiconButonCil
GuRadioCtl
GuiSwatehButtonCir
GuiToggleButtonCil
GuiToolboxButtonCir

» Containers

» core






_images/GCTreesOnGrass.jpg
Object_Physics Camers Edtors _Lighting _Help.

2 5 &

0 coeatons 53] @,

S ma Al

L} Sciptd | eshes | ove | ot

= 0=
i v

\ b
—

nionn ) Soaiv]






_images/WECameraSpeedMenu.jpg
Speed

Slowest
Siow
Slower
Normal
Faster
Fast
Fastest

Ctl-Shift 1
Crt-shift2
ct-shift3
Crlshift
clshifts
Clshift6
ctshift7






_images/GEEditMenu.jpg
File

Edit | Layout Move Snap Help

Undo

Redo

a
Copy

Paste

Select Al

Deselect Al

Select Parent(s)

Seect Chidren

/Add Parent(s) to Selection
Add Chidrento Seection

Lock/Unlock Selection
Hide/Unhide Selection

Group Selection
Ungroup Selection

Full Box Selection

Grid Size:

aiz

X
clc
v

ctia
ctip

c-AltUp
Ctrl-Alt Down
Ctrl-Attshift Up
Ctrl-AltShift Down

L
ctlH

G
Ctrl-shift G

cul,






_images/Types1.jpg
B Types
o
8
bilboarduvs | 001
ShapeFiename

layer sand [
invertLayer
probabity






_images/GCSecondUVEdit.jpg
UV Editor .

o
5, + v (0210838
- i Wictth: [0.144531
! : N
n






_images/UVEditor.jpg
UV Editor *
00 u 10

v o
v o
widh:
Height

T

Handle Color: [ B Defaut2 - oK cancel






_images/Types2ShapeFileName.jpg
B Types
o
i}
N
bilboarduvs | 001
shapeFiname | |

8






_images/GCShowMinElev.jpg





_images/UnderwaterDarkFog.jpg





_images/GCSetHeightValue.jpg
Editor Settings

“Axis Gizmo
Mesh Road Edtor
Object Edtor
River Edtor

Road Editor
Shape Edtor
Terrain Edtor

Tool Values:
ReiselLower Heigrt:
Set Height 300
Smooth Factor: (0.1

il

Noise Factor 1






_images/UVEditorIcon.jpg
B Types
80
bilboarduVs | 00






_images/GCTerTex.jpg
Terrain Painter Material Preview

dit_grass.

| =

B Newtayer






_images/UseHeavyRainDB.jpg
Create Object: Precipiation
Object Name: [TheRain

Preciptaton data

[ createnew |eavyRain






_images/GCSizeAdjusted.jpg





_images/UnderwaterLightFog.jpg





_images/GCNameTrees.jpg
Create Object. GroundCover

ObjectName: [Tress]

aterainame [ |©
E e —





_images/Tree_greenvertexcolor.jpg





_images/GCNameFoliage.jpg
Create Object. GroundCover

Obecttame: [Folagd |

vaterainame [ |©
E | —





_images/Tree_final.jpg
Forest Editor

Bananabvature

e DAE

ity
tightr






_images/GCPickGrass.jpg
Material Selector
Fiers
Types

e

a2
appea(2)

| tnmepped
Tags

sana

] [ortse v

Sioc [ (coeel





_images/Tree_redvertexcolor.jpg





_images/GCPaintLarge.jpg





_images/Tree_novertexcolor.jpg





_images/GCPickSand.jpg
appea (2)
Unnagpea (0)
Tags C)






_images/GCPickGrass1.jpg
Fiers
Types

Material Selector

)
appea
un

ea(0)

)

of

s

80

Dituse Preview






_images/WEViewMenu.jpg
[View] Object Camera Editors _Lighting Help

Visibilty Layers Aty

V' Show Gridin Ortho Views  Ctrl-Shift-Alt 6






_images/WEPlayerCamera1.jpg
©  Player Camera »| @ FistPerson
Third Person





_images/HeightMapExample.jpg





_images/WEWorldCameraMenu.jpg
World Camera > Standard
Orbit Camera

Smoothed

Smoothed Rotate





_images/HardAdjustmentBefore.jpg
S Torque 30 - 795 Ganple.

e Comer g b
et (2573] @, | onsaron [ @ D1 | So0 (5 1o) | movmes (7] | somemn 3] N\, | eI

2 & &

@ m,
AR ERR AN






_images/WEViewMenu1.jpg
[View] Object Camera Editors _Lighting Help

Visibilty Layers Aty

V' Show Gridin Ortho Views  Ctrl-Shift-Alt 6






_images/HeightmapFinalShot1.jpg
Welcome to a Torque appligation Visitr.

it ™
e






_images/WPLibrary.jpg
Scene | Lirary
Sciipied | eshes [ Level

D —

peRepicator (- SFYEnter

Lignt © SkyBox
Indcaver i sun
ndPiane A\ Terainglock
o Voumelight
ing 7 WeterBlock

JeEmitertoce 7% WaterFane

taon I

WaterPlane.
PR (e






_images/HeightMapExample1.jpg





_images/WEWorldCameraMenu1.jpg
World Camera > Standard
Orbit Camera

Smoothed

Smoothed Rotate





_images/HeightmapTerrainAdded.jpg
[H]






_images/WaterPlaneAdded.jpg





_images/HeightmapFinalShot2.jpg





_images/WarnMat.png
NO

MATERIAL





_images/HigherUV.jpg
swaresze |12
scakl) ]
scaev 2

Vateril —






_images/WaterblockAdded1.jpg
& ot






_images/HeightmapTerrainAdded1.jpg





_images/WaterblockAdded.jpg
=

6 cnnp

v






_images/GroundPlaneAdded.jpg





_images/GroundCoverLibrary1.jpg
Scene Tree

Seene [ ey |
Scrld]eshes | Love | Pisfabs

<[ Environment v

© Bascoma () PorLan,

Basic Sun b Precipna
& CloudLayer W Prefab
(@ rolage Replstor <5 Scater S
¢ GroundCover | @ Shape R
Ground Plane /¥ @_siy Box
GroundCover
X Ligtning T Souna e

% particeEntter ) Spot Light

K (—






_images/WEPlayerCamera.jpg
©  Player Camera »| @ FistPerson
Third Person





_images/HardAdjustmentAfter.jpg
ZOO@Be Al s s






_images/WEHelpMenu1.jpg
JERS me—

Online Documentation AltFL

Offline Documentation

Torque 30 Forums





_images/GPPlaneProperties.jpg
v Plane.

sqaesze | 25
scakl) Tk
scaey I

Wateril [—






_images/WEInspectorPanel1.jpg
Inspector

Name: Levelnfo

~ Smbase
canSaveDyna
nternalliame
parertGroup | MissionGroup

v Namespace Linking
superClass
class

classiiame

v Componert
Enabled
Component.

~ Dynanic Fieds
desco Ablankroom @






_images/WEInspectorPanel.jpg
Inspector

Name: Levelnfo

~ Smbase
canSaveDyna
nternalliame
parertGroup | MissionGroup

v Namespace Linking
superClass
class

classiiame

v Componert
Enabled
Component.

~ Dynanic Fieds
desco Ablankroom @






_images/GrassPatch1.jpg





_images/WELightingMenu.jpg
File

Edit View Object Camera

Tools

Lighting | Help.

Ful Relight
Toggle ShadowViz

Basic Lighting
©  Advanced Lighting

AL






_images/GUIEditor.jpg
A Torgue 30 209 To

© | -5

ey ——
BB 105 et
BB ucradomc]
BB 02 v
B8 03 csreasmc
et 15478 [ s






_images/WEInterface.png
e soft snap. ALT{o togale arid snap.





_images/GroundCoverAdded.jpg
A Torque 202008 - Ttor

& 08 © | &, comenoms 2513] @
e g somaie
s






_images/WEObjectMenu.jpg
Object| Camera Editors Lighting Help

Lock Selection L
Unlock Selection Ctr-shift L
Hide Selection culH
Show Selection Ctl-shift H
Align Bounds

Align Center

Reset Transforms. R

Reset Selected Rotation
Reset Selected Scale.

Transform Selection. T
Drop Selection D
Drop Location

Make Selection Prefab
Explode Selected Prefab

Mount Selection A to B
Unmount Selected Object






_images/GrassPatch2.jpg





_images/WELightingMenu1.jpg
File

Edit View Object Camera

Tools

Lighting | Help.

Ful Relight
Toggle ShadowViz

Basic Lighting
©  Advanced Lighting

AL






_images/GroundCoverLibrary.jpg
Scene Tree

Scene | Lirary

Scrptea Weshes | Leve | pefas

) [Envrommert

S Bascoma () PortLan

4 Basicsun b Precipra
& CloudLayer W Prefab
(@ roiage Replstor <& Scater S
¥ Groundcover | @ Shape R
Ground Plane 1S A_suy Box
GroundCover
X Ligtning T Souna e

% partickEntter ) Spot Light

Pl (E—






_images/WEPhysicsMenu.jpg





_images/GroundCoverAdded1.jpg





_images/WEObjectMenu1.jpg
Object| Camera Editors Lighting Help

Lock Selection L
Unlock Selection Ctr-shift L
Hide Selection culH
Show Selection Ctl-shift H
Align Bounds

Align Center

Reset Transforms. R

Reset Selected Rotation
Reset Selected Scale.

Transform Selection. T
Drop Selection D
Drop Location

Make Selection Prefab
Explode Selected Prefab

Mount Selection A to B
Unmount Selected Object






_images/GESnapMenu.jpg
File Edit Layout Move [Snap | Help

v

< &ls =

Snap Edges
Snap Centers

Snap to Guides

Snap to Controls

Show Guides
Clear Guides

AltShiftE
Alt-Shift C

Alt-Shift 6
Alt-Shift T






_images/WEHelpMenu.jpg
JERS me—

Online Documentation AltFL

Offline Documentation

Torque 30 Forums





_images/GESelection.jpg
Options.

Graptics. Audo Cortrols

Display Driver feon HD 4870 X2 (D3D5) ~

OlFutsereen Refresh

Advanced Lighting Options

[screen Space Ambient Occlusion (S520) [JHOR
(edge Antialiasing (Otight Rays






_images/WEFileMenu.png
Edit View Object Camera Edtors Ligh
New Level

OpenLevel o
SaveLevel s
Save Level 4s.

Open Prcjectin Torsion
Open Level Fie in Torsion

Create Blank Terrain
Import Terrain Heghtmap,
Export Terrain Helghtmap
Export To COLLADA.

Adkd FIIOD Desianer Audio

PlayLevel

EdtLevel
cuit





_images/GETreeView.jpg
G| profies o

511: GuBtmapBordert
516: GuBHmapBordert

529: GuTextC

530: GuextC
1531 GuiCheckBoxCtl |
1532: GuiPopUptenuCt
1533 GuiPopUptenuCt
534: GuTextCt

535: GuPopUptenuCt
536: GuTextC






_images/GEToolBar.jpg
© |[(opomog-108 v @ ([ (4| B4 "ew [H=|0@






_images/4_AlignmentBar.jpg





_images/4_DistributeVertical.jpg





_images/4_AddMoreText.jpg





_images/4_AlignLeft.jpg
# o @ o g






_images/4_ViewFinal.jpg





_images/5BrightScene.jpg
A Torue 30208 - Tu






_images/4_FinalGui.jpg
Time: 37711
Clicks: 00

FPS: 1912
Poly: 28097





_images/4_SendToBack.jpg





_images/SmoothShores.jpg





_images/SmoothBefore.jpg
. Torque 30 - 775 Example

®|m
L sO0OBe s

et (5] @ | mnsees (@) 0] | S T3] | v 3] | om0 5]\ | s

286






_images/5_FinalGui.jpg





_images/StockBrushCurve.jpg
Brush Softness Curve.

Hard






_images/5_InitialLayout.jpg





_images/Softness100percent.jpg
B Torsee 20 e == =

File Edt View Temsin Camera Edtors Lighting Help
QA‘Em:hSrmmg:‘o [ ‘ Size ‘ Press:
» & 7 A aARLSY ——
R
=S |
I\
A3
|
L)
| ®
/-
I
I
i
Ve LdNal Seleeind) # 0 a0
Raise terran et 64,4658 avg: 65,732 max: 669 | | =






_images/SkyMatInitProps.jpg
Materia [Bluesky

Target unmapped_mat
Layer 0
v Basic Texture liaps

Diffuse Map
None

Oooor  (Ea) 8

Hormal Map

None
=18

Shectan

None

[E=mf:]






_images/SkyLeftAdded.jpg
Create Cubemap

x

Cubenaps HO8
[BlackSikyCubemap
BlanSiyCubemap
(GreySkyCubemap
NewevelskyCubemap
ghtCubenap

. Nane [BusSiyCubemap |






_images/SkyNewMaterial.jpg
Material roperties

cod|~o
Waterial [newbaterial
Target unmapped_mat

Layer 0
v Basic Texture liaps

e T—
ook 8

Normal Map
None:
()8
Spec Map
None:

()8






_images/SkyMaterialPreview.jpg
Material Preview

s _<)L1) Dprevew nword






_images/SkyWithClouds.jpg
hpueny- G iies

@ comessons 53] @, | WS g, 8 A [

&40 ES

e ¢%~ Le|D#

=

o s ST sy it s TR e . LT






_images/SkyNoClouds.jpg
e
® [, s 3 3] ® | [ g 8 0

LZ0OMa s AN MRS S






_images/SmoothAfter.jpg
. Torgue 30 - FPS Example
i Vo G Gl i b
£ 1 © |01, comasost (555) ® | suvomos @ [ | Sew (3] | posmes [0 [3] | sowess [ 5] N\, | s[5

AR I EERE-EEYY






_images/5_PrelimGui.jpg





_images/6_AddMoreButtons.jpg





_images/6_BitmapField.jpg
6402
Gutmapotl






_images/5_SmartSnapping.jpg
[ AL






_images/6_AddFirstButton.jpg
2
£
&
2
£






_images/6_InventoryText.jpg





_images/6_IsContainer.jpg





_images/6_FinalGui.jpg
SPELLS

Fall From Grace
Ice Call
Water Wish
Fire Storm
Healing Heart

-

Iﬂyy;

'zi
|






_images/6_InitialWindow.jpg





_images/SketchTool.jpg





_images/6_SelectListBox.jpg
- & Guptmapcn
T e
~ [ cuscrolcit






_images/SkyCubemapDone.jpg
Create Cubemap *

Cubenaps HO8
[BlackSikyCubemap Name BueSiyCubeman |

BlankSkyCubemap
(GreySkyCubemap
NewLevelskyCubemap
nightCubemap






_images/SketchTool1.jpg





_images/SetHeightAfter.jpg
s Wasa

{1 i 71 s i ity s






_images/SeparateFoliage.jpg





_images/ShadowsEnabledScene.jpg





_images/SetHeightBefore.jpg
S -

e Uping o
3, cowa ot (2513 @, | Brosres [ @] ) | 5 (5 [3) | Pememe@ [3) | Sem(@ 3] . | m@ o

286






_images/ShapeEditorTool1.jpg
2 8

A a

&






_images/ShapeEditorTool.jpg
2 8

A a

&






_images/ShortToolbar.png
(&1 @ | m, cameraspeea [5 o) @ | ] [Werisetioss i [38] A 0 2 D|[@]| @ 12 ||
FYNPAON &7 3AFDAR LS|






_images/ShortToolbar.jpg
File Edit View Object Camera Tools Lighting Help

[&1F ® |t cancraspeca [100 [5] @ | o) [worwsennss /8 [09]] & | 0 g2 |

Bas®aadrse|






_images/85BrightScene.jpg
A Torue 302005 - ot
e toe ven oo

“ause






_images/AboveWaterDarkFog.jpg





_images/AddCollada.jpg
Scene Tree

Scene | Library

Scrpld  Weshes | Level [ Frefabs

(0) [artishapesieesidetautee_+
& aeteunree

DY

defaultree dae
Size: 431227 KB

Date Crested: 121302008 12:37:48 Pl
Last Modifiec: 121812009 1:08:32 Al






_images/AddCollada1.jpg
Scene Tree

Scene [ Lirary |

Scriea [ eahes | Level | prefabs

) [anishapestreesiserautres < |

& corautiee

DY

defaultree dae
Size: 41227 KB

Dt Crested: 121302008 12:37:48 P
Last Modifiec: 121812009 1:08:32 Al






_images/AboveWaterLightFog.jpg





_images/ActivateMatEd.jpg





_images/AddNoiseAfter2.jpg
- T3] | P
s \ | e

S
Nt






_images/AddNoiseBefore.jpg
@b Torque 30 - FFS Example

© |, crarsos T3] @, | omrseres [© O

o9 marafans o]






_images/AddDTS1.jpg
Scene Tree

Scene | Lirary

Scried [ eahes | Level | prefabs

) [artfshapesiweapons SwarmGun]

5 aeons
& roctet

& swamain

‘swarmgun dis
Size: 186.284 KB

Dt Creted: 121302008 12:37:48 Pl
Last Modifiec: 121812009 1:08:48 Al






_images/TranslateGizmo.jpg





_images/AddNoiseAfter1.jpg
) Torque 30 _FFS Eample.
| m, oo ) @, e [ @) €

© 9 @e A






_images/ToggleBasicCloudRender.jpg
v _Editing
isRenderEnabled

isSelectiontnabled | ()
Fidden 0]
locked o





_images/GCMaterialField.jpg
v_GroundCover General

Waterial
radus

w G





_images/Tree_allvertexcolors.jpg





_images/GCManyTrees.jpg
avnSipnydhyserr iyt
® [ crmersons 53] @ | | esm g 8

LZOWMasAalan s o]






_images/TranslateGizmo1.jpg





_images/GCMinElevation.jpg





_images/Tree_colladamodifiers.jpg
s AR@= 2>
[ — [l
Modir Lt B

#  Vertex: Green

@ Vertex:Be

® Vertex:Red
Editable Mesh






_images/GCMaterialField1.jpg
v_GroundCover General
Waterial
radus






_images/Tree_bluevertexcolor.jpg





_images/GCHighShapeCull.jpg
=

.






_images/TerrainMaterialMenu.jpg
Create New Terrain x|

Wateriat [grasst

Resolon:






_images/GCForest.jpg





_images/TerrainMaterialEditor2.jpg
Terrain Materials Eitor x

Terrain Materials 8] [VateraiProperiies
3 ceset | [ ame [rowttaora |
3 desert_sand_01 s (23 6
|3 desert_sand_02 None
|3 oy _cracked_dit - 500 | Size
B3 rocky_dit_01 () Use Side Projection
3 rocky_sand ot et (a0
3 sediment_01 Nan:

I3 rocky_ciiff_01 2 e
il [ svenan [s0 Dt
|3 DesertGroundCover MNormal Eae | 5
|3 RockyGroundCover None

|3 RockyCliffSideProj 0 |Parslex Sceis

] [ Appyaselect Cancel






_images/GCIncreaseCount1.jpg
- oo, [+
e 10000 [2
msiboatiangs 3






_images/TerrainPainterTool.jpg
&7 AR LB






_images/GCIncreaseCount.jpg
seed o000, [+
frm— 10000 [2
maxgilboarcTtange | 50 N





_images/TerrainPainter.jpg
Fie Edt View Camera Ediors Llighting Help

[£1F ® | o, caneraspeca

5] @ |onsnsengs [Q [ | see [ts 5] | Sovemssk wnfo [5] max[so [5] | ressue [io0 5]

NPT ERES RS

L e

g

Terrain Painter MaterialPreview

Noe

Terr

er Material Selector

- sand

B NewLayer

Paint material on terrain

in 49,5625 avg: 603441 mar 71€ | |






_images/GCLayers1.jpg
& Types
80

bilboarduvs | 001

shapeFiename

fayer

invertLayer






_images/GCLayers.jpg
B Types
=N
bilboarduVs
ShapsFiename
fayer
invertLayer

001-






_images/TerrainPainterTool1.jpg
&7 AR LB






_images/GCLowShapeCull.jpg
vy Sy dhyserr iyt
® [ crmersons 5 13) @ | | Wessm g 8

WOAREN ERRER

R ——






_images/AddScatterSky.jpg
Scene Tree

Somne | orary
Serpied | fieshes | Leva |

(©) [Enviomment )

ver 0 Precitaion
jeReplcator @ PxCloth
s ) Sasly

(cover SFXE

Scattersiy

Plane. SkyBox

P
S

o © spouan
~

mitertiode 0 Sun

int TerrainBlock





_images/AddSkyBox.jpg
Scene Tree

Scene | Lirary
Scripted | Meshes [ Level | Prefabs

(¢ [Envionmet

Q part Lgrt 7 Terrans
0 precitaion 7% Wter B
W prefa B Water P
& ScatterSiy £ Wden

® shape Repcator

PN

" SounaEnttdsiyBox
 spot Lt

< | —






_images/AddNoiseTerrain.jpg
Create New Terrain *

Resolon: OFfat @noise






_images/AddSun1.jpg
Object Name:
Direction [11-1

Suncolor (080808
Ambiert color (020202






_images/AddWater.jpg
Create Object. WaterBlock

Objectame: ]
Base Coor 45108171255






_images/AddSkyBox1.jpg
Scene Tree

Scene [ Library

Scripted | Meshes Prefabs

() [Environment
Q pomuat
0 rectaton
W Prefab

& Scatter Sky
® Shape Reptcator
PRI

" Sound EmitdSkyBox
© spottign






_images/AddSun.jpg
Create Object: Sun

Object Name:

Direction [11-1
Suncolor (080508
Ambiert color (020202






_images/AdjustHeightAfter.jpg
i © [ 0, coms e [2T5] ®,| s
F
(

coOmesafliansos]






_images/AddWater1.jpg
Create Object. WaterBlock

Objectame: [l
Base Coor (45108171255






_images/TerrainEditor.jpg
File Edt View Teran Camera Editors Li

hting Help

[&
B0 6o

L e

® | o, cameraspecd (55 [5] @ | enusnsetinos [Q] [ | sz [18

5] ‘ Pressure 100

3] | sotwess (100

RN R =W

56 s 67628 Bl dfusiorals (Solecicn) 7 (0

Adjust terrain height up or down.

i 549375 avg: 60.7524 mx: 66, | | Stanard Camera






_images/AddWaterPlane.jpg
Create Object. WaterPlane

Object Name: ||
Base Color 45108 171 255






_images/GCFinalGrassEdit.jpg





_images/TerrainEditorTool1.jpg





_images/TerrainEditorTool.jpg





_images/GCFirstUVEdit.jpg
2

Editor
) v 10
o0
u [ossorers |
}E v 0523438
, W ozsesar_|
et o30orer |
v
10
ande Cobr (Bl Detautz_~ o Cance






_images/TerrainMaterialEditor1.jpg
Terrain Materials Editor x

Terrain aterials 18] et Properes

o ituse 8
B3 grasst-ary. None

3 dit_grass 250 |size
3 desert () Use Side Projection

B3 desert s o1 Detan 8
B3 deser_sana 02 None
3 iy cracked_dirt [10size

I3 rocky_dit_01 Strength {350 | Distance:

3 rocky _sand_01 Wormal  [(Ear ]
3 sediment 01 VR None
0 |parallax Scale

3 rewtiateral

B3 rocky cifr_ot - [ Appyeselect Cancel






_images/GCFinishedMat.jpg





_images/TerrainMaterialEditor.jpg
Terrain Materials Editor x

2 gasst Wateril Properiies

3 grasst-dry Diffuse B |0

e
an_rass
Eaans e

atrorans et rsss
st 0 use SoeProcton

3 artferains Testirockst petail  (Eat )

None
[ Jsee
vengn [ JDitance

Wormal [t | £

None
000 parallax Scale

B8 s o]






_images/SwapGrassForPrairie.jpg
Terrain Materials Eitor X

Terran ateriss (18] [ateraiProperies

B gresst vame prae |

3 rocktest Diffuse 5]
B3 cresstiry None
3 dit_grass 0 size

3 sana () Use Side Projection

Detal 8
None
A s
Strength (250 | Distance.
Hormal 8

None

0 |parallax Scale
‘Apply8Select Cancel

3 warning mteral






_images/SunNoSky.jpg
S ®| D a5 ) ®






_images/T3D_menu.png
Singleplayer
Create Server
Join Server
Options
Launch World Editor
Launch GUI Edit[%

Exit





_images/SwitchToDesert.jpg
Terrain Painter Material Preview

desert_sand_03 [Em
Terrain Paiterateril Selector

desert_sand_03

RockyGroundCover

) NewLayer






_images/TerFileAdded.jpg
Torque 30 209 - G008

5 © | o (m-comst ] | ) [t seres [ 8

OnL2a2

@ s
[rp—






_images/Teleport.jpg
Using background sleep time: 200
DirectInput deactivated.
Activating DirectInput.
Window focus status change:
Exporting server prefs.
Starting multiplayer mode
Binding server port to default IP
DP initialized on port 28000
Validation required for shape: art/shapes/actors/Gideon/gideon. dts
Validation required for shape: art/shapes/actors/Gideon/gideon. dts
' LOADING NISSION: levels/Empty Terrain.mis
e Stage 1 load
== Stage 2 Toad
game -> activatePackages
#+ Mission Toaded
Connect_request from:

Connection established 4090

CADD: 4091 Tocal

#+ Sending mission Toad to client: Tevels/Empty Terrain.mis
Mapping string: ServerMessage to index: O

Mapping string: MsgConnectionError to index: 1

Mapping string: MsgloadInfo to index: 2

Mapping string: MsgloadDescripition o index: 3

Sending heartbeat to master server [IP:92.242.140.1:28002]
Mapping string: MsgloadInfoDone to index: 4

Mapping string: MsgClientJoin to index: 5

Mapping SErings o) g s ST
Mapping string to index: 7

Mapping string: MissionstartPhasel to index: §

=== New Mission: levels/Empty Terrain.mis

#+ Phase 1: Download Datablocks & Targets

% - PostFX Manager - Executing core/scripts/client/postFx/default. postfxpreset.cs
% - PoStFX Manager - Applying from preset:

% - PostFX Manager - PostFX enabled

Mapping string: MissionStartPhaselack to index: O

Validation required for shape: art/shapes/actors/Gideon/gideon. dts

Validation required for shape: art/shapes/actors/Gideon/gideon. dts

Mapping string: MissionstartPhase to index: 9

s phase 2: Download Ghost Objects

Mapping string: MissionstartPhase2Ack to index: 1 S
Ghost Always objects received.

Mapping string: MissionStartPhase3 to index: 10

Client Replication Startup has Happened!

fxFoliageReplicator - replicated client foliage for 0 objects

#+ Phase 3: Mission Lighting

Mission lighting done

Mapping string: MissionstartPhase3ack to inde
Mapping string: MissionStart to index: 11
Mapping string: SyncClock to index: 12
Mapping string: Refreshieaponud to index: 13
Mapping string: swarmer.png to index: 14
Mapping string: reticle_rocketlauncher to index: 15
Mapping string: TeleportReady to index: 3

*% Initial Control Object

Mapping string: sethumericalHealthHUD to inde;
Mapping string: AcknowledgeTeleport o index: 17
VOTP I ¥ou were teleported | Distance: 7.60123

focus: 1






_images/SelectPrairieMat.jpg
Terrain Painter

raie

Praire LEYE,

L






_images/SelectPlant2.jpg
Favorite Links

B Documents

B Desicop

8 Computer

B Pictures

B Music precipttion grassLpng grass2png

@ Recently Changed

B sesrches F

Publc ]

'} R Y |
22
b

Folders ~ ‘ S plantl.png plant2png [y

File name: plant2.png ~ | Image Fies ("png. "ipg.





_images/SceneTree_SceneTab.jpg
Scene Tree

ey | @8

~ 1 2486 SimGrou - WissanGraup
2 2655 ScriptObiect - Levelnf
© 2485 SkyBox - Glbalshy

2487: Sun - thesun

» ] 2488: SimGroup - PlayerDrop






_images/SceneTree_LibraryTab1.jpg
Scene Tree

Scene | Lirary

Scripted| Meshes | Level [ Prefabs

(O] E—

1 Anmo
[ Heatn
0 e

] Rigashape
[0 venices
51 weapon






_images/ScriptedObject.jpg
Scripted

celing_fan

N

seweriater





_images/SceneTree_SceneTab.png
Scene Tree

[“Scene | tbrary [~
2}
< [ MissionGroup. =
@ Teteveinto
& scattersky
B tin<oroay

o]

L theTemain
» [ FlaysrDropeints
S Watertane
Yo
¥az
¥ai
Voo
Vo
£ ecaroa
Y .






_images/SelectBlankSkyMat.jpg





_images/ScriptedObject1.jpg
Scripted

celing_fan

N

seweriater





_images/SelectFoliagePng.jpg
][ search
S— Name'. | Datetaken | Tags | Sae > -
Documents Wi
B N ¢ i
M Desktop
e mn 1
e bo|f |
B Music precipitation foliage.png grasslpng
B Recently Changed N
B searches =
ublic. 3
0 pusi \g\{/
¥
Flders A grszeng e pociions o
File name:  foliage png v |AlFies (")






_images/SelectBlueSkyMat.jpg
Meterial Selector x

Fiers (aterss | [Dituse review
Ll ] NO NO NO NO #
NO NO NO NO J
NO NO NO
-

AL Shadow\ AL Spatligh AL VectarL; BlackSuyit

f NO

Somishyiat Banite | | 1igera Tags

Conmonplaye cube_Grtal

[ —
|
NO

Bussiy | BLprocez iy Cameraia

LX ]
)

DECAL Fock

eneray






_images/SelectGrassMat.jpg
Terrain Painter

atterransTestirass ot |

New Layer






_images/SceneTree_LibraryTab.jpg
Scene Tree

Scene | Lirary

Scripted| Meshes | Level [ Prefabs

(O] E—

1 Anmo
[ Heatn
0 e

] Rigashape
[0 venices
51 weapon






_images/ClearTerrainStep2.jpg
B Torque 30 - 775 Example:

e

"masAallan

(o 1288 g e 9






_images/ClearTerrainStep3.jpg
. Torque 30 - 775 Example.

pep— ey oo

I TEREEVEYY






_images/ChooseSnowMask.jpg
Favorite Links
Desktop
Computer
Documents
Pictures

Music

Recently Changed
Searches

Public

FBeemEBEN

Folders

Name

Datetaken  Tags

snow_basepng
PNG Image
1838

Snow_masks12.png
PNG Image
2018

Snow_normal_displacement.
PNG Image
133MB

Size Rating

snow_detail.png
PNG Image
199 M

i
NG mege
s N

Fle name: snow_mask 1024 png

v |Opacity Map Files ("png. “bn v






_images/ClearTerrainStep1.jpg
B Torque 30 - 775 Erample

e e

s syes (25]3) @ | onsomon [ O )

Acoemasaleanss|






_images/ClickColorBox.jpg
v WaterObject

densty 1
viscosty 1

auieType Water
baseColor 51222153

Waves (vertice unduation)
Ripples (texture animation)






_images/CloudFastSpeed.jpg
i

o 5T e vy e s G g T






_images/ChoosePrairieNormal1.jpg
Favome ks | Name | Datetaken  Tags Size Rating

B Desktop
8 Computer

I Documents praiie_bas... praire_deta... praiie ma... praiie ma... praiie norm
B Pictures atpng

B Music

5 Recently Changed
B sesches

B Pubiic

Folders 75

Fiename:praife_nomal png he






_images/ChooseRockWallMask.jpg
e Name Dstetaken  Tags Sze Rating
s rockwsllbsse.png rockwslldetilpng

B Desktop. PNG Image PNGImage
M Computer 720 K8 181 M8
I Documents rockwall maskS12.png rockwsllmaskl024.png
& st A | P mage PNG mage

" 158KB 378KB [}
B Music —

rockusllnormal_specularp.

(3 Recently Changed PNG Image
B sesches L fsme
U Public

Folders 75

File name: - rockwall_mask 1024 png ~ | Opacty Map Files ("png, “bn v






_images/ChoosePrairieMask1.jpg
Favorite Links (Neme'  Datetsken  Tags

B Desktop
8 Computer

I Documents praiie_bas... praire_deta... praiie ma... praifie.mask_praiie_nor.
B Pictures 2024.png.

B Music

5 Recently Changed
B sesches

B Pubiic

Folders 75

Fiename: praife_mask 1024 ng






_images/ChoosePrairieNormal.jpg
Name Datetaken  Tags Size Rating

Favorite Links

B Desitop

Computer
B Documents prate_bss... praiie dets... praife_ms... praire_m... praire_norm.
B icures dr

B Music

(B Recently Changed
B searches

B Pubic

Folders ~

Fie name:  praite_nomal png -






_images/AdjustmentIntensity.jpg
2] @, |nsarss (@ [ | e (3 5] | posssep [o] | sowess 0 [s] N\ | el >

£ 6

# a Qe

n






_images/AdvCloudAdded.jpg
A Torue 30209 195 Byl

(£ 16 © | &, oo 52 | o [ 28 0 &2)[0] @ | &, 32.]
Barsoemananzso] st






_images/AdjustHeightBefore.jpg
e (2213] @, | s [ @ 01 3| e ) | sl Ty \, | e s

FOP@a AN AsS






_images/AdjustWaterblock.jpg





_images/Azimuth0.jpg





_images/Azimuth180.jpg





_images/AdvCloudLibrary.jpg
Scene Tree

Scene | Lirary

Scrptea Weshes | Leve | pefae

O [Ervroment

S Bascoma () PortLan

G Basic Sun 0 prechtato
& coudlaver [\ | W Pretab

(@ Foliage AoUALAVEr | g scatter Siy
 GrowndCover (@ Shape Rep

Grounapane @ SiyBox
X Ligtning - Souna e
Yo ParicleEmiter  § Spot Light

Pl (E—)






_images/AfterUVEditor1.jpg





_images/Azimuth270.jpg





_images/Azimuth360.jpg





_images/BasicCloudAdded.jpg
e T 30209 S e

(£ 16 © | &, oo 52 | o [ 28 0 &2)[0] @ | 5,32,
Barsoemananzso]






_images/BasicCloudLibrary.jpg
Scene Tree.

Scene | Lirary

Scrptea eshes | Leve | et

O [Evromers <

© Bascoma () PorLa

& Basicsun A _precipna
BaicCioude

& CloudLayer =g Frefab

(@ roiage Replstor <5 Scater S

¥ Gromdcover @ Shape e

Gromapane @ Sy Box

X Lignning - Sounatm
Y ParicleEmiter  § Spot Light

] >






_images/Azimuth90.jpg





_images/BCRenderDisable.jpg
. Toraue 30 208 - 75 Eample

et 115 @,

X






_images/BlackPlantMat.jpg
|-






_images/BlankCubemap.jpg
Create Cubemap x

Cubenaps HO8

[BlackSkyCubemap Name [BueSkyCubemap |
BlankSkyCubemap

(GreySkyCubemap
NewLevelskyCubemap
nightCubemap






_images/BasicCloudLibrary1.jpg
Scene Tree.

Soore [ Lbray
Scrptea eshes | Leve | et

(<) Environment. v

S BascCouts ) pamtLigt

5 Basiosun A _precipna
BaicCioude

& CloudLayer =g Frefab

(@ rolage Replstor <5 Scater S

¥ Gromdcover @ Shape e

cromapane @ SiyBox

X Ligtning - Sounatm
4o ParicleEmiter  § Spot Light

C (—






_images/BeforeUVEditor1.jpg





_images/BlankTerrainScene.jpg





_images/Azimuth45.jpg





_images/BlueSkyProperties.jpg
Inspector

< Basctious
Blayers

a o
layerEnaed
texture oudt ()
toxscae 4
terecion | 10
{exspeed | o000
wottst 0505
et s

a8 n
layernabed
esure an O
toxscae |4
terecion | 10
lexspeed | 0001
wottst 0505
et 3

8 e
layerEnaed
texture o3 ()
e |6
terecion | 10
lrspeed | 0005
wottst 0505
et 2






_images/BrushCurveVisual.jpg
Brush Softness Curve.

o

Soft s
Inside, Outside.






_images/BlueSkyBox.jpg
0 e @D @ || ™= 5 # A 0 1) T
AN TR R R =

oo & ]
e e
s e
R
ey






_images/BlueSkyFinal.jpg
© oo (53] ® | | WOV

Oe@arsaR AR






_images/CameraIcons.jpg
Bl CameraSpeed (100 3] ® | m)






_images/CameraIcons1.jpg
Bl CameraSpeed (100 3] ® | m)






_images/BrushTerrainClamping.jpg
ERCRR e

5 B © | 0, oo (16505 @ | oo

A ERER-ENEY

Sen i 13] | reeere (1 ) | om0 13\ | v >






_images/CMEditButton.jpg





_images/BlueColor.jpg
Color Picker X






_images/BlueLake.jpg





_images/ChoosePrairieBase.jpg
Favorite Links
B Deskeop
Computer
B Documents
B icures
B Music

(B Recently Changed
B searches

B Pubic

Folders

Fie name: prae_base png

Neme

Datetaken

Tags

Size

Rating

prai

png.

Y

 base. praire_deta.

prairie_ma,

prairie_ma,

prairie_nor.






_images/ChoosePrairieBase1.jpg
Favorite Links I Tags

B Desktop
8 Computer

I Documents praiie_base. praire_deta...praifie.ma... praifie.ma... praiie_nor..
B Pictures s

B Music N
B Recently Changed
B searches

B Pubiic

Folders 75

Fiename: praife_base png he





_images/ChooseHeightmap.jpg
B YT YT <o [searen 2]

TS Name Datetaken  Tags Size Rating

B Desktop prairie rockwall
e Bt Pt
E Documents u heightmapS12.png
E s Betoder G msge
(3 Recently Changed PNG Image
s

B searches N
W Public
Folders .

File name:  heightmap 1024 png ~ | Heightfield Files ("png. *bmp






_images/ChooseHeightmap1.jpg
Name Datetaken  Tags Size Rating

prairie. rockwall
File Folder File Folder

Favorite Links

I Desktop
% Computer

E Documents e heightmapS12.png
-

B e

B Searches ‘ L2IME, N

B Public

Fie name:  heighimap 1024 png ~ [ Heightfeld Fies (png. “bmp.





_images/ChoosePrairieMask.jpg
Name Datetaken  Tags Size Rating

Favorite Links

B Desitop

Computer
B Documents prte_bss... praii_dets... praife_ms... praifie mask. praiienor
B icures o2

B Music

(B Recently Changed
B searches

B Pubic

Folders ~

Fie name:  praie_maskc1024prg -






_images/ChoosePrairieDetail.jpg
Name Datetaken  Tags Size Rating

Favorite Links

B Desitop
Computer

B Documents prire_bss... praii_detil. praife_ms... praife_ms... praiienor
B icures g

B Music
& Recently Changed [N
B Searches

B Pubic

Folders ~

Fie name:  prae_etalpng -






_images/ChoosePrairieDetail1.jpg
Favome ks | Name | Datetaken  Tags Size Rating

B Desktop
8 Computer
I Documents praiie_bas... praire_detail. prairie ma... praiie ma.. praiie_nor.
B Pictures o

B Music
B Recently Changed N
B sesrches

B Pubiic

Folders 75

Fiename: praite_detallpng he






_images/CharacterPrimerHitBoxOverview.png
boxHeadLeftPercentage boxHeadBackPercentage
boxHeadRightPercentage boxHeadFrontPercentage

Head

boxTorsoPercentage (0.86)

Torso

boxTorsoPercentage (0.43)

Legs






_images/CharacterPrimerHitBoxRescale.png
Standing Prone/Swimming






_images/CharacterHitBoxOverview.jpg
boxHeadLeftPercentage HORHEHIBSCAPErEETIES
boxHeadRightPercentage boxHeadFrontPercentage

Head

boxTorsoPercentage (0.86)

Torso

boxTorsoPercentage (0.43)

Legs






_images/STRotateAfter.jpg





_images/Elevation90.jpg





_images/STScaleAfter.jpg





_images/STRotateBefore.jpg





_images/EnvironmentObjects1.jpg
Scene Tree

seene [ thray |
Scrid eshes | Love | isfabs

(©[vioment 4]

S BascCows ) pomtLignt
Basic Sun 0 Precipra
& cloudLayer [Sun] W Prefab
(@ rolage Replestor <5 Scater S
¥ Gromdcover @ Shape e
Grounapane @ SiyBox

X Lighting ° SoundEm
% artickEntter ) Spot Light

Pl (E—| >






_images/STSelectFace.jpg





_images/EnvironmentObjects.jpg
Scene Tree

Scene | Lirary

Scrptea Weshes | Leve | pefas

O [Evwomer <

S BascCouts ) pamtLignt
5 Basic sun b Precitati
& CloudLayer [Sun]| W Prefab
(@ rolage Replcstor <5 Scater S
V Gromdcover @ Shape e
Grounapane @ SiyBox

X Lighting ° SoundEm
% partickEntter ) Spot Light

Pl (e—| >






_images/STScaleBefore.jpg





_images/ExampleBaseTex1.jpg





_images/SaveCubemap.jpg
x
‘Save Cubemap?

D0 you wantto save changes o

BlueskyCubemap





_images/ExampleBaseTex.jpg





_images/STTranslateFace.jpg





_images/ExampleDetailTex1.jpg





_images/ScaleGizmo1.jpg





_images/ExampleDetailTex.jpg





_images/ScaleGizmo.jpg





_images/ExampleNormalMap1.jpg





_images/ExampleNormalMap.jpg





_images/ScatterSkyAdded.jpg





_images/Elevation45.jpg
i






_images/Elevation180.jpg
103 Torgus applieation Visito






_images/STCreateHeight.jpg





_images/STCreateBase.jpg





_images/DisableLayer0.jpg
A Torue 30209 195 Byl

[E1 ] & e (D] @, | & rusimen 28 0 = )(0] 8] 6, 10,
Boc0emasanass| —

X
IN——






_images/STDuplicate2.jpg
i €8 o Ot Comma. G U 100

ALCIEE






_images/DetailBlending1.jpg
File Edit View Object Physics Camera Editors Lighting Help

vowsenes 0, 50 A 0 ED)| G| 4,
B o £ &\

Library

Inspector

e (Gobasiy ] [y |

superClass
class

classiiame

Enabled

Componert.

Postion
otation

teral [Burgsiytiat |
drawBottom






_images/STDuplicate.jpg





_images/DisableLayer2.jpg
A Torue 30209 195 Byl

[ 15 © | & comsoes 1205] @, ) [wocsen 2 0 5[0 & | &,
Facoomaraasss|

X






_images/STExtrudeAfter2.jpg





_images/DisableLayer1.jpg
A Torue 30209 195 Byl

© | &, comeasoes T3] | s oo 8 0 531 [a0) & | &, 2|10
K Z0®@asanns o] —

X
IN——

=m0






_images/STExtrudeAfter.jpg





_images/EditorIcons.jpg
(&1 @





_images/STHouse.jpg





_images/DistortLowered.jpg





_images/STExtrudeBefore.jpg





_images/Elevation0.jpg





_images/STObject.jpg
BEIE
e 68 Vo it Commr G U 1

© | @, corma s [16805] @ | 5 [veaserm 8 0 & D5) (@] & | b, 29| [(5][

AR I TEEREYEYY

e Ltk | @

. @






_images/EditorIcons1.jpg
(&1 @





_images/STNewConvex.jpg





_images/DeleteExistingSkyBox.jpg
Scene Tree

| Ubrary |
5 3547 SmGroup - MissionGroup
(© 3545 Levelno - theLeveinfo
» [ 3549 SmGroup - PlayerDropP
i 3551: TerrainBlock - theTerrai
4486 Sum






_images/DefaultBrightScene.jpg





_images/STBlankLevel.jpg





_images/DetailBlending.jpg
Lighting

[&]08 ® | [Sowest-canera1 ] | o) [worsetioss /A

£ 2R 0

Inspector

e [Gobasiy ] (A |

super
class

classiiame

Postion
otation

drawBottom






_images/FERocksPainted.jpg
A Tormue 30 209 Trorih

TYXEL IR RNy






_images/FESelectTree.jpg





_images/FERotateTree.jpg
& Torue 30208 - Tuor

vwes i






_images/FETreesPainted.jpg
A Tormue 30 209 Trorih

D o spns 0353 @ | s nes 8 T+
LZO0OBalsanns






_images/FESpacedTrees.jpg
A Tormue 30 209 Trorih

'YX

v a

2 5 o f






_images/FinalBlueSky.jpg
*






_images/FinalAbovewater.jpg





_images/FinalPrairieMaterials.jpg
Terrain Miterials Edtor

Bl rasst
B rockst

B3 orasstiry

3 ait_orass

3 arherrains Testint_orass
3 arterrainsTestirass 1
3 arherrans estiocks1

Wateril Properiies

Diffuse
Noe

(0] Use Side Projection

. B

Normal
None

[0 Jporaxscae

=]

=]

Size

Distance.

=]






_images/FinalFoliageMat.jpg





_images/FinalPrairieMaterials1.jpg
Terrain Miterials Edtor

Bl orasst
B rockst

B3 cresstiry

3 at_orass

3 arherrains Testint_orass
3 arterrainsrestirass 1
3 arherrans estiockst

@ 1

Wiateril Properiies

Diffuse
Noe

0] Use Side Projection

. =

Normal
None

[0 Jporaoxscae

=]

=]

Size

Distance.

(e 8






_images/ExcavateAfter.jpg
B Torque 30 - 75 Brample
D | 1, coner st (12573] @ | sansars (@ 0 s T3] | soon [T






_images/ExampleOpacityMask1.jpg





_images/FEAddNewMesh.jpg
Weshes 8

Add New Mesh






_images/ExcavateBefore.jpg





_images/FEDefaultTreeAdded.jpg
Forest Editor

| Brushes [ Meshes we
& ﬁ






_images/FEBrushCircle.jpg
A Tormue 30 209 Trorih
e €t VewComen. Edton_Using i

® | D, comersons (3513] @ | miansmrm 520 55
Ls0OBalsanzss]






_images/FEEraseBrush.jpg
A Tormue 30 209 Trorih

'YX






_images/FEElementProperties.jpg
Properties.

~ ForestBrushelement

ForesttenData [ defauitree |
probabity 1
rtationfange 30
scalelin 1

scalelax 1
scaleExponert 1

sinkin o

sinkix o
sinkRadius 1

slopelin o

slopelax B
clevationtin 10000
clevationbax 10000
clumpCounin 1 &
clumpCountExponert 1
clumpRacius 0






_images/FEPaintVariedRock.jpg
A Tormue 30 209 Trorih

Xos00Balsa






_images/FEGroundView1.jpg
A Torue 30200 - ot

OO Ealranuss






_images/ExampleOpacityMask.jpg





_static/down.png





_images/RedColorPicker.jpg
Color Picker x

saoe_ | [_carca





_static/file.png





_images/CreateBasicCloud1.jpg
Create Object: BasicClouds

Obiectame: [inecioues]






_images/RedScatterSky.jpg
& Torue 30200 - ot
R R ——

a

o oo






_static/plus.png





_images/RedLake.jpg





_static/minus.png





_images/CreateCubemap.jpg
Create Cubemap x
Cubenaps WO

Name [BlackSkyCubemap

BiniSiyCubemap [create New Cubmap
oreyseycusenap
NewLeveiSeyCubenap

o . . . .

[soka_[cames]






_images/ReverseBrushCurveVisual.jpg
Brush Softness Curve.

Hard






_static/up-pressed.png





_images/CreateBlankTerrain.jpg
Edit Camera Object Tools _Lighting

New Level
Open Level ctio
Save Level cuis
Save Level As

Cese Sk Terain
Impot Terai Highima®
i, -

Play Level 1
Close Editor BsC
Bit





_images/ReducedProb.jpg





_images/CreateGroundCover1.jpg
Create Object. GroundCover

Objectame: [Grass]

vaterainame [ |©
E | —





_images/RiverIntro.jpg





_images/CreateGroundCover.jpg
Create Object: GroundCover

Obiectame: [Grass]

vateraieme [ |©
F | —






_images/RiverHeader.jpg





_static/up.png





_images/ClumpValues1.jpg
‘minClumpCourt
maxClumpCourt
clumpExponent
clumpRadius

TP






_images/RaiseHeightAfter.jpg
B Torque 30 - £PS Example

15 © | 0, comeators 1235 @ | smsenas pence (@ 5] | sowens 10 5

xacoe@meran






_static/down-pressed.png





_images/ClumpBefore1.jpg





_images/PrefabsTab1.jpg
Scene Tree

Scene | Lirary

Scrited [ Meshes | Level [ Prefans

Ol






_static/comment.png





_images/Crater_Lake.jpg





_images/RedColor.jpg
Color Picker x

o [ cea ]






_images/ColladaImportDialog.png
Collada import: artishapesAreesidefaultree/defaultree dae

» Shape
> Materials

Animations

Nodes 13 Materis §
Meshes 4 Polygons 269
Lghts 1 Animations 0

Lo [peecs +| |
Materigls Prefix [
importNodes [
lnoreNodes ||
importMeshes [ |
lnoreMeshes [

O overrden_ais  [2_AxS ]

0 Overrice scae | —

(O Ignore bone scaiing
(] Center model (] Floor model
(] Force update materials.cs.

() Addligrts to scene






_images/RaiseHeightBefore.jpg
T 0

D | 0, crmasiws (53] @, | swnsenm [ © )

A 0O marallass






_images/CreateBasicCloud.jpg
Create Object: BasicClouds

ObjectName: [theCiouds]






_images/CreateAdvCloud.jpg
Create Object: CloudLayer

Object Name: [theClouds
Texture [corelartskies/clouds/clo






_images/3_FinalGui.jpg
Using background s1eep time: 200
Directinput g
%

anged: focus: 1
eseeting device due ta window
GHPDIDevice:raset — depthstenci] alsbsdd has 2 ref s
= Resetting DID Devi
Vate

Winazainds ing device due to

GFXPCDIDSDevice: ireset - depthstencil alsbsdo has 2 ref's
Resetting D3D Device —-=

chaCielo Wkt

hange.






_images/3_SelectGuiConsole.jpg





_images/30.jpg





_images/3_CreateNewWindow.jpg





_images/3_Tweaking.jpg
Mini Console

Number of simultaneous render targets: 4

Hardware occlusion query detected: Yes
WMIVideoInfo: DxDiag initialized
Tnitializing GFXCardProfiler (0309)

© Chipset : 'GeForce 9800 GT

o Card GeForce 9800 GT

© Version : '8.15.0011,9038

- Scanning card capabiiities.
GFXCardProfiler. Capability ‘autoMipHapLevel' to 1.
GFXCardProfiler. Setting capability 'maxTextureWidth' to 8192
GFXCardProfiler Setting capability 'maxTextureeight' to 815
GFXCardProfiler Setting capability 'maxTextureSize' to §192.
GFXCardProfiler Setting capability 'lerpDetailBlend’ to 1.

Direct Text

[ o= |






_images/1BrightnessScene.jpg
A Torue 302005 - ot
Ot T Lyt

0 &aus o






_images/200ElevationScene.jpg





_images/0BrightnessScene.jpg





_images/swarmer.png





_images/shape_view.png
[ H& @ | prevewsetinss |[ 3] ] ©

‘Advanced Properties

-m Wounting | Threads | Colision

Otevels
Polys 4774 Size
Pixels 108231 Distance
Materils 1 Bones

Printives 4 Welghts
ColMeshes D ColPalys

Imposters. (Cluse Imposters

<roctpose>
ready
freBackup

Seauence Properties

Name reoaa

Source 1eoad ] OlLoop
n[0 | ou[20 | prory 0 |
(e —

Frame[ ] Trge|

i |






_images/PrairieRepeatAfter.jpg





_images/torque_coords.png
+Z

+X





_images/PrairiePaintBefore.jpg





_images/swarmer1.png





_images/CloudTexScale8.jpg
Comen Sdhow

arAaauss

v (53] ® | 0 [t (18 80 & )[9] ] 535,

o 5T e v e s G g T






_images/PrecipAdded.jpg
A Torque 202008 - T
R e ——

© | &, comersons (513] B | 3 e

LLZOOBE AN






_images/CloudTexScale4.jpg
Sio 46 ew: O Come S Mgty thp
5 1 © |, comersos (573] @, | oo 90 8 0
KL/ OOBETAN2LS

LAAkd

1=

s ST sy it s TR e . LT

DI

© oo & scammy
¥ comcow @ srr
Comaee G- saenne
Vi st
puscnton A Tt
i






_images/PrairieRepeatBefore.jpg
2 s o1 g (seect a2 e






_static/ajax-loader.gif





_images/ClumpAfter2.jpg





_images/PrefabsTab.jpg
Scene Tree

Scene | Lirary

Scrited [ Meshes | Level [ Prefans

Ol






_static/comment-close.png





_images/ClumpAfter1.jpg





_images/PrecipLibrary.jpg
Scene Tree.

Scene | Lirary
Scripted [ Meshes [ Level | Prefabs

(¢ [Enviorment

s O Pomian

b precitaton
. [Frecotaon

ey

icator 8/ Scatter Sky
o @ Shape Repicator
e @ sweox

@ Sound Emitter
Ko © Sorlon

<  (o—) y






_static/comment-bright.png





_images/Plant2.png





_images/sceneTree.jpg





_images/PathCloseup.jpg





_images/postfx_toggle_off1.png
PostFX Manager

JEnable PostFX System

Quaty |





_images/PrairieDetailIncreased.jpg





_images/PlayerShapeAdded.jpg





_images/shape_editor.png
. Torave 30 - 75 Example

—_—
A © | rwewsarn |52 @ B |3 © @85 9@
Ko 0®ma Al s6] e -
o Gl LRaliRa rewoe
L] G o [ —
= o )| Eo,
> ISP | e
5 e e | e
| fotan 0 » o potics
) w0
|
= s
o (6] w % « u > » m i o






_images/PrairiePaintAfter.jpg
e e B S oot thagoot H
D | 0 coner ot (130 13| oo [ @ B

Lol09@BerAallanssy






_images/RoadDecal_intro.jpg
Fle Edt View Cimen Edtors Lghtng Help

A B © | o, comersspess 15

et 570
s teaes s






_images/DecalEditorTool1.jpg





_images/RoadmeshTexL.jpg





_images/RoadmeshBa.jpg





_images/DecalRoadTool1.jpg





_images/Roadmeshintro.jpg
File Ede View Comera Editors Lighting Help
) owmaoemfio >

A






_images/DecalRoadTool.jpg





_images/Roadmeshheader.jpg





_images/Decal_RC.jpg
2 Rows

2Columns

TexRows = 2
TexCols =2






_images/RotateGizmo.jpg





_images/Decal_Header.jpg





_images/Roadmeshpath.jpg





_images/Decal_remove.jpg
Decal Editor

Ubrary | Instances.






_images/SBSelectMaterialField.jpg
~v_Sky Box

Waterial Blanksikyl
drawBottom

fogBandHeight 0






_images/Decal_missing.jpg
Decal Editor

Ubrary | Instances.
ScorchBigDecal
ScorchRxDecal

PlayerFootprit






_images/RotateGizmo1.jpg





_images/DatablockEditor2.jpg





_images/RoadDecal_header.jpg





_images/DatablockEditor1.jpg
Fie Edt View Object Camera Edtors Lighting Help

[£ 1 ® | o, caneraspeca ]
L oLO0G @ADL

L

> AluretshapeData =
» Camerabata
» DebrisData
~ Decabta i
PiayerFootprint
Scorchigbecal
ScorchioiDecal
» Explosiondata
» tenData
» LgttaninData
» LghDescrition .
Databiock -
[xtieccaismansgecbecapaa )l /2
nane buleroeDe -]
a "
Source Class Decabsta
< becal
E= 0
iteria oecal €)
fespan S0 [ =]
fadeTine oo fe
~ Rendeiing
Tadestartesze | 1
foosEnopuetsze | 200
renderpirty 0
cippingndie 180
< Tertuing
frame o e

Selection arrow.

1 Datablocks Selected






_images/RoadDecal_TL.jpg





_images/DecalEditorTool.jpg





_images/DecalEditor.jpg
Fie Edt View Camera Edtors Lishting Help
[& 1 @ |, cancraspeea
Lo L0 s

Library
ScorchBigDecal
ScorchRXDecal
luletroleDecal
PlayerFootprit

Tempiste Properties

~ Decal Tempiate Preview. -

v Decal Template Properties

Shape edtor ( Shift Cick ) to speed up camera.






_images/Riverfog2.jpg
aterFogDensty

DenstyOffset






_images/Riverfog1.jpg
00 aensiy

1 aDensiy





_images/Data_new2.jpg





_images/Riverlake.jpg





_images/Data_dal1.jpg
Datablock Library

Existing
» SPrstte

» ShapeBaseimageData
» SplashData

» TriggerData

» TSForesttembata





_images/RiverfresP2.jpg
G

fresnePower





_images/Data_toollib1.jpg
Datablock Library

Edsting | New,

Datablock Library

Bisting | New

» CameraData
» Debrispata

» DecalData

» ExplosionData

» temData

» LightaninData

» LightDescriion
» LightFlareData

» Lightringbata

s |

o

Camerabata
DebrisData
Decalbata
Explosiondata
Fiyig\ehicleData
ForesttenData
GameBascData
HoverVehicleData
tenData

b m






_images/Riverred.jpg





_images/Data_save1.jpg
Datablock *

name. DefautPlayerData
) i

Source Class PlayerData

~ General

pickupRacius 1

maxTimeScale 15
recoverDelay s
recoverRunForceScale | 12

category






_images/Riverpath.jpg





_images/DatablockEditor.jpg





_images/RoadDecal_BA.jpg





_images/Data_toolprop1.jpg
Datablock

—] - I
v General r
eSouna T =T
engnesound [
saueasound [
heeimpactsound ||
et C—
moweospeed @
cngineTorque s
enanesrate o
akeToraue a0
ieForce w00
fetEnerayorain >
mineEneray ©
assCenter 0020
assBox 000
bodyRestution 0t
bocyFricton o
softmpactSound [
hardimpactSound |
mopacispeed 5
softmpactspeed ;






_images/Riverwet.jpg
elDexth eDepth

wetDarkening 0 wetDarkening






_images/CreateNewMatButton.jpg
Diffuse Preview

Create New Unmapped Hiaterial

:0





_images/RiverTool1.jpg





_images/CreateNewFilter.jpg
Material Selector

Fiters Materils

Types

v

an(344)
 Mapped (271)
Unmapped (73)

T G| bevenatreen
Canopy (8)
decal (11)
Prop (9)
RoadAncPatn (13)] | beached_boa
Rock(3)

Creste New Tag






_images/RiverTool.jpg





_images/CreateNoisyTerrain.jpg
Create New Terrain x|

eteria grasst

Resotuton: (1024






_images/CreateNewMaterial.jpg
B[t oo

ing.

Loating.

Create New Unmapped Hiaterial

tywe

undercty _we

E]

ing.

Loating.

gter warorcampt | Moo ]
—1 1

Materia Taggs






_images/Riverdist.jpg
distortStartDist distortStartDist distortStartDist
distorEndDist distortEndDist distorEndDist
istortFulDepth distortFulDepth distortFulDepth






_images/CubeAdded.jpg





_images/postfx_dof_general1.png
General | Aufo Focus.

(JEnable DOF

(JEnable Auto Focus






_images/OpenSkyLeft.jpg
<1 | searc

AT Mol Dote taken | Tags Sie
Documents “ e
Deskiop
o
) Pictures “ “

Music BlucsoBackipg  BlucShy Bottom...  BlueSky_Frontipg

J Recently Changed
Searches
- ‘ ' ‘ .

[} .
Folders || BueSoioting |  Buesky Rgrtipg  BussiyTopies |+

Fierane: BueSio_Lotipa 7] ——
5






_images/postfx_footer1.png
Loarreset.. | [ smvereset | [ Reven ][ pely






_images/postfx_footer.png
Loarreset.. | [ smvereset | [ Reven ][ pely






_images/OptionsDlg.jpg
Options. x|

Graphics Cortrols

DislayDrver. [NVIDIA GeForce 3600M GT (0308)

Resoluon: (1026 x768 (#3) | Refrest: (60~

(CFuscreen CverticalSyne Artaissing [ Off

Mesh Cusity: [Custom | Erfect Guaiy: |

Texture Qualty: [Normal | Shader Quaty: [High

Uighting Quaity: [Custom~
Anisctropic Fitering: | ]






_images/postfx_hdr_bloom1.png
Brightness | Bloom | _Effects (Opebug  [Enable

(] Enable Bloom
Bright pass threshold o
Blur uiper ()
Blur mean value ()

Blur "Std Dev" value o






_images/OpenTerFile.jpg
M

G (=]« Tutorals » gome » ot » terains » < [%2][search 2|

E— Name Dstetaken  Tage Sze Rating
e . detits
eskcy 1l envpack
18 Computer . grassland
I} Documents Emnmm
o ighiands
B i W orctown
B Music . sampleTersin
(5 Recently Changed | i Test
S . WarrorCamp.
Jw
U Public giine}
L emptyter
inewMissionter
Dlrebisionoser

[ newMission Lter
[simleter

Folders ~

Fie ame: newtlsonter 2N =






_images/postfx_hdr_bloom.png
Brightness | Bloom | _Effects (Opebug  [Enable

(] Enable Bloom
Bright pass threshold o
Blur uiper ()
Blur mean value ()

Blur "Std Dev" value o






_images/NoShadowsScene.jpg





_images/player_bbox.png





_images/NewTerrainDialog.jpg
Create New Terrain x|

eteria grasst

Resoution: (255~ |

Cant






_images/networkingServerTypes.png
Dedicated server with Local client/server Local client/server

connected clients. playingthe game with playingthe game as a
connected clients. single player.





_images/NoiseTerrainAdded.jpg
w__Object Phy

0L






_images/postfx_dof_focus.png
General_[ Auto Focus.

[DEnable

Near Biur Max
Far Biur Max
Focus Range (Min)
Focus Range (Max)
Blur Curve Near

Blur Curve Far

[
[
[
[
[
[






_images/NoSkybox.jpg





_images/player_damageloc.png
head
HeadBackPercentage

dFrontPercentage

boxHeadPercentage (0.86)

torso

boxTorsoPercentage (0.43)

legs






_images/NormalAdded.jpg





_images/postfx_dof_general.png
General | Auto Focus (JEnable

(CJEnable Auto Focus





_images/NoisyTerrainAdded.jpg
22






_images/postfx_dof_focus1.png
General_[ Auto Focus.

[DEnable

Near Biur Max
Far Biur Max
Focus Range (Min)
Focus Range (Max)
Blur Curve Near

Blur Curve Far

[
[
[
[
[
[






_images/ObjectEditorTool1.jpg
PETE)





_images/ObjectEditorTool.jpg
PETE)





_images/inspectorTree.jpg
Source class.

e
Tsute

~ Transtom.

postion
otaton

076727328891 01
1000
e

detoutireedoe L]

000
1000






_images/gui_tree1.png
[ o | ibrary | Profies ®
2]

OptionsiznuBG

T Optionstienuteader

ol

» g optorstian
Grapticatizna

P ——
Contrtsienu
1 cuutonct
| cuutonct
| cuutonct

Y ——
> [ eusecormopane

| cuutonct

| cuutonct

| cuutonct

Sudcten

e Crtionstiens
a 16300

Source clase oucomal | |
~ Laon

postion 00

ot 1024758
st 82

hoizSizng o
vertSizing = )

~ Cotl

profe [Gubsautprod






_images/NewTerrainAdded.jpg
" Torgue 302308 - G009

Hs2a seare






_images/networkingPacketLoss.png
Packetl
Packetz
Packets
Packetd

packetl
packet2
packet3
packets

Packets packets

In this diagrar
Packet] makesit to the clientas expected
Packet 2 never makes it to the client
Packet3 makesit to the clientas expected
PacketS arrives at the client prior to packet 4






_images/NewMaterialAdded1.jpg
A Torue 30200 - ot
R e ——

5 © | &, conenoms (2513] ® | s

»






_images/networkingNetGraph.png
ARAAMAMULAARAAL

Ol

hosts Active:5
| BytesReceived: 238
aiency: 20 Packet Loss:






_images/gui_tool_bar4.png
10241

[ MainilenuGu - 18851
e 15573
(e - 15555
(e - 15025
(e - 15550
(e - 20004
i Gui 17233
ChocseLeveiDy - 16562
ConsolDly - 16504
CrestezwlavtiechDlg - 19453
EmptyContol - 179
Frame0erayGui- 17264
(GenericPronpibidag - 17355
Gutusicplaye - 17221
HudessplayGu - 17353
sinServertien - 1674
Loadngcu - 16
anchttn - 17315
G - 16851
lessageti 17313
NetGraphGui- 17153
Ortienstieny - 15500
Pauseenu - 17150
PettometeDiag - 17
PttomGenerictenutar - 17527
FlayerLctGui- 1752

oy Gui- 17355
oSt tianager - 17413
ProceduralTamanpaterGu - 15154
rofiercui - 17170
enapcontimDlg - 17164
RenapDla - 17152
StartupGui - 17230






_images/gui_tool_bar3.png





_images/gui_tool_bar6.png





_images/gui_tool_bar5.png





_images/gui_tool_bar8.png





_images/gui_tool_bar7.png





_images/gui_tool_bar9.png





_images/postfx_ssao_general1.png
General | _Mear Far

Qualty [ Low.

Overal Stengh (1
B (Sofness) ()

Blur (Normai Maps)






_images/Particle_peAngle2.jpg
Example of Spread
Angle min /max

~ Spread
Angle in
Angle e

Depth
offset






_images/postfx_ssao_near1.png
General | MNear Far [enable

Radus ()
Strengtn o
Depthin (1
Depth ax ()

Normal aps
Tolerance /Power () o






_images/postfx_ssao_near.png
General | MNear Far [enable

Radus ()
Strengtn o
Depthin (1
Depth ax ()

Normal aps
Tolerance /Power () o






_images/Particle_peOrient.jpg
> Initial particle image

rientto Movmert Direction






_images/postfx_tabs_ssao1.png
‘ SSAO HOR | LightRays | DOF | Sharpness | Nightvision






_images/Particle_peOffset.jpg
Example of Spread Offset

~ Nition

Speed [ 01
SpeedRandom (1 o

Orent o Movment Direction

Algnto aDirection
AlgnDiecton (010

~ Spead
[y S
Ageior - s
Depth. @ 0
Offset @ 0833






_images/postfx_tabs_ssao.png
‘ssso HOR | Light Fays | DOF | Vignette | Color Correction





_images/Particle_pne1.jpg
Particle Editor - Emiters.

Particle Editor - Particles.

Enitter

[ particie | >

[pctautparice ~| (I

B
O
< itin

et 0 [
Specd Random O [
Orenttoownertovecton 0
Ao aDrecton o

AlgnDiection [010

~ Spead
Agorin 01 o]
Argemax  @l--h ;0
Depth. 0 [380

Offset @ 02

- b
we oD Sveseora

e Random (1 o [corefaretautparie |
Infinite Loop sy e T |
G Lte o [1313 ]

Life Random () 1312

 ition

ntial Speed 04890

Acceleration o—[o

Gravity
Drag

~ Spin
Spintin
SpinMax

[
0 [oames

T

[0 [

Spin Speed 0

~ Overtime

Colors:

=g





_images/postfx_toggle_off.png
PostFX Manager

JEnable PostFX System

Quaty |





_images/Particle_peSoft.jpg
~ Blendng
Blend Type. [ADDmvE
Sofiess Distance @ o
AnbirtFactor @ [33125]

Note the hard edges where the
particle meets the Terrain

~ Blendng
BendType [ ADDITIVE
Sofiness istance

-
[

Ambient Factor @

Softness Distance helps to blend
these edges






_images/postfx_tabs_vignette.png
SSAO | HOR | Light Rays | DOF | Vignette | Color Correction

(Enable

Fadius P





_images/ParticleEditorTool1.jpg





_images/postfx_ssao_far.png
(Enable.

General | _Mear Far
Radus. o
Strengih o
Depthin
Depth Max o
Normal aps

Tolerance /Power () )






_images/ParticleEditorTool.jpg





_images/postfx_sharpness1.png
Sharpen Width

Sharpen Strength

Sharpen Range

(JEnable.






_images/Particle_p_prop.jpg
Particle Editor - Particles ~ Spin
Endir »o s o — [

(Detaurarice ~] (1 Spinax 10— [se0 |

Particle

~ Basic. Spin Speed a

(=) ~ Overtime

Wit | o meeo

Acceleration @ o Time 1 [

T2 0 [o2m
Grarty - 2 .~
Drag @ 04985 ey of ]

T — T o [
Life Random o 1312 size2 ¢ [o4574
~ Motion Size 3 @ 07385
Seet o [osss

@






_images/postfx_ssao_general.png
General | _Mear Far

Qualty [ Low.

Overal Stengh (1
B (Sofness) ()

Blur (Normai Maps)






_images/Particle_head.jpg





_images/postfx_ssao_far1.png
(Enable.

General | _Mear Far
Radus. o
Strengih o
Depthin
Depth Max o
Normal aps

Tolerance /Power () )






_images/Particle_peAngle.jpg
Example of Spread
Angle min /max

~ Spread
Angee tin
Angle e

Depth
offset






_images/Particle_pe1.jpg
Particl Edtor - Emters Ande tin [S=== ]
Emiter | _Particle > Angle thax === [0 )

[oetautenter ~|(JEE Depth 00 |

 Basic Offset @ [0z |

Ute o ~ parides

Life Rerstom @ Parice 1 (etautpartcle_+)

Infnfe Loop Patcke2 @ [None

Amount ) Pt @[ None

Amount Random Partced Q[ None

~ bition ~ Blending

Speca ) [ BenaType  [ADDTVE _ ~|

SpecdRandom (I o] Softness Distance 0

— AnentFactor O

Orent o Movment Direction
Algnto aDirection
AlgnDiecton (010

~ Spread

SortPartcles:
Reverse Order
Use Emiter Size:

Use Material Effect Color

[n]=]als) ?‘g‘






_images/postfx_night_distort.png
Biightness [ Distotion [enable

Distortion Wutper (1
Distortion frequency ()

Distorton Roll ()






_images/postfx_night_bright1.png
Brightness | Distotion

Overbright threshold ()

Low Mutipier ()

High Mltiplier ()






_images/PainterPalette.jpg
Terrain Painter Material Preview

desert_sand_03 [En
Terrain Paiterateril Selector

desert_sand_03 ~
g

desert_sand_03 (1)

B NewLys






_images/postfx_rays.png
SSAO | HOR | Light Rays | DOF | Vignette | Color Correction
(Enable
Brighiness i
sanples 0
Densty i
et i
Decay 0





_images/PainterLargeBrush.jpg
seperm nfo |5 e [5] | esmee 0[]

ial/oe@mesaRnanss






_images/postfx_night_distort1.png
Biightness [ Distotion [enable

Distortion Wutper (1
Distortion frequency ()

Distorton Roll ()






_images/PainterSquareBrush.jpg





_images/postfx_sharpness.png
Sharpen Width

Sharpen Strength

Sharpen Range

(JEnable.






_images/PainterPaletteRocks.jpg
ter Material Preview.

RockyGroundCover

er Material Sefector

[ s ona

RockyGroundCover

B Newtayer

5]






_images/postfx_rays1.png
Brighiness @






_images/PaintPathAfter.jpg
. Toraue 30 - 75 Example.

’ e

sl






_images/postfx_hdr_bright1.png
Brightness | Bloom | _Effects. (Opebug  [Enable

Tone Wapping Cortrast 0
Key Valie o
Vinimum Luminance ()
Wt Cutoft 0

Brighiness Adapt Rate o






_images/OptionsDlg.png
Options

Graphics. Cortrols

Display Diver: | NVIDIA GeForce GTX 1050 T (D301

Resolution: (1024 x 768 (4:3) Refresh [60_v]

CFutsersen CvertcalSyne— Amtsiasig |41
e Oustty: [Custom <] Eftect cusly: |

Texture Custty: [Normal ] Shader Ouaty: [

Lighting Oualty: [ Custom |
Anisctroic Fitering ]

Biightness:
Contrast






_images/postfx_hdr_bright.png
Brightness | Bloom | _Effects. (Opebug  [Enable

Tone Wapping Cortrast 0
Key Valie o
Vinimum Luminance ()
Wt Cutoft 0

Brighiness Adapt Rate o






_images/PaintRockAfter.jpg





_images/postfx_hdr_effects1.png
Biightness | _Bloom | Effects, JDebug  (Enabie

) Enable Calor SHift






_images/PaintPathBefore.jpg
. Torque 30 - 7S Exampe

i | b e






_images/postfx_hdr_effects.png
Biightness | _Bloom | Effects, JDebug  (Enabie

) Enable Calor SHift






_images/PainterBrushClamping.jpg
© | 8 conersows (E]S] @ | ovmseras E e s[5 i a0

ZOo®@a s ala Termpte s

0 v

o] 99 s il e 0 o






_images/PaintRockBefore.jpg
i o Ve o Saton U oy -
£ 1 © |, crscon [503] @, [ s O [0 | 25 1

soZ/oemasagenso]






_images/postfx_night_bright.png
Brightness | Distotion

Overbright threshold ()

Low Mutipier ()

High Mltiplier ()






_images/PainterCircleBrush.jpg
Ry —
(&0 @ | m, comaspes ®,[ounsans [Q 00 | 500
LolcooBeEraARES






_images/autofit_meshes.png
Convex Hulls





_images/WorldEditorIntroImage.jpg
A Torgue 30 - FPS Tutorial

| B S
T T T
[& 18 © | o0, comorases o [wesaines g, 30 A 0 D)@ @, 02 ][] @ 38
R ocsOomara T
£l oo Lay | AWE
%]

MissionGroup

hetlssionarea

envionment
PlayerSpawnPoints
CameraBookmarks.
ambient_sounds
Strest

~ [ cars

5 cart_son
& car

& cars so2
& carr_son

nspector

name. cars S0t ]
| ams5

Source Class TSStatic
~ Transform

postion 10854415,
otation 1000
scale 111

< fheda

srapetane Far
s

~ Rendering
" [ piayambiert
| meshcuing
orignSort

7 4 ~ Collsion
Move selecton. SHET whie dragaing dupicates objects. CTRL 1o toggle soft snap. ALT totoggle aid snap

colisionType






_images/WavyBrushCurveVisual.jpg





_images/WorldEditorSettings.jpg
 World Editor Seftings

(OJRender Plane
(JRender Plane Hashes
[Render Object Text

[Render Object Handie

[Render Selection Box

Plane Extent (500

([JMove display with mouse near border

)Show Mouse Popup nfo

Woeseae [ ]
Rososce [ ]
Scdoscde [ ]

(JPianar Movement

(Jcolide With Object's Bounding Box

biects Use Bor Certer

([ axis Gizmo Active

i ScseFactor, [
e

Ve Ditance

Gimosareenten ]
Project istance (2000






_images/WorldEditorIntroImage1.jpg
© (-
22 5% s v





_images/WorldSettingsIcons.jpg
Werdsetings 1, 38 A 0 2D & | @, 12 |






_images/WorldEditorSettings.png
Editor Settings

‘s Gizma
Camera Seftings.
Convex Edtor
General Settings
Viesh Raad Edtor
Naigation Edtor
Object Edtor
Fiver Edtor
Foad Edtor
Shape Edtor
Terrain Edtor

~ Gizma

Fotate Scalar: [0

Seale Scalar: [08 |

(DORender Vihen Hanipuited
[Render Teol Text

~ Giid

(CIRender Plane.

(CRender Plane Hashes

Plane Size: (500
Plane Color: (25525525520 | [






_images/ZeroProb.jpg
avnSipnydhyserr iyt
© |, coneres = 13] ® | = |"5em 0, 50 8 0B 1) @] 5,02 [

s oo ma s oty o JE—

-






_images/WorldSettingsIcons1.jpg
Werdsetings 1, 38 A 0 2D & | @, 12 |






_images/animation_controls.png
@
<«

I

@) hafio]

Frame: 1114





_images/ZeroSoftness.jpg
A Torque 3D - FullProject - l=l=] % |

Termain_Camera _Editors

Lighting_Help

3] @ | sunsetivgs [Q [ | sze 1o 5] | ress
=

Vs

g 40

(Gelbriod] 71 7

e eran i 100 avg 100 e 100 [ |






_images/gui_profile_tab1.png
GUl_| Lary | protis | ~®E
4

~ care

CentarPrintProfie (16753)

CenterPrintT tProfie (15

ConscleScrolFrofie (1

ConsoleTe EdPrafie (15603)

GuiAutoSiz=TexProfie (16752)
GuBigTexProfie (16754)

GuiBlani HenuBtonProfie (15741)
GuicansoleFrofie (15630)
GuiGraupBordProfie (15745)

GulbighltiznuBtnProfie (16
GulnputctrProfe (1
GulbzdumTexterofi (1¢






_images/gui_tool_bar2.png





_images/gui_tool_bar1.png
A (MR ©® | (venveoui-iess <) [ozsesceasn <) [ #0174 | k44






_images/gui_editor_menu2.png
Layout Move Snap Help

Unda iz
Fedo

cu cunx
copy cuc
Paste =
Select A1

Deselect
Select Parert(s)

Select Chidren

2dd Parentis) to Selection
2dd Chidrento Selection. Ctr-A1-SHift Dawn
Select,

LockiUnlock Selection  CtiL.
HeeUnhide Selection  CtlH

Group Selection e
Ungroup Selection culshin G

Full B Selection

GridSizz =





_images/gui_editor_menu1.png
Edt Layaut
Hew Gul
Cpen.

Save Selected 4s.

Fevert Gul
2 Gui From File.

Move

Open Gui e in Torsion

Clase Edtor
cuit

Snap Help
cun

o

s
culshins

culans

Fio
o






_images/gui_editor_menu4.png
Snap Help

Nudgeleft Lot
Nudge Right Fiart
Nudgetp  Up

Nudge Down  Down

Big Nudge Left  Shif Left
Big Nudge Right Shif Fight
Big Nudg=Up  Shift Up

Big Nudg Dowen Shift Down





_images/gui_editor_menu3.png
Move Snap Help

- anten criLen
| Center Horizontaly
s crigt
Sign Top crivp
| Conter Vertcaly
ign Boton cribown

Space Vertically
Space Harizortally

| Ftio Parert(s)
FRWidihto Parert)
P ettt to Parert(s)

 Bingte ot
Sendto Bact

- sendtoBack

]





_images/gui_editor_menu6.png
Online Documertation...  ARF1
Offine User Guid
 Offine Reference Guidz.

Torque 3D Pubic Forums.
Tordue 3D Private Forums.





_images/gui_editor_menu5.png
Snap Edges.
Snap Centers

Snap o Cartrols
Srap to Canvas
- Snaptocid

v
v
¥ Snapto Guides
v
v

v Show Guides
Clear Gues






_images/gui_inspector1.png
Hame

i 17038
Source Class Guuttencti!

< Buiton

et House

=

arouplium 4 o
butonType [ PushBtion =)
uselouseEverts

~ Loyt

posiion 1750

extert 17525

miEstent 88

herizSizing [relative =)
vertsizing [otiom =)
~ Carrol

profie [Gulenuuttonfrofie |
isile

active

variable

command eyboardControPanei i
atCommand

acceleraor escape

~ oty

toolipProfe [GuTeolTpprofie |
toalip

P 4 la

Hame (TypeName)
Optional labal name of this object.






_images/gui_editor_parenting1.png
| mienss ) | # [0

[H=|ow

GUI | Library | Profles |

Options.

Graphics Cortrols

Display Driver: [ NVIDIA GeForce GTX 1050 T (D3D11)

Resohwion: (1028758 (43 <] Fetres [0+

OFulscresn  [Jvertical Syne  Anti-aliasing [ 4x ~

P —
Terture ualty: Shoder sty

Hesh Qualty: [ Custom +

Loptng ousty:

‘Anisstropic Fitering:

Auto Detect Qualty.

Biightness:
Contrast

@
~ [ Guinindswct
.
b [ GuiBitmapBorderctl [OptControlsPans]
b [7] GuiBitmapBorderctr OptAucicPane]
o
o
o
| GuButonct [apply]

e
m 17215

Soure class J—
i

ostion o=

j ssazm

nnstent s

ercSting [ r—
vertSizing = =)

~ ol

profe Bcrderprafie +]
sl

active
variable
conmand
atCommand

accelerator
i S

visible (Typesoo)

Vether the contrl i visile o hidden.





_images/gui_editor_library2.png
Gul_| Library | Profiies

B3
~ Buttans.

@ ouitmareustoncl
@ cuBtmapButenTertctl

] cusorderutoncin

8 cuLtonsassctl

GuiButtonctl

GuichectBoxCtl
B GuiGradientSwatchCtil

) Guiconguttenctl

GuRadact!

B GuiSwatchButtonCtr
GuTagdeButtonctl

GulToolboxButonctl

Contaners
Core
Edtar
Game.

Lists
Cher
Text

B
B
B
B
> mages.
B
B
B
>





_images/gui_editor_library1.png
Library | Profiis.

Buttans.
Contaners
Core
Edtar

B
B

B

B

B

> Game
> mages.
> Lists

> Other

> Text

B





_images/clouds_normal_displacement.png





_images/azimuth.jpg





_images/foliage.png





_images/edit_node_transforms.png





_images/gui_add_control1.png
UL [ Library | Profles.

B3
= > Butons
~ Containers

“ GuitwtoSerolct !
[ cuicontainer
GuiCortrolarayContrl

GuDynamicCtiArTayCortrl

5 ourometn
GuFramesectt
r—

[ cupane

5 curolauctn

[ cuseratc
1] cuspitcortaines
= GuistackContral

B cutassooicn

GuTabPagecul

[ cuttindowct

e R

& cortrolthat shows an independzrt windaw inside the canvas.

> Game

> Images





_images/foresteditorheader.jpg





_images/gui_add_control3.png
L

B3
> Butans

~ Containers

Dyt lArTay O

9 curoment

JFram

New Window

P

pane!

7 curalautet






_images/gui_add_control2.png
i )
New Windo®

>
> Butans

~ Containers

B —
icortainer

ortrolarrayCartral

1 cunindo

> Core

> Edtor






_images/gui_editor1.png
Singleplayer
Create Server

Join Server

Options

Launch World Editor

Launch GUI Editor

Exit






